Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52917
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor牟中原(Chung-Yuan Mou)
dc.contributor.authorYi-Wen Wangen
dc.contributor.author王怡雯zh_TW
dc.date.accessioned2021-06-15T16:33:55Z-
dc.date.available2019-08-16
dc.date.copyright2015-08-16
dc.date.issued2015
dc.date.submitted2015-08-12
dc.identifier.citation(1) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710.
(2) Stöber, W.; Fink, A.; Bohn, E. Journal of Colloid and Interface Science 1968, 26, 62.
(3) Hoffmann, F.; Cornelius, M.; Morell, J.; Froba, M. Angewandte Chemie 2006, 45, 3216.
(4) Schlucker, S. Angewandte Chemie 2014, 53, 4756.
(5) Wei, H.; Hossein Abtahi, S. M.; Vikesland, P. J. Environ. Sci.: Nano 2015, 2, 120.
(6) Fan, M.; Andrade, G. F.; Brolo, A. G. Analytica chimica acta 2011, 693, 7.
(7) Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Chemical Physics Letters 1974, 26, 163.
(8) Jeanmaire, D. L.; Van Duyne, R. P. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977, 84, 1.
(9) Nie, S.; Emory, S. R. Science 1997, 275, 1102.
(10) Xu, H.; Aizpurua, J.; Käll, M.; Apell, P. Physical Review E 2000, 62, 4318.
(11) Besson, M.; Gallezot, P.; Pinel, C. Chemical reviews 2014, 114, 1827.
(12) Behr, A.; Eilting, J.; Irawadi, K.; Leschinski, J.; Lindner, F. Green Chemistry 2008, 10, 13.
(13) Katryniok, B.; Kimura, H.; Skrzyńska, E.; Girardon, J.-S.; Fongarland, P.; Capron, M.; Ducoulombier, R.; Mimura, N.; Paul, S.; Dumeignil, F. Green Chemistry 2011, 13, 1960.
(14) Carrettin, S.; McMorn, P.; Johnston, P.; Griffin, K.; Hutchings, G. J. Chemical Communications 2002, 696.
(15) Skrzyńska, E.; Ftouni, J.; Girardon, J.-S.; Capron, M.; Jalowiecki-Duhamel, L.; Paul, J.-F.; Dumeignil, F. ChemSusChem 2012, 5, 2065.
(16) Gil, S.; Marchena, M.; Fernández, C. M.; Sánchez-Silva, L.; Romero, A.; Valverde, J. L. Applied Catalysis A: General 2013, 450, 189.
(17) Garcia, R.; Besson, M.; Gallezot, P. Applied Catalysis A: General 1995, 127, 165.
(18) Kim, H. S.; Morgan, R. D.; Gurau, B.; Masel, R. I. Journal of Power Sources 2009, 188, 118.
(19) Albert, J.; Wölfel, R.; Bösmann, A.; Wasserscheid, P. Energy Environmental Science 2012, 5, 7956.
(20) Chai, S.-H.; Wang, H.-P.; Liang, Y.; Xu, B.-Q. Green Chemistry 2007, 9, 1130.
(21) Storhoff, J. J.; Mirkin, C. A. Chemical Reviews 1999, 99, 1849.
(22) Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. Nature 1996, 382, 607.
(23) Gu, J. L.; Shi, J. L.; You, G. J.; Xiong, L. M.; Qian, S. X.; Hua, Z. L.; Chen, H. R. Advanced Materials 2005, 17, 557.
(24) Zhang, X.; Wang, J.; Wu, W.; Qian, S.; Man, Y. Electrochemistry Communications 2007, 9, 2098.
(25) Kumai, Y.; Tsukada, H.; Akimoto, Y.; Sugimoto, N.; Seno, Y.; Fukuoka, A.; Ichikawa, M.; Inagaki, S. Advanced Materials 2006, 18, 760.
(26) Lin, H. P.; Shih, P. C.; Liu Y. H.; Mou, C. Y. Chemistry Letters 2002, 566-567
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52917-
dc.description.abstract金屬奈米粒子陣列 (metallic nanoparticle arrays, MNAs) 在催化、偵測器、磁學、光學和電學等研究領域極有應用性,因此受到相當廣泛的討論。其物理、化學性質隨奈米粒子的顆粒大小、形狀以及排列而有所改變。為了得到高品質的金屬奈米粒子,經常使用奈米中孔洞氧化矽材料做為生長模板,以達到有效控制奈米粒子生長的目的。本研究中利用中孔洞氧化矽奈米粒子 (mesoporous silica nanoparticles, MSNs) 以及中孔洞氧化矽薄膜 (mesoporous silica thin films, MSTFs) 作為生長大面積MNAs的模板,這兩種材料擁有孔徑約5 nm規則排列的垂直孔道以及高度表面積,因此非常有潛力製作出高度規則排列的MNAs材料。
  本篇論文第一部分中,我們在規則排列的垂直孔道模板中還原出六角形週期排列金奈米粒子。利用簡易的還原法還原AuCl4-,在孔道還原出高密度六角形週期排列的金奈米粒子陣列。同時,在大面積垂直孔道的MSTFs也還原出高密度的金奈米粒子,並藉由金奈米粒子陣列間的熱點 (hot-spots) 造成表面增強拉曼光譜 (surface-enhanced Raman spectroscopy, SERS)。我們以4-mercaptobenzoic acid (4-MBA) 作為偵測拉曼光譜的試劑,均勻分布在此研究的金奈米粒子陣列,偵測極限可至10 nM,表面增強拉曼散射增強因子 (SERS enhancement factor) 達107。論文第二部份在中孔洞氧化矽奈米材料孔道中附載磷鎢酸 (phosphotungstic acid, PTA)。PTA是一種擁有氧化還原能力的超強酸,同時有質子轉移能力。藉由中孔洞氧化矽奈米材料當作模板探討不同附載PTA的方法,利用高解析度穿透式電子顯微鏡 (HRTEM) 以及X光能量散佈光譜儀 (EDX) 分析高附載量的磷鎢酸。在照射紫外光後材料能夠還原出金奈米粒子。金結合附載強酸的中孔洞氧化矽材料可應用於甘油氧化並具有催化活性。
zh_TW
dc.description.abstractHighly ordered metallic nanoparticle arrays (MNAs) have received tremendous attention because of various applications in catalysis, sensors, magnetism, optics and electronics. The physicochemical properties of MNAs are highly dependent on their size, shape and arrangement. In order to obtain high quality MNAs, mesoporous silica materials were used as template to effectively control the formation of nanoparticles. Herein, we utilized mesoporous silica nanoparticles (MSNs) and mesoporous silica thin films (MSTFs) as growth templates for fabricating MNAs materials. The templates have uniform pore diameters (~5nm), well-ordered vertical mesochannels, and high surface area, thus providing great opportunities to prepare highly ordered periodical MNAs materials.
  In the first part of this thesis, hexagonal packing of gold nanoparticles grew on periodic mesochannels were achieved using MSNs and MSTFs as templates. Disc-like monodispersed MSNs with highly ordered mesopores were synthesized and coated on silicon wafer. Ultrahigh number density and hexagonal close-packed gold nanoarrays were obtained via a facile reduction of AuCl4- on the mesostructures of MSNs, leading to densely deployed hot-spots along and across the mesochannels of MSNs, as a potential platform for surface-enhanced Raman spectroscopy (SERS). Meanwhile, we also applied the same reduction process on large area MSTFs with perpendicular mesochannels. Hexagonal gold nanoarrays deployed on the periodic mesochannels were obtained and further examined by scanning electron microscopy (SEM). Experiments of prominent SERS were demonstrated on both of Au-decorated thin film materials by using 4-mercaptobenzoic acid (4-MBA) as a molecular probe. The detection limit of 4-MBA is as low as 10 nM, with a corresponding SERS enhancement factor above 107.
  In the second part, phosphotungstic acid (PTA), a kind of heteropoly acid (HPA) with Keggin structure, was introduced into the mesochannels of mesoporous silica. PTA shows the characteristics such as strong acidity, redox capacity, and ability of proton transfer. We employed mesoporous silica to confine the growth dimensions of PTA by means of various loading methods. High-loaded PTA in the individual mesochannel was identified by high-resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDX) analyses. After exposure to UV light, it is able to induce gold nanoparticles via photo-assisted reduction. The Au-decorated mesoporous silica with strong acid provided a new application in oxidation of glycerol.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:33:55Z (GMT). No. of bitstreams: 1
ntu-104-R02223138-1.pdf: 7290400 bytes, checksum: 76b1e0ffbaf7961197382876fb7e089d (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents謝誌 i
摘要 ii
Abstract iii
Table of Contents v
List of Figures viii
List of Tables xi
Chapter 1 Introduction 1
1.1 Mesoporous Silica Materials 1
1.1.1 Background 1
1.1.2 Mechanism 1
1.1.3 Pore-expanded Mesoporous Silica Nanoparticles (MSNs) 2
1.2 Surface-enhanced Raman Spectroscopy (SERS) 3
1.3 Oxidation of Glycerol 5
1.3.1 Introduction of Glycerol 5
1.3.2 Oxidation of Glycerol by Catalysts 6
Chapter 2 Growth of Gold Nanoparticles on Periodic Mesochannels of Materials for Surface-enhanced Raman Spectroscopy 8
2.1 Motivation 8
2.2 Experimental Section 10
2.2.1 Materials 10
2.2.2 Characterization 11
2.2.2.1 Scanning Electron Microscopy (SEM) 11
2.2.2.2 Transmission Electron Microscopy (TEM) 11
2.2.2.3 Elemental Analysis (EA) 11
2.2.2.4 Nitrogen Adsorption-Desorption Isotherm 11
2.2.2.5 Raman Spectroscopy 12
2.2.3 Synthetic Procedure 13
2.2.3.1 Pore-expanded Mesoporous Silica Nanoparticles 13
(1) Synthesis of Pore-expanded Mesoporous Silica Nanoparticles (MSNs) 13
(2) APTMS-functionalized Pore-expanded MSNs (APTMS-MSNs) 14
(3) Spin Coating Process of APTMS-functionalized MSNs on Silicon Wafer (APTMS-MSNs-wafer) 14
(4) Gold Reduction: Gold Nanoparticles Grew on Periodic Mesochannels of APTMS-functionalized MSNs (APTMS-MSNs-wafer-Au) 16
2.2.3.2 Mesoporous Silica Thin Films 18
(1) Synthesis of Perpendicular Mesoporous Silica Thin Films (MSTFs) on Silicon Wafers 18
(2) APTMS-functionalized MSTFs (APTMS-MSTFs) 18
(3) Gold Reduction: Gold Nanoparticles Grew on Periodic Mesochannels of APTMS-functionalized MSTFs (APTMS-MSTF-Au) 19
2.3 Results and Discussion 20
2.3.1 Pore-expanded Mesoporous Silica Nanoparticles (MSNs) 20
2.3.1.1 Characterization of MSNs and APTMS-functionalized MSNs 20
2.3.1.2 Parameters of Spin Coating 22
2.3.1.3 Effect of Concentration of HAuCl4 (NaBH4 Concentrations were fixed) 25
2.3.1.4 Effect of Concentration of HAuCl4 and NaBH4 28
2.3.1.5 Effect of the Reaction Methods 30
2.3.1.6 Surface-Enhanced Raman Spectroscopy (SERS) of Gold Nanoparticles Grew on Periodic Mesochannels of APTMS-functionalized MSNs 35
2.3.2 Mesoporous Silica Thin Films (MSTFs) 38
2.3.2.1 Characterization of Mesoporous Silica Thin Films (MSTFs) 38
2.3.2.2 Surface-Enhanced Raman Spectroscopy (SERS) of Gold Nanoparticles Grew on perpendicular nanochannels of APTMS-functionalized MSTF 39
2.4 Conclusion 41
Chapter 3 Phosphotungstic Acid inside Mesoporous Silica Materials for Gold Reduction and Glycerol Oxidation 42
3.1 Motivation 42
3.2 Experimental Section 44
3.2.1 Materials 44
3.2.2 Characterization 45
3.2.2.1 Scanning Electron Microscopy (SEM) 45
3.2.2.1 Transmission Electron Microscopy (TEM) 45
3.2.2.3 Fourier Transform Infrared Spectroscopy (FTIR) 45
3.2.2.4 X-Ray Diffraction (XRD) 45
3.2.2.5 Gas Chromatography-Mass Spectroscopy (GC-MS) 46
3.2.3 Synthetic Procedure 47
3.2.3.1 Load Phosphotungstic Acid inside the pores of MSTFs by One-step Method 47
3.2.3.2 Load Phosphotungstic Acid by Ion Exchange 48
(1) Synthesis of Mesoporous Silica Films (MSFs) 48
(2) HNO3 Acid-treated MSFs (HNO3-MSFs) 48
(3) PTA inside HNO3 Acid-treated MSFs/MSNs by Ion Exchange (PTA-HNO3-MSFs/MSNs) 49
3.2.3.3 Load Phosphotungstic Acid by Impregnation 50
(1) Calcination of Pore-expanded MSNs (Calc.-MSNs) 50
(2) PTA inside Calc.-MSNs by Impregnation 51
3.2.3.4 Load Phosphotungstic Acid by Electrostatic Force 51
(1) Synthesis of functionalized Pore-expanded MSNs (APTMS-MSNs and TA-MSNs) 51
(2) PTA inside functionalized MSNs by Electrostatic Force (PTA-TA/APTMS-MSNs) 52
3.2.4 Synthetic Procedure – Gold Reduction via Photoreduction (PTA-APTMS-Au-MSN) 53
3.2.5 Synthetic Procedure – Oxidation of Glycerol 54
3.3 Results and Discussion 55
3.3.1 Results of Characterization 55
3.3.1.1 One-step Method 56
3.3.1.2 Load PTA by Ion Exchange 58
(1) HNO3-treated Pore-expanded MSNs (HNO3-MSNs) 58
(2) PTA inside HNO3 Acid-treated MSFs/MSNs by Ion Exchange (PTA-HNO3-MSFs/MSNs) 60
3.3.1.3 Load PTA by Impregnation 64
3.3.1.4 Load PTA by Electrostatic Force 66
3.3.1.5 Gold Reduction via Photoreduction (PTA-APTMS-Au-MSN) 70
3.3.2 GC-MS Analysis of Product of Glycerol Oxidation 76
3.4 Conclusion 80
Chapter 4 Conclusion 81
References 83
dc.language.isoen
dc.subject甘油zh_TW
dc.subject中孔洞二氧化矽zh_TW
dc.subject催化zh_TW
dc.subject金奈米粒子zh_TW
dc.subject表面增強拉曼zh_TW
dc.subject磷鎢酸zh_TW
dc.subjectMesoporous silicaen
dc.subjectGold nanoparticlesen
dc.subjectsurface-enhanced Raman spectroscopy (surface-enhanced Raman scattering)en
dc.subjectphosphotungstic aciden
dc.subjectglycerolen
dc.subjectcatalysisen
dc.title奈米粒子陣列自組裝於中孔洞氧化矽材料zh_TW
dc.titleNanoparticles Array Assembly in Mesoporous Silica Materialsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳玉如(Yu-Ju Chen),廖尉斯(Wei-Ssu Liao)
dc.subject.keyword中孔洞二氧化矽,金奈米粒子,表面增強拉曼,磷鎢酸,甘油,催化,zh_TW
dc.subject.keywordMesoporous silica,Gold nanoparticles,surface-enhanced Raman spectroscopy (surface-enhanced Raman scattering),phosphotungstic acid,glycerol,catalysis,en
dc.relation.page84
dc.rights.note有償授權
dc.date.accepted2015-08-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
Appears in Collections:化學系

Files in This Item:
File SizeFormat 
ntu-104-1.pdf
  Restricted Access
7.12 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved