Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52912
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳維婷(Wei-Ting Chen)
dc.contributor.authorChun-Yian Suen
dc.contributor.author蘇俊彥zh_TW
dc.date.accessioned2021-06-15T16:33:39Z-
dc.date.available2015-08-16
dc.date.copyright2015-08-16
dc.date.issued2015
dc.date.submitted2015-08-13
dc.identifier.citationChen, F., and J. Dudhia, 2001: Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part II: Preliminary Model Validation. Mon. Weather Rev., 129, 587–604, doi:10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2.
Chen, J.-P., and D. Lamb, 1994: Simulation of Cloud Microphysical and Chemical Processes Using a Multicomponent Framework. Part I: Description of the Microphysical Model. J. Atmos. Sci., 51, 2613–2630, doi:10.1175/1520-0469(1994)051<2613:SOCMAC>2.0.CO;2.
——, and ——, 1999: Simulation of Cloud Microphysical and Chemical Processes Using a Multicomponent Framework. Part II: Microphysical Evolution of a Wintertime Orographic Cloud. J. Atmos. Sci., 56, 2293–2312, doi:10.1175/1520-0469(1999)056<2293:SOCMAC>2.0.CO;2.
——, and S.-T. Liu, 2004: Physically based two-moment bulkwater parametrization for warm-cloud microphysics. Q. J. R. Meteorol. Soc., 130, 51–78, doi:10.1256/qj.03.41. http://dx.doi.org/10.1256/qj.03.41.
Cheng, C.-T., W.-C. Wang, and J.-P. Chen, 2010: Simulation of the effects of increasing cloud condensation nuclei on mixed-phase clouds and precipitation of a front system. Atmos. Res., 96, 461–476, doi:10.1016/j.atmosres.2010.02.005. http://dx.doi.org/10.1016/j.atmosres.2010.02.005.
Dudhia, J., 1989: Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci., 46, 3077–3107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
Feng, Z., X. Dong, B. Xi, C. Schumacher, P. Minnis, and M. Khaiyer, 2011: Top-of-atmosphere radiation budget of convective core/stratiform rain and anvil clouds from deep convective systems. J. Geophys. Res. Atmos., 116, 1–13, doi:10.1029/2011JD016451.
Gao, W., C. H. Sui, T. C. Chen Wang, and W. Y. Chang, 2011: An evaluation and improvement of microphysical parameterization from a two-moment cloud microphysics scheme and the Southwest Monsoon Experiment (SoWMEX)/Terrain-influenced Monsoon Rainfall Experiment (TiMREX) observations. J. Geophys. Res. Atmos., 116, 1–13, doi:10.1029/2011JD015718.
Hong, S., and J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteorol. Soc., 42, 129–151. http://www.mmm.ucar.edu/wrf/users/docs/WSM6-hong_and_lim_JKMS.pdf
http://search.koreanstudies.net/journal/thesis_name.asp?tname=kiss2002&key=2525908.
Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. Mon. Weather Rev., 132, 103–120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.
——, Y. Noh, and J. Dudhia, 2006: A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev., 134, 2318–2341, doi:10.1175/MWR3199.1.
In Young Lee, 1989: Evaluation of cloud microphysics parameterizations for mesoscale simulations. Atmos. Res., 24, 209–220, doi:10.1016/0169-8095(89)90046-X.
Jou, B. J. D., Lee, W. C., and Johnson, R. H. 2011: An overview of SoWMEX/TiMREX and its operation. The Global Monsoon System: Research and Forecast, 303-318.
Joss, J., and Waldvogel, A. 1967: A raindrop spectrograph with automatic analysis. Pure Appl. Geophys, 68, 240-246.
Kain, J. S., 2004: The Kain–Fritsch Convective Parameterization: An Update. 170–181.
Lang, S., W.-K. Tao, J. Simpson, R. Cifelli, S. Rutledge, W. Olson, and J. Halverson, 2007: Improving Simulations of Convective Systems from TRMM LBA: Easterly and Westerly Regimes. J. Atmos. Sci., 64, 1141–1164, doi:10.1175/JAS3879.1.
Lang, S. E., W.-K. Tao, X. Zeng, and Y. Li, 2011: Reducing the Biases in Simulated Radar Reflectivities from a Bulk Microphysics Scheme: Tropical Convective Systems. J. Atmos. Sci., 68, 2306–2320, doi:10.1175/JAS-D-10-05000.1.
——, ——, J.-D. Chern, D. Wu, and X. Li, 2014: Benefits of a 4 th Ice Class in the Simulated Radar Reflectivities of Convective Systems using a Bulk Microphysics Scheme. J. Atmos. Sci., 140619135140002, doi:10.1175/JAS-D-13-0330.1. http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-13-0330.1.
Lee, I. Y., 1992: Comparison of cloud microphysics parameterizations for simulation of mesoscale clouds and precipitation. Atmos. Environ. Part A. Gen. Top., 26, 2699–2712, doi:10.1016/0960-1686(92)90004-5.
Li, X.-W., W.-K. Tao, A. P. Khain, and J. Simpson, 2009: Sensitivity of a Cloud-Resolving Model to the Bulk and Explicit Bin Microphysical Schemes. 3–21, doi:10.1175/2008JAS2647.1.
Li, Y., E. J. Zipser, S. K. Krueger, and M. a. Zulauf, 2008: Cloud-Resolving Modeling of Deep Convection during KWAJEX. Part I: Comparison to TRMM Satellite and Ground-Based Radar Observations. Mon. Weather Rev., 136, 2699–2712, doi:10.1175/2007MWR2258.1.
Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk Parameterization of the Snow Field in a Cloud Model. J. Clim. Appl. Meteorol., 22, 1065–1092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.
Liou, Y.-C., and Y.-J. Chang, 2009: A Variational Multiple–Doppler Radar Three-Dimensional Wind Synthesis Method and Its Impacts on Thermodynamic Retrieval. Mon. Weather Rev., 137, 3992–4010, doi:10.1175/2009MWR2980.1.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. a. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663, doi:10.1029/97JD00237.
Morrison, H., and J. Milbrandt, 2011: Comparison of Two-Moment Bulk Microphysics Schemes in Idealized Supercell Thunderstorm Simulations. Mon. Weather Rev., 139, 1103–1130, doi:10.1175/2010MWR3433.1.
Morrison, H., J. a. Curry, M. D. Shupe, and P. Zuidema, 2005: A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part II: Single-Column Modeling of Arctic Clouds. J. Atmos. Sci., 62, 1678–1693, doi:10.1175/JAS3447.1.
——, G. Thompson, and V. Tatarskii, 2009: Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes. Mon. Weather Rev., 137, 991–1007, doi:10.1175/2008MWR2556.1.
Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Q. J. R. Meteorol. Soc., 124, 1071–1107, doi:10.1002/qj.49712454804. http://dx.doi.org/10.1002/qj.49712454804.
Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: how do aerosols affect precipitation? Science, 321, 1309–1313, doi:10.1126/science.1160606.
Rutledge, S. a., and P. V. Hobbs, 1984: The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. XII: A Diagnostic Modeling Study of Precipitation Development in Narrow Cold-Frontal Rainbands. J. Atmos. Sci., 41, 2949–2972, doi:10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2.
Tao, W., and J. Simpson, 1993: Goddard cumulus ensemble model. Part 1: Model description. Terr. Atmos. Ocean. Sci, 35–72. http://210.77.94.226/local/ejournal/TAO/TAO1993/TAO-1993-4(1)-35-72.pdf.
Tao, W. K., J. P. Chen, Z. Li, C. Wang, and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, doi:10.1029/2011RG000369.
Whitby, K. T., 1978: The physical characteristics of sulfur aerosol. Int. Symp. sulfur Atmos., 12.
Wu, D., X. Dong, B. Xi, Z. Feng, A. Kennedy, G. Mullendore, M. Gilmore, and W. K. Tao, 2013: Impacts of microphysical scheme on convective and stratiform characteristics in two high precipitation squall line events. J. Geophys. Res. Atmos., 118, 11119–11135, doi:10.1002/jgrd.50798.
Yuter, S. E., and R. a. Houze, 1995: Three-Dimensional Kinematic and Microphysical Evolution of Florida Cumulonimbus. Part II: Frequency Distributions of Vertical Velocity, Reflectivity, and Differential Reflectivity. Mon. Weather Rev., 123, 1941–1963, doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52912-
dc.description.abstract本研究以CLR雙矩量雲微物理機制在區域模式中對2008年西南氣流實驗第八次密集觀測(SoWMEX/TiMREX IOP8)台灣海峽地區中尺度對流系統個案進行區域模式模擬,以S-波段雙偏極都卜勒氣象雷達(S-Pol radar)及撞擊式雨滴譜儀(JWD)觀測資料對回波機率分布、雨滴粒徑分布、降雨強度譜及時空分布等結果進行評估,並與Morrison雙矩量雲微物理機制的模擬結果比較。接著利用CLR機制來探討不同雲凝結核背景濃度對雲微物理及中尺度對流的影響,觀察模擬的系統中對流區與層狀區對雲凝結核變化的敏感性。
結果顯示CLR機制的模擬中各個高度皆模擬出較觀測資料大的最大雷達回波及最大頻率的雷達回波,較強的對流上升速度、較弱的對流下沉速度及較小的地表的雨滴大小。雲凝結核數量多的CLR-continental模擬出較CLR-maritime少的雨滴、較多的雲滴。CLR-continental模擬出了較CLR-maritime強的上升氣流,推測是由於CLR-continental模擬出較多由雲滴凝結成長所釋放的潛熱,進而影響模擬的對流強度。增加氣膠在對流區及層狀區中都會使水物的質量濃度上升,其中以雪的增加最為顯著。在對流區中氣膠較多的環境模擬出了較集中的降水。延續前述推測CLR-continental模擬出較強上升氣流的原因,發現氣膠多寡所造成由雲滴凝結成長所釋放潛熱的差異主要來自於對流區。本研究指出,探討對流系統受氣膠濃度的影響時,除了分析平均狀態,也應分析系統細部的結構變化及極端降水與上升速度的改變。後續的研究將針對混相微物理過程所造成的潛熱變化及近地表冷池與垂直風切的交互作用對背景氣膠種類的反應進行探討。
zh_TW
dc.description.abstractThis study simulates a mesoscale convective system during SoWMEX/TiMREX IOP8 by the Chen-Liu-Reisner (CLR) physical-statisical two-moment bulk microphysics scheme in the Weather Research and Forecast regional model. The results are evaluated against the observations and retrievals from the S-Pol radar and disdrometer, including the reflectivity probability distribution, rain drop size, precipitation intensity spectrum. Comparison with the simulation using the Morrison two-moment bulk microphysics scheme is also carried out. The CLR scheme is then applied to investigate the impact of different CCN types on the extreme upraft and precipitation. The CLR scheme simulates higher maximum radar reflectivity and higher peak probability radar reflectivity than observations at all altitude. Stronger updrafts, weaker downdrafts and smaller size of rain drops at the surface than observations are simulated by the CLR scheme. The CLR-continental (polluted) scheme simulates stronger updrafts in the convective areas than the CLR-maritime (clean) scheme does, owing to the reason that more latent heat is generated by cloud drop diffusional growth, thereby enhancing the intensity of the convection in the CLR-continental simulation. This study illustrates that, to identify the impacts of aerosols on convective system, it is imperative to analyze the responses in detailed storm structure, extreme precipitation, and extreme vertical velocity in addition to the analyses of the mean state changes. Future work will focus on investigating the response of latent heating rate by various mixed-phase microphysics processes and the interactions between surface cold pool and the vertical wind shear to different background CCN types.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:33:39Z (GMT). No. of bitstreams: 1
ntu-104-R02229013-1.pdf: 2090312 bytes, checksum: 9c59587d0e9b47f1c4a6e95af409bf66 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents摘要 i
Abstract ii
Contents iv
Figure captions v
1. Introduction 1
2. Methodology 7
2.1. Case description 7
2.2. Microphysics schemes 8
2.3. Model setup 10
2.4. Observation Data 11
2.4.1. S-POL Radar 11
2.4.2. JWD 12
3. Results 13
3.1. Evaluate model simulations with observation 13
3.1.1. Simulated mesoscale convective system 13
3.1.2. Rain rate 14
3.1.3. Radar reflectivity 15
3.1.4. Vertical velocity 17
3.1.5. Raindrop size distribution (DSD) 18
3.1.6. Rain rate probability distribution function 19
3.2. Impact of CCN on extreme updraft and precipitation in the CLR simulations 20
3.2.1. CCN profile 20
3.2.2. Hydrometeor vertical profile 21
3.2.3. Vertical velocity 22
3.2.4. Latent heating budget 22
3.2.5. Characteristics of convective and stratiform region 25
4. Discussion 28
4.1. Evaluation of the CLR scheme 29
4.2. Impact of CCN on extreme updraft and precipitation in the CLR simulations 32
5. Summary 34
Reference 37
Figures 42
dc.language.isoen
dc.subject雲微物理機制zh_TW
dc.subject氣膠zh_TW
dc.subject中尺度對流系統zh_TW
dc.subject雨滴粒徑zh_TW
dc.subject降水強度zh_TW
dc.subjectmicrophysics schemeen
dc.subjectaerosolsen
dc.subjectmesoscale convective systemen
dc.subjectrain drop sizeen
dc.subjectprecipitation intensityen
dc.title以雙矩量雲微物理機制探討雲凝結核對極端降水之影響:西南氣流實驗個案分析zh_TW
dc.titleInvestigating the Impacts of Cloud Condensation Nuclei on Extreme Updraft and Precipitation Using the Physical-Statistical Two-Moment Microphysics Scheme : A SoWMEX/TiMREX Case Studyen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳正平(Jen-Ping Chen),吳健銘(Chien-Ming Wu),游政谷(Cheng-Ku Yu)
dc.subject.keyword雲微物理機制,氣膠,中尺度對流系統,雨滴粒徑,降水強度,zh_TW
dc.subject.keywordmicrophysics scheme,aerosols,mesoscale convective system,rain drop size,precipitation intensity,en
dc.relation.page55
dc.rights.note有償授權
dc.date.accepted2015-08-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved