Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52896
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張宏鈞(Hung-Chun Chang)
dc.contributor.authorHsiang-Peng Chenen
dc.contributor.author陳翔鵬zh_TW
dc.date.accessioned2021-06-15T16:32:51Z-
dc.date.available2015-08-17
dc.date.copyright2015-08-17
dc.date.issued2015
dc.date.submitted2015-08-13
dc.identifier.citationAkimov, A. V., A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature, vol. 450, pp. 402–406, 2007.
Barnes, W. L., A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature., vol. 424, pp. 824–830, 2003.
Be´renger, J. P., “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys., vol. 114, pp. 185–200, 1994.
Bierwirth, K., N. Schulz, and F. Arndt, “Finite-difference analysis of rectangular dielectric waveguide structures,” IEEE. Trans. Microwave Theory Tech., vol. 34, pp. 1104-1113, 1986.
Bodewig, E., Matrix Calculus. Amsterdam, the Netherlands: North Holland Pub. Co., 1956.
Boltasseva, A., Valentyn S. Volkov, Rasmus B. Nielsen, Esteban Moreno, Sergio G. Rodrigo, and Sergey I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express, vol. 16, pp. 5252–5260, 2008.
Cavendish, J. C., D. A. Field, and W. H. Frey, “An approach to automatic three-dimensional finite element mesh generation,” Int. J. Number. Meth. Eng., vol. 21, pp. 329–347, 1985.
Cendes, Z. J., and P. Silvster, “Numerical solution of dielectric loaded waveguides: finite-element analysis,” IEEE Trans. Microwave Theory Tech., vol. 18, pp. 1124– 1131, 1970.
Chen, H. J., Hybrid-Elements FEM Based Complex Mode Solver for Optical Waveguides with Triangular-Mesh Generator. M. S. Thesis, Graduate Institute of Electro-optical Engineering, National Taiwan University, Taipei, Taiwan, June 2003.
Chiang, Y. C., Y. P. Chiou, and H. C. Chang, “Improved full-vectorial finite-difference mode solver for optical waveguides with step-index profiles,” J. Light-wave Technol., vol. 20, pp. 1609–1618, 2002.
Chung, C. C., Analysis of Slot and Triangle-Shaped Surface Plasmonic Waveguides Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propagation Method. M. S. Thesis, Graduate Institute of Electro-optical Engineering, National Taiwan University, Taipei, Taiwan, June 2008.
Cuche, A., O. Mollet, A. Drezet, and S. Huant, “Deterministic quantum plasmonics,” Nano Lett., vol. 10, pp. 4566–4570, 2010.
Dickson, R. M., and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B, vol. 104, pp. 6095–6098, 2000.
Dionne, J. A., L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: Frequency dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B, vol. 72, 075405, 2005.
Dong, C. H., X. F. Ren, R. Yang, J. Y. Duan, J. G. Guan, G. C. Guo, and G. P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett., vol. 95, 221109, 2009.
Gramotnev, D. K., and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon., vol. 4, pp. 83–91, 2010.
Guo, X., M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett., vol. 9, pp. 4515–4519, 2009.
Hadley, G. R., and R. E. Smith, “Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions,” J. Lightwave Technol., vol. 13, pp. 465–469, 1995.
Hendry, E., T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol., vol. 5, pp. 783–787, 2010.
Hsu, S. M., Full-Vectorial Finite Element Beam Propagation Method Based on Curvilinear Hybrid Edge/Nodal Elements for Optical Waveguide Problems. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2004.
Johnson, P. B., and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B, vol. 6, pp. 4370–4379, 1972.
Koshiba, M., and Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol., vol. 18, pp. 737–743, 2000.
Lal, S., S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photo., vol. 1, pp. 641–648, 2007.
Lee, J. F., D. K. Sun, and Z. J. Cendes, “Full-wave analysis of dielectric waveguides using tangential vector finite elements,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1262–1271, 1991.
Lee, J. F., Finite element method with curvillinear hybrid edge/nodal triangular shape element for optical waveguide problems. M. S. Thesis, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, June 2002.
Li, Q., and Min Qiu, “Plasmonic wave propagation in silver nanowires: guiding modes or not?,” Opt. Express, vol. 21, pp. 8587–8595, 2013.
Luぴsse, P., P. Stuwe, and J. SchAule, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol, vol. 12, pp. 487–493, 1994.
Moreno, E., and F. J. Garcia-Vidal, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett., vol. 31, pp. 3447–3449, 2006.
Novikov, I. V., and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B, vol. 66, pp. 1–13, 2002.
Ozbay, E., “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science, vol. 311, pp. 189–193, 2006.
Peng, C. H., Analysis of Photonic Crystal Fibers Using a Full-Vectorial Imaginary- Distance Finite-Element Beam Propagation Method. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2007.
Rebay, S., “Efficient unstructured mesh generation by means of Delaunay triangulation and Bowyer-Watson algorithm,” J. Comput. Phys., vol. 105, pp. 125–138, 1993.
Ridolfo, A., O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett., vol. 105, 263601, 2010.
Saitoh, K., and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron., vol. 38, pp. 927–933, 2002.
Schulz, D., C. Gingener, M. Bludsuweit, and E. Voges, “Finite element beam propagation method,” J. Lightwave Technol., vol. 16, pp. 1336–1341, 1998.
Takahara, J., S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett., vol. 22, pp. 475–477, 1997.
Vernois, G., and S. Fan, “Bends and splitters in metalVdielectricVmetal sub- wavelength plasmonic waveguides,” Appl. Phys. Lett., vol. 87, 131102, 2005.
Vial, A., A. S. Grimault, D. Macias, D. Barchiesi, and M. L. Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B, vol. 71, 085416, 2005.
Wang, Y., Y. Ma, X. Guo, and L. Tong, “Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates,” Opt. Express, vol. 20, pp. 19006–19015, 2012.
Yan, M., and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B, vol. 24, pp. 2333–2342, 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52896-
dc.description.abstract本篇論文中,我們以曲線混合型元素為基底的全向量有限元素虛軸波束傳遞法來分析表面電漿波導結構的模態特性。我們主要分析了三角形狀以及銀奈米圓柱結構的模態特性。針對不同的參數和結構,我們計算了等效折射率、傳播距離以及分析了模態場型。關於三角形波導,我們分析了Λ型以及V型兩種不同的結構,並且致力於探討三角形狀結構在小角度時的模態現象。我們對於結構在擁有不同的小角度(25⁰、20⁰以及15⁰)的情況下,計算了等效折射率以及傳播距離,並且分析了模態場型的侷限性和損耗之間的關係。至於銀奈米圓柱結構,我們討論了有基座和沒有基座的兩種結構。對於在不同的操作波長,以及不同半徑的銀奈米圓柱結構的情形下,我們分析了傳播模態的特性以及詳細計算了等效折射率以及傳播距離。另外,我們發現銀奈米圓柱在有基座的結構下,除了傳播模態,也會有洩漏模態的存在。zh_TW
dc.description.abstractModal analysis of surface plasmon polariton (SPP) waveguides using an in-house developed finite-element imaginary-distance beam propagation method (FE-ID-BPM) is discussed in this thesis. We mainly analyze the modal characteristics of triangle-shaped and silver nanowire waveguides. The effective refractive indices, propagation lengths, and mode-field profiles are calculated for different parameters and structures. For the triangle-shaped waveguides, we discuss the propagation characteristics of the two different Λ-type and V-type structures, aiming at the investigation of structures with smaller corner angles relative to those reported in the literature. We show the effective index and propagation length versus the operating wavelength for corner angles of 25⁰, 20⁰, and 15⁰, and compare the degrees of confinement and losses for different wavelengths and corner angles. For the silver nanowires, we discuss a nanowire immersed in a medium matrix and that with a supported substrate. For different operating wavelengths and radii of the nanowires, we discuss the propagation characteristics of the guiding modes. The real part of the effective index and the propagation length are discussed in detail. Besides the guiding modes, we find there exists a leaky mode in the substrate-supported nanowire.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:32:51Z (GMT). No. of bitstreams: 1
ntu-104-R02941099-1.pdf: 8510624 bytes, checksum: 998758d67b5e8240d71e45f6938a4f0e (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents1 Introduction.....................................1
1.1 Motivations...................................1
1.2 Numerical Methods for Waveguide Analysis......3
1.3 Chapter Outline...............................5
2 The Finite Element Method and Related Mathematical Formulations.......................................6
2.1 The Perfectly Matched Layers................ .6
2.2 The Finite Element Method and Mode Solver.....9
2.3 The Finite Element Beam Propagation Method....13
2.4 The Finite-Element Imaginary-Distance Beam Propagation Method.................................17
3 Analysis of Triangle-Shaped Surface Plasmon Polariton Waveguides.........................................26
3.1 Triangle-Shaped Waveguides: An Overview.......26
3.2 The Groove Waveguide..........................28
3.3 The Wedge Waveguide...........................30
4 Plasmonic Wave Propagation along Silver Nanowires...49
4.1 Propagation modes of silver nanowires in a SiO2 matrix .............................................50
4.2 Propagation modes of silver nanowires on a SiO2 substrate...........................................51
4.3 Discussion on the operating wavelength from 610 nm to 630 nm...........................................54
5 Conclusion........................................81
Bibliography........................................84
dc.language.isoen
dc.title以全向量虛軸有限元素波束傳播法分析三角形與銀奈米圓柱波導的模態特性zh_TW
dc.titleModal Analysis of Triangle-Shaped and Silver-Nanowire Waveguides Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propagation Methoden
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊宗哲,陳瑞林,魏培坤
dc.subject.keyword有限元素虛軸波束傳遞法,表面電漿,三角形波導,銀奈米圓柱,洩漏模態,zh_TW
dc.subject.keywordfinite-element imaginary-distance beam propagation method (FE-IDBPM),surface plasmon polariton (SPP),triangle-shaped waveguides,silver nanowires,leaky modes,en
dc.relation.page89
dc.rights.note有償授權
dc.date.accepted2015-08-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
8.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved