Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52891
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳肇欣(Chao-Hsin Wu)
dc.contributor.authorYuan-Fu Hsuen
dc.contributor.author徐源甫zh_TW
dc.date.accessioned2021-06-15T16:32:37Z-
dc.date.available2020-08-20
dc.date.copyright2015-08-20
dc.date.issued2015
dc.date.submitted2015-08-13
dc.identifier.citation[1] IDC’s Digital Universe, “The digital universe in 2020 : big data, bigger digital shadows, and biggest growth in the far east.”, Sponsored by EMC, December 2012
[2] International Technology Roadmap for Semiconductors, “Executive Summary,” 2011.
[3] http://googleresearch.blogspot.tw/2013/11/moores-law-part-2-more-moore-and-more.html
Intel and John Bowers, “A hybrid silicon laser,” 2006
http://engineering.ucsb.edu/bowers/hybrid_laser_white_paper.pdf
[4] W. Snodgrass, B.R. Wu, K.Y. Cheng, and M. Feng, “Type-II GaAsSb/InP DHBTs with record fT = 670 GHz and simultaneous fT, fMAX > 400 GHz,” in IEEE International Electron Devices Meeting (IEDM), 2007, pp. 663-666.
[5] N. Holonyak, Jr. and S.F. Bevacqua, “Coherent (visible) light emission from Ga(As1−xPx) junctions,” Applied Physics Letters, vol. 1, pp. 82-83, December 1962.
[6] M. Feng, N. Holonyak, Jr., and W. Hafez, “Light-emitting transistor: Light emission from InGaP/GaAs heterojunction bipolar transistors,” Applied Physics Letters, vol. 84, pp. 151-153, January 2004.
[7] M. Feng, N. Holonyak, Jr., and R. Chan, “Quantum-well-base heterojunction bipolar light-emitting transistor,” Applied Physics Letters, vol. 84, pp. 1952-1954, March 2004.
[8] M. Feng, N. Holonyak, Jr., and W. Hafez, “Light-emitting transistor: Light emission from InGaP/GaAs heterojunction bipolar transistors,” Applied Physics Letters, vol. 84, pp. 151-153, January 2004.
[9] M. Feng, N. Holonyak, Jr., and R. Chan, “Quantum-well-base heterojunction bipolar light-emitting transistor,” Applied Physics Letters, vol. 84, pp. 1952-1954, March 2004.
[10] H. W. Then, M. Feng, and N. Holonyak, Jr, “Optical bandwidth enhancement by operation and modulation of the first excited state of a transistor laser,” Applied Physics Letters, vol. 91, pp. 183505, October 2007.
[11] W. Shockley, M. Sparks., and G.K. Teal, “p-n junctions transistors”, Physical Review, vol. 83, pp. 151, July 1951.
[12] John N. Shive, “The properties of germanium phototransistors”, Journal of the Optical Society of America, vol. 43, pp. 239, April 1953.
[13] H. Wang and D. Ankri, “Monolithic integrated photoreceiver implemented with GaAs/GaAlAs heterojunction bipolar phototransistor and transistors,” Electron. Lett., vol. 22, pp. 391–393,March 1986.
[14] S. Chandrasekhar, L.M. Lunardi, A.H. Gnauck, R.A. Hamm,G.J. Qua, 'High-speed monolithic p-i-n/HBT and HPT/HBT photoreceivers implemented with simple phototransistor structure,' Photonics Technology Letters, IEEE , vol.5, no.11, pp.1316,1318, Novenber. 1993
[15] John Wallace, “Photonics Products: Photodiodes: Silicon low-light photodiodes don't miss a photon”, Laser Focus World, August 2014.
[16] S. Dupont, M. Fendler, F. Jorge, S. Maricot, J. P.Vilcot, D. Decoster, 'Signal to noise ratio enhancement using heterojunction bipolar phototransistor by base current compensation,' Microwave Photonics, 2000. MWP 2000. International Topical Meeting on , vol., no., pp.59,61, 2000
[17] S. W. Tan, H. R. Chen, W. S. Lour, “The influence of base bias on the collector photocurrent for InGaP / GaAs heterojunction phototransistors,” Applied Physics Letters, vol. 97, pp.034502, February 2005.
[18] S. W. Tan, H. R. Chen, and W. T. Chen, “Characterization and Modeling of Three-Terminal Heterojunction Phototransistors Using an InGaP Layer for Passivation,” IEEE Transactions on Electron Devices, vol. 52, pp. 1088-1091, February 2005.
[19] S. M. Frimel, and K. P. Roenker, “Gummel–Poon model for Npn heterojunction bipolar phototransistors,” Applied Physics Letters, vol. 82, pp.3581, October 1997.
[20] H. R. Chen, W. T. Chen, and M. K. Hsu, “Comprehension and modelling of heterojunction phototransistors operated in the Gummel-plot and common-emitter modes,” Semiconductor Science and Technology, vol. 20, Issue 6, pp. 548-554, March 2005.
[21] David Wood, Optoelectronic semiconductor devices, Prentice Hall, pp. 282, 1994.
[22] W. Liu, “Handbook of Ⅲ-Ⅴ Heterojunction Bipolar Transistor,” Willy, New York, 1986.
[23] 林 東 明 (2005), “異質接面雙極性電晶體大訊號模型建立及光通訊前端電路實作, ” 碩士論文, 國立中央大學電機工程研究所
[24] J. Knoch, et al., “A novel concept for field-effect transistors - the tunneling carbon nanotube FET”, IEEE Device Research Conference Digest, p. 154, 2005.
[25] N. Holonyak and J. M. Dallesasse, “AlGaAs native oxide,” U.S. Patent 5 262 360, Nov. 16, 1993
[26] http://www.thorlabs.hk/thorcat/2700/FDS1010-SpecSheet.pdf
[27] R. G. Hunsperger, Integrated Optics: Theory and Technology
[28] David Wood, Optoelectronic semiconductor devices, Prentice Hall, pp. 279-280, 1994.
[29] C. Gonzalez, and A. Marty, “Optoelectronic Sensors,” ISTE Ltd, pp147-148, 2009.M.
[30] Chennafi, C. Rumelhard, C. Gonzalez, and J. Yhuret, “Modelling the Photoresponse Characteristics of InP/InGaAs Heterojunction Phototransistor with Different Incident Directions of Beam Light,” CNET, GAAS 98, Amsterdam, October 1998.
[31] C. Gonzalez, and A. Marty, “Optoelectronic Sensors,” ISTE Ltd, pp127-131, 2009.
[32] 周鵬豪 (2013), “不同尺寸設計對發光電晶體光頻寬之影響,” 碩士論文, 國立台灣大學光電工程研究所
[33] H. L. Wang, P. H. Chou, and C. H. Wu, “Microwave determination of quantum-well capture and escape time in light-emitting transistors,” IEEE Transactions on Electron Devices, vol. 60, pp. 1088-1091, March 2013.
[34] D. R. Pehlke and D. Pavlidis, “Evaluation of the factors determining HBT high-frequency performance by direct analysis of S-parameter data,” IEEE Transactions on Microwave Theory and Techniques, vol. 40, pp. 2367-2373, December 1992.
[35] B. Li, S. Prasad, L.-W. Yang, and S. C. Wang, “A semianalytical parameter-extraction procedure for HBT equivalent circuit,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, pp. 1427-1435, October 1998.
[36] S. Bousnina, P. Mandeville, A. B. Kouki, R. Surridge, and F. M. Ghannouchi, “Direct parameter-extraction method for HBT small-signal model,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, pp. 529-536, February 2002.
[37] W. Liu, Ed., Handbook of Ш-V heterojunction bipolar transistors. New York: Wiley-Interscience, 1998.
[38] 吳依珊(2008), “萬用閘應用”,國立澎湖海事
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52891-
dc.description.abstract在資訊爆炸的時代,將光訊號與電訊號整合於同一晶片上形成光電積體整合電路(OEICs, OptoElectronic Integrated Circuits)是未來重要的研究發展之一。發光電晶體(Light-Emitting Transistor, LET)有著獨特的電訊號輸入、光訊號與電訊號同時輸出的雙輸出的特性,且具有快速的載子複合速度。此外,發光電晶體與傳統光電晶體(Heterojunction phototransistor, HPT)磊晶結構相仿,同樣都在基極、集極與次集極間形成p-i-n二極體的光吸收層,因此可將發光電晶體作為光電晶體來當作光偵測器使用。由上述可知,發光電晶體集合了光源與接收端的特性,使之成為下一世代光電積體整合電路重要的發展元件之一。
本研究將兩顆發光電晶體整合於同一元件上,形成一個兩段式整合元件,其中一者為光訊號輸出端,另一者為光訊號之接收端。同時操作下,分析其作為光接收端的元件,在外部光注入下其直流電訊號與高頻特性的改變。隨著操作偏壓、工作電流以及光注入的改變,光電晶體的光響應度可達711.4 A/W。我們另外將穿隧接面引入元件的結構中,發現若有額外的穿隧電流的影響,則穿隧式光電晶體的光響應度可達3404.8 A/W。在元件的高頻特性部分,在有光訊號注入之後,光電晶體的截止頻率由1.4 GHz推至1.51 GHz,我們利用等效小訊號模型分析元件受到電容電阻寄生效應的影響。最後我們利用發光電晶體設計一個以光訊號為主的邏輯電路,形成AND閘與OR閘,並可以得到顯著的光訊號邏輯變換特性。
為了增進元件特性表徵,未來可以以「電晶體雷射」取代發光電晶體,以及設計波導結構來提升元件光訊號輸出與準直性,並可設計NAND閘與NOR閘,使光電邏輯電路運用廣泛。
zh_TW
dc.description.abstractIn an era of information explosion, combining optical and electrical signals into a single chip to form OptoElectronic Integrated Circuits (OEICs) is one of the most important researches and developments in the future. In 2004, Milton Feng and Nick Holonyak, Jr. invented the first light-emitting transistor (LET) in UIUC. The III-V LETs with a direct bandgap and carrier injection have made themselves as three-port (an electrical input, an electrical output and a “third-port” optical output) devices. The LETs has a similar epitaxial structure to the conventional heterojunction bipolar transistor (HBT). The base, collector and subcollector layer of the LET can be employed to form a p-i-n diode for photon detection, which works as a heterojunction phototransistor (HPT). Therefore, the LET has the unique characteristics to function like a photon transmitter and receiver, which has the potential to become a building block for next-generation OEICs.
In this thesis, we demonstrate an integrated two-section light-emitting transistor with one section working as a light emitter and the other one working as a phototransistor. Firstly, we use this two-section device to characterize the HPT with different operation points (IB and VCE) and injected optical power. The responsivity of the HPT is 711.4 A/W. A tunnel junction is then incorporated to form a tunnel junction heterojunction phototransistor (TJ-HPT). With the help of the tunnel junction, the responsivity can be enhanced to 3404.8 A/W. Secondly, we characterize the microwave performance of the LET under different optical injections. Through the analysis of small-signal equivalent circuit models, we can analyze the transist time by deembedding the circuit paracistics effect. The cut-off frequency enhances from 1.4 GHz to 1.51 GHz under an optical power injection. Thirdly, we design and demonstrate the optical logic gates in the form of an AND gate and OR gate utilizing the characteristics of phototransistors. The AND gate and OR gate have a significant on/off ratio with injecting optical power.
In the future, we can enhance the performance of the two-section device by substituting theLET with the transistor laser (TL). Also we can design an optical NAND gate and NOR gate for future application of OEIC design.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:32:37Z (GMT). No. of bitstreams: 1
ntu-104-R02941005-1.pdf: 12913922 bytes, checksum: aefcde45eeb99da6d6a845c416596073 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員審定書 I
致謝 II
中文摘要 V
ABSTRACT VI
目錄 VIII
圖目錄 XI
表目錄 XV
第1章 緒論 1
1.1 背景介紹與目的 1
1.2 論文概述 4
第2章 發光電晶體與異質接面光電晶體之基本工作原理 5
2.1 發光電晶體之工作原理介紹 5
2.2 異質接面光電晶體之工作原理介紹 9
2.2.1 光接收器比較 10
2.2.2 異質接面光電晶體特性與工作原理 12
2.2.3 異質接面光電晶體電流增益特性 13
2.2.4 異質接面光電晶體光響應度與光學增益 15
2.3 Gummel特性曲線介紹 16
2.4 穿隧效應 18
2.5 兩段整合式元件磊晶結構與製作流程 20
2.5.1 兩段整合式元件磊晶層介紹 20
2.5.2 兩段整合式元件製程介紹 22
2.5.3 兩段整合式元件表面形貌 26
2.6 直流訊號量測儀器介紹與架設 29
2.7 入射光定義分析 31
2.8 異質接面光電晶體直流特性分析 33
2.8.1 異質接面光電晶體Gummel特性曲線分析 33
2.8.2 異質接面光電晶體電流電壓特性曲線 39
2.8.3 異質接面光電晶體光響應度分析 41
2.9 穿隧式異質接面光電晶體直流特性分析 43
2.9.1 穿隧式發光電晶體工作原理分析 43
2.9.2 穿隧式異質接面光電晶體Gummel特性曲線分析 44
2.9.3 穿隧式光電晶體電流電壓特性曲線與光響應度分析 47
2.10 結論 50
第3章 發光電晶體與光電晶體之基本工作原理 51
3.1 異質接面光電晶體之截止頻率分析 51
3.1.1 光二極體與光電晶體光響應係數分析 51
3.1.2 不同光注入方向與光吸收位置對截止頻率的影響[30] 52
3.2 異質接面光電晶體等效電路模型[31] 54
3.3 發光電晶體等效電路模型之簡介 57
3.3.1 S 參數介紹 57
3.3.2 發光電晶體之等效小訊號電路模型分析 59
3.4 高頻訊號量測儀器介紹與架設 61
3.5 基極電流對異質接面光電晶體在光注入下截止頻率的影響 64
3.5.1 光注入下基極電流對截止頻率影響分析 64
3.5.2 光注入下基極電流對傳遞時間分析 70
3.6 射集電壓對異質接面光電晶體在光注入下截止頻率的影響 72
3.6.1 光注入下基極電流對截止頻率影響分析 72
3.6.2 光注入下射集電壓對傳遞時間分析 78
3.7 結論 80
第4章 異質接面光電晶體應用至邏輯閘 81
4.1 基本邏輯閘分析[38] 81
4.1.1 反向器(NOT gate) 81
4.1.2 及閘 (AND gate) 82
4.1.3 或閘 (OR gate) 82
4.1.4 反及閘 (NAND gate) 83
4.1.5 反或閘 (NOR gate) 84
4.2 邏輯閘元件製作流程與磊晶結構 85
4.3 AND閘量測架設 88
4.4 AND閘量測分析 91
4.4.1 AND閘異質接面光電晶體電輸出特性分析 91
4.4.2 AND閘電輸出特性分析 92
4.5 OR閘量測架設 97
4.6 OR閘量測架設 99
4.6.1 OR閘異質接面光電晶體電輸出特性分析 99
.4.6.2 OR閘電輸出特性分析 100
4.7 結論 102
第5章 論文總結與未來展望 103
參考文獻 105
dc.language.isozh-TW
dc.subject光響應度zh_TW
dc.subject光電積體整合電路zh_TW
dc.subject截止頻率zh_TW
dc.subject邏輯電路zh_TW
dc.subject光電晶zh_TW
dc.subject發光電晶體zh_TW
dc.subjectOptoElectronic Integrated Circuitsen
dc.subjectheterojunction phototransistoren
dc.subjectresponsivityen
dc.subjectcut-off frequencyen
dc.subjectlogic gateen
dc.subjectlight-emitting transistoren
dc.title利用兩段整合式發光電晶體探討異質接面光電晶體特性分析與邏輯閘應用zh_TW
dc.titleCharacterization of Heterojunction Bipolar Phototransistor with Integrated Two-Section Light-Emitting Transistors and Logic Gate Applicationen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃建璋(Jian-Jang Huang),陳敏璋(Miin-Jang Chen),林浩雄(Hao-Hsiung Lin)
dc.subject.keyword發光電晶體,光電晶,光響應度,截止頻率,邏輯電路,光電積體整合電路,zh_TW
dc.subject.keywordlight-emitting transistor,heterojunction phototransistor,responsivity,cut-off frequency,logic gate,OptoElectronic Integrated Circuits,en
dc.relation.page108
dc.rights.note有償授權
dc.date.accepted2015-08-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
12.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved