請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52890完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭茂坤 | |
| dc.contributor.author | Ting-Yu Kuo | en |
| dc.contributor.author | 郭庭佑 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:32:34Z | - |
| dc.date.available | 2015-08-16 | |
| dc.date.copyright | 2015-08-16 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-13 | |
| dc.identifier.citation | 參考文獻
[1] J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, G. C. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle as¬semblies,” J. Am. Chem. Soc. 120, 4640-4650, 2001. [2] K. L. Kelly, A. A. Lazarides, G. C. Schatz, “Computational electromagnetics of metal nanoparticles and their aggregates,” IEEE Comp. Sci. Engi. 3, 67-73, 2001. [3] S. J. Park, T. A. Taton, C. A. Mirkin, “Array-based electrical detection of DNA with nanoparticle probes,” Science, 295, 1503-1505, 2002. [4] X. Huang, H. Ivan, W. Qian, A. Mostafa, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115-2120, 2006. [5] J. W. Liaw, H. Y. Tsai, C. H. Huang, “Size-dependent surface enhanced fluorescence of gold nanorod: enhancement or quenching,” Plasmonics, 7, 543-553, 2012. [6] C. F. Bohern, D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983. [7] U. Kreibig, M. Vollmer, Optical Properties of Metal Cluster, Springer Verlag, Berlin, 1995. [8] V. M. Agranovich, D. L. Mills, Surface Polaritons Electromagnetic at Surfaces and Interfaces, North-Holland, New York, 1982. [9] R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874, 1957. [10] W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, 424,824-830, 2003. [11] E. Burstein, Polariton, Pergamon, New York, 1974. [12] J. P. Barton, D. R. Alexander, S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594-4602, 1989. [13] M. L. Juan, M. Righini, R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics, 5, 349-356, 2011 [14] K. Dholakia, P. Reece, M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42-55, 2007. [15] R. Saija, P. Denti, F. Borghese, O. M. Marago, M. A. Iati, “Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres.” Optics Express, 17, 10231-10241, 2009. [16] K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, N. F. Scherer, “Plasmon resonance-based optical trapping of single and multiple Au nanoparticles,” Optics Express, 15, 12017-12029, 2007. [17] R. Kumar, D. S. Mehta, C. Shakher, “Clustering of optically trapped large diameter plasmonic gold nanoparticles by laser beam of hybrid-TEM11 mode,” J. Nanophotonics, 5, 053511, 2011. [18] S. H. Simpson, S. Hanna, “Orbital motion of optically trapped particles in Laguerre-Gaussian beams,” Opt. Soc. Am. A. 27, 2061-2071, 2010. [19] V. Demergis, E. L. Florin, “Ultrastrong optical binding of metallic nanoparticles,” Nano Lett. 12, 5756–5760, 2012. [20] Z. Yan, R. A. Shah, G. Chado, S. K. Gray, M. Pelton, N. F. Scherer, “Guiding spatial arrangements of silver nanoparticles by optical binding interactions in shaped light fields,” ACS Nano, 7, 1790–1802, 2013. [21] Van de Hulst, Light Scattering by small Particles, Wiley, New York, 1957. [22] M. Kerker, The Scattering of Light and Other Electromagnetic Radiation, Academic Press., New York, 1969. [23] S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, C. R. Chris Wang, “The shape transition of gold nanorods,” Langmuir, 15, 701-709, 1999. [24] Z. Gryczynski, J. Lukomska, J. R. Lakowicz, E. G. Matveeva, I. Gryczynski, “Depolarized light scattering from silver nanoparticles,” Chemical Physics Letters, 421, 189-192, 2006. [25] N. Calander, I. Gryczynski, Z. Gryczynski, “Interference of surface plasmon resonances causes enhanced depolarized light scattering from metal nanoparticles,” Chemical Physics Letters, 434, 326-330, 2007. [26] N. G. Khlebtsov, “Anisotropic properties of plasmonic nanoparticles: depolarized light scattering, dichroism, and birefringence,” J. Nanophotonics, 4, 041587, 2010. [27] J. C. Maxwell, “A dynamical theory of the electromagnetic field,” Philosophical Transactions of the Royal Society, 155, 459-512, 1865. [28] P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B. 6, 4370-4379, 1972. [29] M. Thomas, J. J. Greffet, R. Carmitati, J. R. Arias-Gonzalez, “Single-moledcule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863-3865, 2004. [30] K. T. Mcdonald, Total and frustrated reflection of a Gaussian optical beam, Joseph Henry Laboratories, Princeton University, 2009. [31] I. N. Vekua, New Methods for Solving Elliptic Equations, North-Holland, New York, 1993. [32] C. Hafner, “Beitrage zur berechnung der ausbreitung electromagneitscher wellen in zylindrischen struckturen mit hilfe des point-matching ver fahrens,” Ph.D. dissertation, Swiss Polytechnical Institute of Technology, Zurich, Switzerland, 1980. [33] C. Hafner, The Generalized Multipole Technique of Computational Electromagnetics, Artech. House, Boston, 1991. [34] N. Kuster, R. Ballisti, “MMP method simulation of antenna with scattering object in the closer-near field,” IEEE. Trans. Magn. 25, 2881-2883, 1989. [35] C. Hafner, N. Kuster, “Computation of electromagnetic fields by multiple multipole method (generalized multipole technique),” Radio. Sci. 26, 291-297, 1991. [36] H. William, A. T. Saul, T. V. William, F. P. Brian, Numerical Recipes C++: the Art of Scientific Computing, Cambridge University Press, New York, 2002. [37] V. Karásek, P. Zemánek, “Analytical description of longitudinal optical binding of two spherical nanoparticles,” J. Opt. A. 9, S215-S220, 2007. [38] F. Dapasse, J. M. Vigoureux, “Optical binding force between two Rayleigh particles,” J. Phys. D. 27, 914-919, 1994. [39] D. Haefner, S. Sukhov, A. Dogariu, “Conservative and nonconservative torques in optical binding,” Phys. Rev. Lett. 103, 173602, 2009. [40] D. Haefner, S. Sukhov, A. Dogariu, “Conservative and nonconservative torques in optical binding,” Phys. Rev. Lett. 103, 173602, 2009. [41] B. N. Khlebtsov, V. A. Khanadeev, N. G. Khlebtsov, “Observation of extra-high depolarized light scattering spectra from gold nanorods,” J. Phys. Chem. C. 112, 12760–12768, 2008. [42] 李承諭,“金奈米桿結構之光學特性分析,” 國立臺灣大學應用力學研究所碩士論文,2010。 [43] J. W. Liaw, M. K. Kuo, C. N. Liao, “Plasmon resonances of spherical and ellipsoidal nanoparticles,” J. of Electromagn. Waves and Appl. 19, 1787-1794, 2005. [44] N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, L. A. Dykman, A. V. Alekseeva, L. A. Trachuk, B. N. Khlebtsov, “Can the light scattering depolarization ratio of small particles be greater than 1/3?,” J. Phys. Chem. B. 109, 13578-13584, 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52890 | - |
| dc.description.abstract | 以線性極化平面電磁波或Gaussian光束,照射金、銀奈米二聚體(dimer),產生表面電漿子共振(surface plasmon resonance;SPR),並出現控制著兩粒子穩定距離的光束縛力(optical binding force)。在幾種波長下,由多重中心展開法(multiple-multipole expansions method)計算電磁場,並透過Maxwell應力張量得知粒子所受光力,與二聚體間距改變的關係。結果顯示,在各波長下,粒子會出現幾個穩定平衡距離,並束縛住彼此,而這距離皆為略小於在介質中波長的整數倍。在這些特定的距離下,當兩粒子靠近或遠離時,二聚體間的光力會如同彈簧般,產生斥力或吸力,且當二聚體相距一倍波長時,這虛擬彈簧中的恢復力與彈簧常數往往是最大的,表示這是最穩定的狀態,此外,兩粒子球心連線(中心線)總是傾向於垂直電場極化的方向。至於由不相同的兩粒子所組成的異型二聚體,其穩定平衡距離仍然存在,但會出現光泳力,驅使整個二聚體系統作剛體運動。另一方面,以Gaussian光束為光源時,會產生朝向中心的梯度力,對平衡位置產生影響,甚至破壞。而三顆粒子所組成的三聚體,同樣以接近介質中波長的距離,保持平衡,並仍有光泳力的產生。
除此之外,任意角度平面波,照射金奈米桿的平均吸收與散射效應,及金奈米桿的去極化效率(depolarization ratio),也在本文作討論。結果指出,金奈米桿的長軸表面電漿子共振(longitudinal SPR;LSPR),會隨著桿的細長比(aspect ratio;AR)增加而紅位移。至於金奈米桿的去極化效率,與LSPR並無太大關係,但會隨著AR值加大而增加,且紅位移。 | zh_TW |
| dc.description.abstract | This study theoretically investigates that plasmon-mediated optical forces, exerted on metal dimers, consisting of two gold or silver nanoparticles (NPs), induced by the normal illumination of a linearly polarized plane wave or Gaussian beam. Using the multiple multipole method, we analyzed the optical force in terms of Maxwell’s stress tensor versus the inter-particles distance for some specific wavelengths. Numerical results show that for a given wavelength there are several stable equilibrium distances between NPs, which is slightly shorter than some integer multiples of the wavelength in medium, for metal dimer acting as bonded together. At these specific distances, the optical force between dimer will become a repulsive or an attractive force when the two NPs are close to or away from each other. The spring constant of the restoring force at the first stable equilibrium is always the maximum, indicating that the first stable equilibrium distance is the most stable one. Moreover, the central line of a dimer tends to be perpendicular to the polarization of light. For a heterodimer, which consists of two NPs of different sizes or different materials, the phenomenon of stable equilibrium distance still exists but with a net driving photophoretic force to move the heterodimer. In addition, a Gaussian beam provides a gradient force reducing the stability of these equilibriums. For a trimer, consisting of three gold NPs, there still exists stable distance between NPs and also a photophoretic force.
Moreover, the average scattering and absorption efficiencies as well as depolarization ratio of a randomly oriented gold nanorod are also studied. Our results indicate that the depolarization spectrum is broader than those of scattering and absorption efficiencies. The maximum depolarization ratio can be raised and the corresponding wavelength (not at the longitudinal SPR) is red-shifted by increasing the aspect ratio. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:32:34Z (GMT). No. of bitstreams: 1 ntu-104-R02543049-1.pdf: 5598438 bytes, checksum: 273eaf5bdd3d7e1d9b6e76e4a21a3c00 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 目錄
誌謝 i 摘要 ii Abstract iii 目錄 iv 圖表目錄 vi 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 本文內容 3 第二章 電磁理論 4 2.1 Maxwell 方程式與邊界條件 4 2.2 Helmholtz方程式 7 2.3 平面波電場與磁場之球向量波函數 8 2.4 吸收截面積效率與散射截面積效率 11 2.5 平面波之平均入射效應 13 2.6 平面波入射奈米桿之平均去極化效率 16 2.7 Maxwell應力張量 18 2.8 Gaussian光束 18 第三章 多重中心展開法求解電磁場 20 3.1 多重中心展開法介紹 20 3.2 多重中心展開法求解散射體之電磁場 21 3.3 奇異值拆解法求解電磁場未定係數 23 第四章 數值結果分析與討論 25 4.1 金、銀奈米粒子之光束縛力 25 4.1.1 金、銀奈米同型二聚體之光束縛力 27 4.1.2 金、銀奈米異型二聚體之光束縛力 46 4.1.3 金奈米三聚體之光束縛力 50 4.2 金奈米桿之去極化能力 55 4.2.1 金桿在任意角度平均後之吸收與散射效率 56 4.2.2 金奈米桿的平均去極化效率 59 第五章 結論與未來展望 60 5.1 結論 60 5.2 未來展望 61 參考文獻 62 附錄A 67 附錄B 69 | |
| dc.language.iso | zh-TW | |
| dc.subject | 去極化 | zh_TW |
| dc.subject | 三聚體 | zh_TW |
| dc.subject | 光束縛力 | zh_TW |
| dc.subject | 光泳力 | zh_TW |
| dc.subject | 二聚體 | zh_TW |
| dc.subject | 表面電漿子共振 | zh_TW |
| dc.subject | 多重中心展開法 | zh_TW |
| dc.subject | photophoretic force | en |
| dc.subject | optical forces | en |
| dc.subject | stable equilibrium | en |
| dc.subject | multiple multipole method | en |
| dc.subject | dimer | en |
| dc.subject | trimer | en |
| dc.subject | surface plasmon resonance | en |
| dc.subject | depolarization ratio | en |
| dc.title | 金、銀奈米粒子之光束縛力 | zh_TW |
| dc.title | Optical Binding Forces on Gold or Silver Nanoparticles | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 廖駿偉 | |
| dc.contributor.oralexamcommittee | 鄧崇任 | |
| dc.subject.keyword | 表面電漿子共振,光束縛力,去極化,多重中心展開法,二聚體,光泳力,三聚體, | zh_TW |
| dc.subject.keyword | surface plasmon resonance,optical forces,stable equilibrium,multiple multipole method,dimer,trimer,photophoretic force,depolarization ratio, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 5.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
