Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52833
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳信樹(Hsin-Shu Chen)
dc.contributor.authorPing-Chieh Leeen
dc.contributor.author李秉玠zh_TW
dc.date.accessioned2021-06-15T16:29:44Z-
dc.date.available2020-08-27
dc.date.copyright2015-08-27
dc.date.issued2015
dc.date.submitted2015-08-13
dc.identifier.citation[1] Robert W. Erickson; Dragan Maksimovic, “Fundamentals of Power Electronics, Second Edition” 2011 by Kluwer Academic Publishers.
[2] D. D. Lu, J. C. Liu, N. K. Poon and M. H. Pong “A Single Phase Voltage Regulator Module (VRM) With Stepping Inductance for Fast Transient Response,” IEEE Trans. Power Electron., vol. 22, pp. 417 - 424, Mar., 2007.
[3] P. J. Liu, Y. K. Lo, H. J. Chen “Dual-Current Pump Module for Transient Improvement of Step-Down DC-DC Converters”, IEEE Trans. Power Electron., vol. 24, no.4, pp.985 - 990, April, 2009.
[4] W. J. Lambert, R. Ayyanar, and S. Chickamenahalli “Fast Load Transient Regulation of Low-Voltage Converters with the Low-Voltage Transient Processor,” IEEE Trans. Power Electron., vol. 24, no. 7, pp.1839 - 1854, July, 2009.
[5] J. Roh “High-Performance Error Amplifier for Fast Transient DC-DC Converters,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.52, pp.591 - 595, Sept., 2005.
[6] Y. Wu, Y. S. Tsui, and K. T. Mok, “Area- and power-efficient monolithic buck converters with pseudo-type III compensation,” IEEE J. Solid-State Circuits, pp.1446 – 1455, Aug., 2010.
[7] Trevisan D., Saggini S. and Mattavelli P., “Hysteresis-Based Mixed-Signal Voltage-Mode Control for dc-dc converters,” in Proc. IEEE PESC, pp. 2664 – 2670, June 2007.
[8] P. J. Liu, H. J. Chiu, Y. K. Lo, and Y. J. Chen, ”A fast transient recovery module for DC-DC converters,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2522 – 2529, July, 2009.
[9] Schild, A., Lunze, J., Krupar, J. and Schwarz, W., “Design of Generalized Hysteresis Controllers for DC-DC Switching Power Converters,” IEEE Trans. Power Electron., vol. 24, no. 1, pp.138 - 146, Jan., 2009.
[10] A. Barrado, R. Vazquez, A. Lazaro, J. Pleite, and E. Olias, “Fast Transient Response with Combined Linear-Non.Linear Control Applied to Buck Converters,” in Proc. IEEE PESC, vol. 4, pp. 1587 - 1592, 2002.
[11] M. Castilla, L. G. Vicuna, J. M. Guerrero, J. Miret and N. Berbe, “Simple Low-Cost Hysteretic Controller for Multiphase Synchronous Buck Converters,” IEEE Trans. Power Electron., vol. 22, no. 4, pp.1232 - 1241, July, 2007.
[12] P. J. Liu, W. S. Ye, J. N. Tai, H. S. Chen, J. H. Chen and Y. J. Chen, “A High-Efficiency CMOS DC-DC Converter With 9-μs Transient Recovery Time,” IEEE Trans. Circuits Syst. I, Regular Papers, vol.59, pp.575 - 583, March, 2012.
[13] M. K. Kazimierczuk and L. A. Starman, “Dynamic Performance of PWM DC-DC Boost Converter with Input Voltage Feedforward Control,” IEEE Trans. Circuits Syst. I, vol. 46, pp. 1473 – 1481, Dec. 1999.
[14] W. Burns and T. G. Wilson, “State Trajectories Used to Observe and Control DC-to-DC Converters,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-12, pp. 706 – 717, Nov., 1976.
[15] In-Hwan Oh, “An Analysis of Current Accuracies in Peak and Hysteretic Current Controlled Power LED Drivers,” Applied Power Electronics Conference and Exposition, 2008.
[16] Marian K. Kazimierczuk, “Pulse-width Modulated DC-DC Power Converters,” John Wiley & Sons, 2008.
[17] Cheung Fai Lee and Philip K. T. Mok, “A Monolithic Current-Mode CMOS DC-DC Converter With On-Chip Current-Sensing Technique,” IEEE Solid-State Circuits, Vol. 39, No. 1, pp. 3 – 14, Jan. 2004.
[18] Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits Fifth Edition,“ Oxford University Press, 2004.
[19] H. Song and C. Kim, “An MOS four-quadrant analog multiplier using simple two-input squaring circuits with source followers,” IEEE J. Solid-State Circuits, vol. 25, no. 3, pp. 841 – 848, Jun., 1990.
[20] Y. M. Lai, “A Hysteresis Prediction Voltage Control Technique for Fast Transient Response in DC-DC Converters,” Graduate Institute of Electronics Engineering College of Electrical Engineering & Computer Science, National Taiwan University, July, 2013.
[21] Yu-Huei Lee, Shih-Jung Wang, Ke-Horng Chen, “Quadratic Differential and Integration Technique in V2 Control Buck Converter With Small ESR Capacitor,” IEEE Trans. Power Electron., vol. 25, no. 4, pp.829 - 838, April, 2010.
[22] Ashis Maity, Amit Patra, Norihisa Yamamura and Jonathan Knight, “Design of a 20 MHz DC-DC Buck Converter with 84% Efficiency for Portable Applications,” 24th Annual Conference on VLSI Design, 2011
[23] Ke-Horng Chen, Chia-Jung Chang, and Te-Hsien Liu, “Bidirectional Current-Mode Capacitor Multipliers for On-Chip Compensation,” IEEE Trans. Power Electron., Vol 23, No. 1 Jan., 2008
[24] Wensong Yu, Jih-Sheng Lai, Hongbo Ma, Cong Zheng,” High-Efficiency DC-DC Converter With Twin Bus for Dimmable LED Lighting,” IEEE Trans. Power Electron., Vol. 26, No. 8, August, 2011
[25] Chao-Hsuan Liu, Chen-Yu Hsieh, Yu-Chiao Hsieh, Ting-Jung Tai, Ke-Horng Chen, “SAR-Controlled Adaptive Off-Time Technique Without Sensing Resistor for Achieving High Efficiency and Accuracy LED Lighting System,” IEEE Trans. Circuits and Systems I, Regular Papers, vol. 57, no. 6, June, 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52833-
dc.description.abstract本論文分為兩個部分,第一部分是闡述一個直流直流轉換器,以遲滯預測電壓控制技術來降低暫態的電壓變化以及加速暫態響應。當系統是穩態時,這個技術利用雙級錯誤放大器做補償,提高相位邊界,當暫態發生時,會切換到遲滯模式加速暫態響應。這個晶片是以台積電 0.35μm 2P4M 3.3V/5V Mixed Signal CMOS 製程製作。依據實驗結果,本晶片操作再切換頻率為1MHz,暫態回復時間為8μs,當負載電流為200mA時,最高效率為89.2%。晶片總面積約為2.85 mm2。第二部分是闡述一個使用成對匯流排調光技術與以連續漸進暫存器控制適當的結束時間技術的發光二極體驅動器。 Twin Bus 調光技術是利用兩個電壓源降低功率電晶體上的跨壓,得到較高的效率。以連續漸進暫存器控制適當的結束時間技術是用來計算精確的電感電流。使發光二極體的亮度穩定。這個晶片是以0.25-μm CMOS High Voltage 2.5/5/7/12/20/24/40/45/60V Mixed-Signal 1P5M 製程製作。由模擬的結果可知,發光二極體驅動器效率可超過93%,安定時間為3μs。zh_TW
dc.description.abstractThe thesis can be divided two parts. The first one presents a DC-DC converter uses the Hysteresis Prediction Voltage Control (HPVC) to suppress the transient overshoot voltage and speed the transient response. In steady state, this technique utilizes the two-stage error amplifier to compensate and raise the phase margin. When the transient occurs, it switches to the hysteresis mode to speed the transient response. This chip is implemented in a TSMC 0.35-μm 2P4M 3.3V/5V Mixed Signal CMOS process. According to measurement results, this chip operates at 1MHz, transient recovery time is 8μs. The maximum efficiency is 89.2% when load current is 200 mA. The area of this chip is about 2.85 mm2.The second part presents a LED driver with Twin Bus for dimmable lighting and SAR-controlled adaptive off-time technique. Twin Bus for dimmable lighting technique utilizes two voltage sources to reduce the voltage stresses on power transistors and obtain the high efficiency. The SAR-controlled adaptive off-time technique is used to calculate the accuracy inductor current, and the brightness of LEDs is constant. This chip is implemented in a TSMC 0.25-μm CMOS High Voltage 2.5/5/7/12/20/24/40/45/60V Mixed-Signal 1P5M process. According to simulation results, the efficiency of the LED driver is over 93 %, and the settling time is 3 μs.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:29:44Z (GMT). No. of bitstreams: 1
ntu-104-R01943114-1.pdf: 13383969 bytes, checksum: 0d16e8d350b6e6f5187084432457c1fe (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
Table of Contents IV
List of Figures X
List of Tables XVII
Chapter 1 Introduction 1
1.1 Motivation 3
1.2 Thesis Overview 7
Chapter 2 The DC-DC Converter with HPVC Technique 9
2.1 Fundamental of DC-DC Buck Converters 9
2.1.1 The Architecture of DC-DC Converters 9
2.1.1.1 Operation of DC-DC Buck Converters 9
2.1.1.2 Estimation of Output Voltage Ripple 14
2.1.1.3 Feedback-Loop Stabilization 16
2.1.2 Performance Metrics 20
2.1.2.1 Transient Response 20
2.1.2.2 Regulation 23
2.1.2.2.1 Line Regulation 23
2.1.2.2.2 Load Regulation 24
2.1.2.2.3 Temperature Regulation 24
2.1.2.3 Efficiency 25
2.2 Proposed Architecture 27
2.2.1 Introduction 27
2.2.2 Specifications of DC-DC Buck Converter 28
2.2.3 System Architecture 28
2.2.4 Hysteresis Prediction Voltage Control (HPVC) 30
2.2.4.1 Early Turn-Off/Turn-On to Reduce Ringing Phenomenon 30
2.2.4.2 Early Triggering to Reduce Overshot/Undershoot 34
2.2.4.3 Operational Waveforms of the Proposed HPVC Technique 36
2.3 Circuit Implement and Simulation Results 38
2.3.1 Compensational Circuit 39
2.3.1.1 Two-Stage Error Amplifier 40
2.3.1.2 Operational Amplifier 42
2.3.2 Comparator 45
2.3.3 Ramp Generator 46
2.3.4 Prediction Circuit 49
2.3.4.1 Differentiator 49
2.3.4.2 Squarer 50
2.3.5 Subtractor 53
2.3.6 One-Shot Circuit 54
2.3.7 Mode-Select Circuit 55
2.3.7.1 Hysteresis Detector 56
2.3.7.2 PWM Detector 58
2.3.8 Leading Edge Blanking Technique 59
2.3.9 Gate Driver with Dead Time Control 61
2.3.10 Simulation Results 63
2.3.10.1 The Transient Waveforms of HPVC Mode Control 64
2.3.10.2 Transient Response 65
2.3.10.2.1 Dominant-Pole Compensated PWM 66
2.3.10.2.2 Two-Stage EA Compensated PWM 69
2.3.10.2.3 HPVC Technique 72
2.3.10.3 Efficiency 75
2.3.10.4 Summary Table 76
2.4 Experiment Results 77
2.4.1 Measurement Setup 77
2.4.2 Measurement Results 84
2.4.2.1 Steady-State 84
2.4.2.2 Transient Response 85
2.4.2.3 Load and Line Regulation 89
2.4.2.4 Efficiency 90
2.4.3 Performance Summery 92
2.5 Conclusion and Future Work 92
2.5.1 Conclusion 92
2.5.2 Future Work 93
Chapter 3 The LED Driver with Twin Bus and the SAR-Controlled Adaptive Off-Time Technique 96
3.1 Fundamental of LED Drivers 96
3.1.1 Architecture of LED Drivers 96
3.1.1.1 Peak Current Control 98
3.1.1.2 Hysteretic Current Control 101
3.1.2 Performance Specification 103
3.1.2.1 Efficiency 103
3.1.2.2 Transient Response 104
3.2 Proposed Architecture 105
3.2.1 Introduction 105
3.2.2 System Architecture 105
3.2.3 PCC for High Accuracy and Efficiency 107
3.2.3.1 Successive Approximation Register 107
3.2.3.2 Adaptive Off-Time Technique 108
3.2.4 Twin Bus for Dimmable LED Lighting 109
3.3 Circuit Implementation and Simulation Results 112
3.3.1 Current-Sensing Method 113
3.3.1.1 Operational Amplifier 113
3.3.1.2 Current-Sensing Circuit 116
3.3.1.3 Spike-Reducing Circuit 118
3.3.2 SAR Controller 120
3.3.2.1 8-Bit SAR Gain Code Generator 121
3.3.2.2 Up-Down 8-Bit Counter 123
3.3.2.3 Adaptive Off-Time Circuit 124
3.3.3 Level-Shifting Circuit 125
3.3.4 Simulation 127
3.3.4.1 Steady State 128
3.3.4.2 Transient Response 129
3.3.4.3 Efficiency 132
3.3.4.4 Summary Table in Simulation Results 133
3.3.4.5 The proposed Chip 133
3.4 Conclusion and Future Work 137
3.4.1 Conclusion 137
3.4.2 Future Work 138
Bibliography 140
dc.language.isoen
dc.title一個採用遲滯預測電壓控制之直流轉換器與一個使用避免誤觸技術之連續漸進式成對匯流排發光二極體驅動器zh_TW
dc.titleA Hysteresis-Prediction-Voltage-Control DC-DC Converter and a SAR-Controlled Twin-Bus LED Driver with the Mis-Trigger Avoiding Techniqueen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉邦榮(Pang-Jung Liu),陳昭宏(Jau-Horng Chen)
dc.subject.keyword直流直流轉換器,zh_TW
dc.subject.keywordDC-DC converter,en
dc.relation.page144
dc.rights.note有償授權
dc.date.accepted2015-08-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
13.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved