Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52832
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光
dc.contributor.authorLing-Ya Liuen
dc.contributor.author劉齡雅zh_TW
dc.date.accessioned2021-06-15T16:29:41Z-
dc.date.available2018-08-16
dc.date.copyright2015-08-16
dc.date.issued2015
dc.date.submitted2015-08-13
dc.identifier.citation[1] 張慈映. (2009). 健康照護商用有譜-行動醫療裝置商機興. Available: http://www.mem.com.tw/article_content.asp?sn=0910230002
[2] 吳宗正, 生物感測器. 九州出版社, 1996.
[3] 呂俐瑩, '以幾丁寡醣修飾平面是葡萄唐生物感測器之研究,' 國立雲林科技大學工業化學與災害防治研究所碩士論文2003.
[4] A. P. F. Turner, 'Biosensors: Sense and sensibility,' Chemical Society Reviews, vol. 42, pp. 3184-3196, 2013.
[5] M. M. F. Choi, 'Progress in enzyme-based biosensors using optical transducers,' Microchimica Acta, vol. 148, pp. 107-132, 2004.
[6] Y. Arima, M. Toda, and H. Iwata, 'Surface plasmon resonance in monitoring of complement activation on biomaterials,' Advanced Drug Delivery Reviews, vol. 63, pp. 988-999, 2011.
[7] Biacore™ T200 System Overview. Available: https://www.biacore.com/lifesciences/products/systems_overview/Biacore_T200/System-Information/index.html
[8] L. C. Clark Jr and C. Lyons, 'Electrode systems for continuous monitoring in cardiovascular surgery,' Annals of the New York Academy of Sciences, vol. 102, pp. 29-45, 1962.
[9] 胡啟章, 電化學原理與方法, 五南圖書. 五南圖書, 2007.
[10] D. Wang, G. Chen, H. Wang, W. Tang, W. Pan, N. Li, et al., 'A reusable quartz crystal microbalance biosensor for highly specific detection of single-base DNA mutation,' Biosensors and Bioelectronics, vol. 48, pp. 276-280, 2013.
[11] 陳. 周淑芬, '免疫感測器之技術發展及其應用,' pp. 263-271, 2001.
[12] B. Xie, M. Mecklenburg, B. Danielsson, O. Öhman, and F. Winquist, 'Microbiosensor based on an integrated thermopile,' Analytica Chimica Acta, vol. 299, pp. 165-170, 1994.
[13] K. H. A. Newman, and W. Stanbro, The capacitive affinity sensor: a new biosensor.
[14] J. S. Daniels and N. Pourmand, 'Label-free impedance biosensors: Opportunities and challenges,' Electroanalysis, vol. 19, pp. 1239-1257, 2007.
[15] R. F. Taylor, I. G. Marenchic, and E. J. Cook, 'An acetylcholine receptor-based biosensor for the detection of cholinergic agents,' Analytica Chimica Acta, vol. 213, pp. 131-138, 1988.
[16] R. F. Taylor, I. G. Marenchic, and R. H. Spencer, 'Antibody- and receptor-based biosensors for detection and process control,' Analytica Chimica Acta, vol. 249, pp. 67-70, 1991.
[17] V. M. Mirsky, M. Riepl, and O. S. Wolfbeis, 'Capacitive monitoring of protein immobilization and antigen-antibody reactions on monomolecular alkylthiol films on gold electrodes,' Biosensors and Bioelectronics, vol. 12, pp. 977-989, 1997.
[18] G. D. Parfitt, 'The dispersion of powders in liquids — an introduction,' Powder Technology, vol. 17, pp. 157-162, 7// 1977.
[19] M. Jie, C. Y. Ming, D. Jing, L. S. Cheng, L. Huai Na, F. Jun, et al., 'An electrochemical impedance immunoanalytical method for detecting immunological interaction of human mammary tumor associated glycoprotein and its monoclonal antibody,' Electrochemistry Communications, vol. 1, pp. 425-428, 1999.
[20] S. J. Ding, B. W. Chang, C. C. Wu, M. F. Lai, and H. C. Chang, 'Electrochemical evaluation of avidin-biotin interaction on self-assembled gold electrodes,' Electrochimica Acta, vol. 50, pp. 3660-3666, 2005.
[21] Y. Liu, N. Tuleouva, E. Ramanculov, and A. Revzin, 'Aptamer-based electrochemical biosensor for interferon gamma detection,' Analytical Chemistry, vol. 82, pp. 8131-8136, 2010.
[22] D. Xu, D. Xu, X. Yu, Z. Liu, W. He, and Z. Ma, 'Label-free electrochemical detection for aptamer-based array electrodes,' Analytical Chemistry, vol. 77, pp. 5107-5113, 2005.
[23] H. Y. Gu, A. M. Yu, and H. Y. Chen, 'Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode,' Journal of Electroanalytical Chemistry, vol. 516, pp. 119-126, 2001.
[24] Y. Song, L. Wang, C. Ren, G. Zhu, and Z. Li, 'A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized in DNA films on a gold electrode,' Sensors and Actuators, B: Chemical, vol. 114, pp. 1001-1006, 2006.
[25] R. Elshafey, M. Siaj, and M. Zourob, 'DNA aptamers selection and characterization for development of label-free impedimetric aptasensor for neurotoxin anatoxin-a,' Biosensors and Bioelectronics, vol. 68, pp. 295-302, 2015.
[26] 许. 朱延松, 邵会波, pH 對半胱胺自組裝膜在[Fe(CN) 6 ]3-/4-溶液中的循環伏安的影響. 首都師範大學學報(自然科學版) 2005.
[27] Z. Chen, L. Li, H. Zhao, L. Guo, and X. Mu, 'Electrochemical impedance spectroscopy detection of lysozyme based on electrodeposited gold nanoparticles,' Talanta, vol. 83, pp. 1501-1506, 2/15/ 2011.
[28] A. Benvidi, N. Rajabzadeh, M. Mazloum-Ardakani, M. M. Heidari, and A. Mulchandani, 'Simple and label-free electrochemical impedance Amelogenin gene hybridization biosensing based on reduced graphene oxide,' Biosensors and Bioelectronics, vol. 58, pp. 145-152, 2014.
[29] 李佳怡, '利用指叉式電極生物感測器結合阻抗式量測法檢測 LL-37 ', 大同大學工業設計研究所碩士論文 2010.
[30] B. J. De Gans, R. Kita, B. Müller, and S. Wiegand, 'Negative thermodiffusion of polymers and colloids in solvent mixtures,' Journal of Chemical Physics, vol. 118, pp. 8073-8081, 2003.
[31] S. Duhr and D. Braun, 'Why molecules move along a temperature gradient,' Proceedings of the National Academy of Sciences of the United States of America, vol. 103, pp. 19678-19682, 2006.
[32] H. R. Jiang, N. Yoshinaga, and M. Sano, 'Active motion of a Janus particle by self-thermophoresis in a defocused laser beam,' Physical Review Letters, vol. 105, 2010.
[33] Y. T. Maeda, T. Tlusty, and A. Libchaber, 'Effects of long DNA folding and small RNA stem-loop in thermophoresis,' Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. 17972-17977, 2012.
[34] 遊麗仙, '利用光熱泳技術操控與偵測生物分子 ', 國立成功大學生物醫學工程學系碩士論文2014.
[35] L. H. Yu and Y. F. Chen, 'Concentration-dependent thermophoretic accumulation for the detection of DNA using DNA-functionalized nanoparticles,' Analytical Chemistry, vol. 87, pp. 2845-2851, 2015.
[36] 王品惠, '全血丙型干擾素釋放分析方法在結核病診斷與治療之應用,' 成功大學公共衛生研究所學位論文2011.
[37] 蔣佳蓉. (2011). 潛伏性結核菌感染. Available: http://www.labmed.org.tw/knowledge_1.ASP?mno=46
[38] 林修正, 電化學科技辭典 五南, 2005.
[39] 郭. 李世光, 黎凱強,張谷寧,陳菁菘,陳盈樺,李世元,陳品龍, '以導電連結分子為基礎之免標定阻抗式生物感測器,' 中國化學會季刊2011.
[40] 吳俊興, '致冷晶片.'
[41] 電流的熱效應. Available: http://home.phy.ntnu.edu.tw/~eureka/contents/elementary/chap%206/6-4.htm
[42] 熱電偶製作與溫度量測實驗. Available: http://www.me.ncku.edu.tw/~wenhtlab/webpage/Course/MEE/files/%E7%86%B1%E9%9B%BB%E5%81%B6%E8%A3%BD%E4%BD%9C%E8%88%87%E6%BA%AB%E5%BA%A6%E9%87%8F%E6%B8%AC%E5%AF%A6%E9%A9%97.pdf
[43] 謝煜琦, 'PID簡介及在溫度控制的應用,' 新鼎系統股份有限公司.
[44] K. E. Sapsford and F. S. Ligler, 'Real-time analysis of protein adsorption to a variety of thin films,' Biosensors and Bioelectronics, vol. 19, pp. 1045-1055, 4/15/ 2004.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52832-
dc.description.abstract隨著科技進步,健康照護產業思維從病患照護轉為重視患病前的預防措施。由於結核病對公共健康存在長期威脅,本研究採用丙型干擾素檢驗 (Interferon-gamma release assays, IGRAs) 來作為篩檢結核病的檢測方法,相較於現今結核菌培養檢測的缺乏效率,此方法能增加診斷的效率。
本研究運用電化學阻抗量測低成本、易操作、體積小等特性,來作為生物感測器之傳感端,希望能讓其成為發展定點式照護感測器重要平台。過往的檢測方式是將生物細胞溶液流入生物晶片,藉待測物自然沉積至電極上與特定的受體(抗體)結合,將受體(抗體)與待測物(抗原)藉由特異性 (specificity) 結合所產生的狀態變化轉換成電訊號,所得的電訊號就成為生物晶片的檢測訊號。前述方法常面臨只有靠近電極表面之待測物有機會與抗體結合,因此浪費了不是位於電極表面的待測物,也因此造成濃度低之生物分子難以被偵測到,進而導致所得訊號的信雜比(S/N Ratio)不佳。
為提高電化學阻抗的靈敏度,此研究思考利用熱泳效應 (thermophoresis) 來將待測物推移到接近電極的位置,以提升生物晶片的信雜比。熱泳效應乃是流體中的微粒子在溫度梯度中移動的一種現象,其作法是在溶液中加入少量的聚乙二醇聚合物來驅動流體中的生物分子(抗原),使抗原依溫度梯度向電極端移動,增加和抗體之鍵結效率。
再利用螢光強度在區域中的分布來判別其生物分子聚集情形,其成果及電化學阻抗值皆證明其方式較傳統方式能更有效聚集丙型干擾素 (Interferon-gamma, IFN-γ),能使原本因濃度過低而無法偵測到的IFN-γ能夠被偵測,提高量測偵測極限 (limit of detection, LOD)。此研究也設計具加熱裝置之微流道晶片系統,使晶片能在機構中進行抗體固定化、抗原之聚集及電化學量測,因此乃能提升生物分子鍵結效率,縮短抗體與抗原的反應時間,來加速檢測流程。
zh_TW
dc.description.abstractWith the advancement of science and technology, the focus of health care has gradually turned from patient treatment and care towards health enhancement and diseases prevention. Interferon-gamma release assays (IGRA) was adopted in this research to serve as an alternative of tuberculin skin test (TST) for the diagnosis of latent tuberculosis infection (LTBI) due to its high efficiency in identifying the infection of LTBI.
Electrochemical impedance spectroscopy (EIS) biosensor was used to develop point-of-care (PoC) application platforms due to its characteristics such as low cost, simple instrumentation, fast response time, etc. To detect the spontaneous interaction between receptor (antibody) and analyte (antigen) in traditional biochips, specific binding variation was transformed into electrical signal which represented the detection signal of biochips. Only the analyte near the electrode surface has the opportunity to bind with the antibody, which not only leads to sample waste but also consumes precious testing time. All of which will make traditional biochips face limitations such as lower signal/noise ratio (S/N Ratio) in low analyte concentrations and long testing time, etc.
To improve the sensitivity of EIS and the S/N Ratio of biochips, thermophoresis was adopted in this thesis to move the analyte to locations near the electrode surface. Thermophoresis is a phenomenon about the migration of particles with a temperature gradient, which was done by adding Polyethylene glycols (PEG) Polymer to drive molecule (antigen) motions through temperature gradient towards the EIS electrodes in order to increase the binding rate.
By observing the fluorescence from the capture probes bound to the antigens and the EIS results, Interferon-gamma (IFN-γ) was found to indeed accumulate near the electrode as lower concentration and improved detection limit (LOD) were observed. In this thesis, we developed a microfluidic biochip system which can execute binding steps, accumulate antigen by steady temperature gradient and enhance the sensitivity of electrochemical measurement while reducing the binding time.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:29:41Z (GMT). No. of bitstreams: 1
ntu-104-R02525029-1.pdf: 5480743 bytes, checksum: 23943e6199ea68191a7bc99350bd8adf (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書........................................................................................i
中文摘要 iii
ABSTRACT v
CONTENTS vii
圖目錄 x
表目錄 xiii
Chapter 1 緒論 1
1.1 研究背景 1
1.2 生物感測器介紹與發展 2
1.3 文獻回顧 11
1.3.1 非法拉第反應 12
1.3.2 法拉第反應 14
1.3.3 修飾電極之材料 15
1.3.4 生物感測器靈敏度提升方式 16
1.3.5 熱泳效應 17
1.4 研究動機 21
Chapter 2 實驗原理 23
2.1 電化學基本原理 23
2.1.1 前言 23
2.1.2 法拉第與非法拉第程序 24
2.1.3 電化學反應程序 26
2.1.4 電化學槽與半反應 28
2.2 電化學阻抗頻譜分析原理 31
2.2.1 交流電之電路原理 31
2.2.2 等效電路 33
2.2.3 電化學阻抗交流頻譜分析 37
2.3 熱泳效應及各設備原理 39
2.3.1 熱泳效應 39
2.3.2 熱電致冷晶片 40
2.3.3 軟性電熱片 43
2.3.4 熱電偶 45
2.3.5 溫度控制器 46
2.4 螢光顯微術原理 49
Chapter 3 儀器系統建立與量測方法 51
3.1 生物晶片之清洗方式 51
3.2 結合加熱系統之晶片流道系統設計與方法 52
3.3 螢光顯微術量測方法 57
3.3.1 連接分子與生物分子 57
3.3.2 化學試劑與其他溶液 58
3.3.3 溶液配置之實驗設備 58
3.3.4 晶片修飾步驟 61
3.3.4.1 IFN-γ抗體─IFN-γ抗原專一性測試 61
3.3.4.2 IFN-γ抗原專一性及以FITC螢光標記之IFN-γ適體非專一性測試 63
3.3.4.3 熱泳效應測試 64
3.3.4.4 PEG對於熱泳效應的影響測試 65
3.3.5 量測方法 66
3.4 電化學交流阻抗量測 67
3.4.1 化學試劑與其它溶液 67
3.4.2 晶片修飾步驟 67
3.4.3 量測方法 69
Chapter 4 實驗結果分析與討論 72
4.1 生物晶片之裸電極測試結果 72
4.2 以螢光顯微術量測之結果 74
4.2.1 IFN-γ抗體─IFN-γ抗原專一性測試結果 75
4.2.2 IFN-γ抗原專一性及以FITC螢光標記之IFN-γ適體非專一性測試結果 77
4.2.3 熱泳效應測試結果 78
4.2.4 PEG對於熱泳效應的影響測試結果 79
4.3 電化學量測結果 81
4.3.1 熱泳效應對於單一濃度量測結果 82
4.3.2 熱泳效應對於疊加濃度量測結果 88
Chapter 5 結論與未來展望 96
5.1 結論 96
5.2 未來展望 96
參考文獻 98
dc.language.isozh-TW
dc.title以熱泳效應提升電化學阻抗感測器靈敏度之研究與開發zh_TW
dc.titleResearch and Development of Enhancing Electrochemical Impedance Biosensor Sensitivity by Thermophoresisen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.coadvisor陳奕帆
dc.contributor.oralexamcommittee王安邦,吳文中,林致廷
dc.subject.keyword熱泳效應,IFN-γ,電化學阻抗頻譜分析,生物晶片,zh_TW
dc.subject.keywordthermophoresis,IFN-γ,EIS,biochip,en
dc.relation.page101
dc.rights.note有償授權
dc.date.accepted2015-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
5.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved