請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52823
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 湯志永 | |
dc.contributor.author | Hsin-Yu Fang | en |
dc.contributor.author | 方心妤 | zh_TW |
dc.date.accessioned | 2021-06-15T16:29:16Z | - |
dc.date.available | 2025-12-31 | |
dc.date.copyright | 2015-09-25 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-13 | |
dc.identifier.citation | Aguilar RC, Wendland B (2003) Ubiquitin: not just for proteasomes anymore. Current opinion in cell biology 15:184-190.
Ahmed N, Ramjeesingh M, Wong S, Varga A, Garami E, Bear CE (2000) Chloride channel activity of ClC-2 is modified by the actin cytoskeleton. The Biochemical journal 352 Pt 3:789-794. Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nature reviews Neuroscience 3:728-739. Bernassola F, Karin M, Ciechanover A, Melino G (2008) The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer cell 14:10-21. Bi MM, Hong S, Zhou HY, Wang HW, Wang LN, Zheng YJ (2014) Chloride channelopathies of ClC-2. International journal of molecular sciences 15:218-249. Blaisdell CJ, Pellettieri JP, Loughlin CE, Chu S, Zeitlin PL (1999) Keratinocyte growth factor stimulates CLC-2 expression in primary fetal rat distal lung epithelial cells. American journal of respiratory cell and molecular biology 20:842-847. Blanz J, Schweizer M, Auberson M, Maier H, Muenscher A, Hubner CA, Jentsch TJ (2007) Leukoencephalopathy upon disruption of the chloride channel ClC-2. The Journal of neuroscience : the official journal of the Society for Neuroscience 27:6581-6589. Bosl MR, Stein V, Hubner C, Zdebik AA, Jordt SE, Mukhopadhyay AK, Davidoff MS, Holstein AF, Jentsch TJ (2001) Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon ClC-2 Cl(-) channel disruption. The EMBO journal 20:1289-1299. Catalan M, Niemeyer MI, Cid LP, Sepulveda FV (2004) Basolateral ClC-2 chloride channels in surface colon epithelium: regulation by a direct effect of intracellular chloride. Gastroenterology 126:1104-1114. Catalan M, Cornejo I, Figueroa CD, Niemeyer MI, Sepulveda FV, Cid LP (2002) ClC-2 in guinea pig colon: mRNA, immunolabeling, and functional evidence for surface epithelium localization. American journal of physiology Gastrointestinal and liver physiology 283:G1004-1013. Chang XB, Stewart AK (2011) What is the functional role of the thalidomide binding protein cereblon? International journal of biochemistry and molecular biology 2:287-294. Chen LC, Manjeshwar S, Lu Y, Moore D, Ljung BM, Kuo WL, Dairkee SH, Wernick M, Collins C, Smith HS (1998) The human homologue for the Caenorhabditis elegans cul-4 gene is amplified and overexpressed in primary breast cancers. Cancer research 58:3677-3683. Chen YA, Peng YJ, Hu MC, Huang JJ, Chien YC, Wu JT, Chen TY, Tang CY (2015) The Cullin 4A/B-DDB1-Cereblon E3 Ubiquitin Ligase Complex Mediates the Degradation of CLC-1 Chloride Channels. Scientific reports 5:10667. Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Molecular cell 33:275-286. Chou WH, Wang D, McMahon T, Qi ZH, Song M, Zhang C, Shokat KM, Messing RO (2010) GABAA receptor trafficking is regulated by protein kinase C(epsilon) and the N-ethylmaleimide-sensitive factor. The Journal of neuroscience : the official journal of the Society for Neuroscience 30:13955-13965. Chu S, Blaisdell CJ, Bamford P, Ferro TJ (2004) Interferon-gamma regulates ClC-2 chloride channel in lung epithelial cells. Biochemical and biophysical research communications 324:31-39. Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nature reviews Molecular cell biology 6:79-87. Ciechanover A, Orian A, Schwartz AL (2000) Ubiquitin-mediated proteolysis: biological regulation via destruction. BioEssays : news and reviews in molecular, cellular and developmental biology 22:442-451. Comyn SA, Chan GT, Mayor T (2014) False start: cotranslational protein ubiquitination and cytosolic protein quality control. Journal of proteomics 100:92-101. Cong M, Perry SJ, Hu LA, Hanson PI, Claing A, Lefkowitz RJ (2001) Binding of the beta2 adrenergic receptor to N-ethylmaleimide-sensitive factor regulates receptor recycling. The Journal of biological chemistry 276:45145-45152. Cornejo I, Niemeyer MI, Zuniga L, Yusef YR, Sepulveda FV, Cid LP (2009) Rapid recycling of ClC-2 chloride channels between plasma membrane and endosomes: role of a tyrosine endocytosis motif in surface retrieval. Journal of cellular physiology 221:650-657. Cuppoletti J, Tewari KP, Sherry AM, Ferrante CJ, Malinowska DH (2004) Sites of protein kinase A activation of the human ClC-2 Cl(-) channel. The Journal of biological chemistry 279:21849-21856. d'Azzo A, Bongiovanni A, Nastasi T (2005) E3 ubiquitin ligases as regulators of membrane protein trafficking and degradation. Traffic 6:429-441. Dehart JL, Planelles V (2008) Human immunodeficiency virus type 1 Vpr links proteasomal degradation and checkpoint activation. Journal of virology 82:1066-1072. Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annual review of biochemistry 78:399-434. Dhani SU, Kim Chiaw P, Huan LJ, Bear CE (2008) ATP depletion inhibits the endocytosis of ClC-2. Journal of cellular physiology 214:273-280. Dikic I, Wakatsuki S, Walters KJ (2009) Ubiquitin-binding domains - from structures to functions. Nat Rev Mol Cell Bio 10:659-671. Drummond DA, Wilke CO (2009) The evolutionary consequences of erroneous protein synthesis. Nature reviews Genetics 10:715-724. DuBridge RB, Tang P, Hsia HC, Leong PM, Miller JH, Calos MP (1987) Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Molecular and cellular biology 7:379-387. Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M, Schulman BA (2008) Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134:995-1006. Duda DM, Scott DC, Calabrese MF, Zimmerman ES, Zheng N, Schulman BA (2011) Structural regulation of cullin-RING ubiquitin ligase complexes. Current opinion in structural biology 21:257-264. Dutzler R (2007) A structural perspective on ClC channel and transporter function. FEBS letters 581:2839-2844. Dutzler R, Campbell EB, MacKinnon R (2003) Gating the selectivity filter in ClC chloride channels. Science 300:108-112. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415:287-294. Emanuele MJ, Elia AE, Xu Q, Thoma CR, Izhar L, Leng Y, Guo A, Chen YN, Rush J, Hsu PW, Yen HC, Elledge SJ (2011) Global identification of modular cullin-RING ligase substrates. Cell 147:459-474. Estevez R, Jentsch TJ (2002) CLC chloride channels: correlating structure with function. Current opinion in structural biology 12:531-539. Estevez R, Pusch M, Ferrer-Costa C, Orozco M, Jentsch TJ (2004) Functional and structural conservation of CBS domains from CLC chloride channels. The Journal of physiology 557:363-378. Ficker E, Dennis AT, Wang L, Brown AM (2003) Role of the cytosolic chaperones Hsp70 and Hsp90 in maturation of the cardiac potassium channel HERG. Circulation research 92:e87-100. Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annual review of biochemistry 78:477-513. Foldy C, Lee SH, Morgan RJ, Soltesz I (2010) Regulation of fast-spiking basket cell synapses by the chloride channel ClC-2. Nature neuroscience 13:1047-1049. Fukuyo Y, Hunt CR, Horikoshi N (2010) Geldanamycin and its anti-cancer activities. Cancer letters 290:24-35. Furukawa T, Ogura T, Katayama Y, Hiraoka M (1998) Characteristics of rabbit ClC-2 current expressed in Xenopus oocytes and its contribution to volume regulation. The American journal of physiology 274:C500-512. Garcia-Olivares J, Alekov A, Boroumand MR, Begemann B, Hidalgo P, Fahlke C (2008) Gating of human ClC-2 chloride channels and regulation by carboxy-terminal domains. The Journal of physiology 586:5325-5336. Geiler-Samerotte KA, Dion MF, Budnik BA, Wang SM, Hartl DL, Drummond DA (2011) Misfolded proteins impose a dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast. Proceedings of the National Academy of Sciences of the United States of America 108:680-685. Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426:895-899. Goto H, Terunuma M, Kanematsu T, Misumi Y, Moss SJ, Hirata M (2005) Direct interaction of N-ethylmaleimide-sensitive factor with GABA(A) receptor beta subunits. Molecular and cellular neurosciences 30:197-206. Grasset E, Pinto M, Dussaulx E, Zweibaum A, Desjeux JF (1984) Epithelial properties of human colonic carcinoma cell line Caco-2: electrical parameters. The American journal of physiology 247:C260-267. Grunder S, Thiemann A, Pusch M, Jentsch TJ (1992) Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature 360:759-762. Guerrero-Santoro J, Kapetanaki MG, Hsieh CL, Gorbachinsky I, Levine AS, Rapic-Otrin V (2008) The cullin 4B-based UV-damaged DNA-binding protein ligase binds to UV-damaged chromatin and ubiquitinates histone H2A. Cancer research 68:5014-5022. Halestrap AP, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. The Biochemical journal 343 Pt 2:281-299. Hanson PI, Whiteheart SW (2005) AAA+ proteins: have engine, will work. Nature reviews Molecular cell biology 6:519-529. Haug K et al. (2009) Retraction: Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nature genetics 41:1043. Haug K et al. (2003) Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nature genetics 33:527-532. He F, Lu D, Jiang B, Wang Y, Liu Q, Liu Q, Shao C, Li X, Gong Y (2013) X-linked intellectual disability gene CUL4B targets Jab1/CSN5 for degradation and regulates bone morphogenetic protein signaling. Biochimica et biophysica acta 1832:595-605. He YJ, McCall CM, Hu J, Zeng Y, Xiong Y (2006) DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes & development 20:2949-2954. Hebeisen S, Biela A, Giese B, Muller-Newen G, Hidalgo P, Fahlke C (2004) The role of the carboxyl terminus in ClC chloride channel function. The Journal of biological chemistry 279:13140-13147. Hicke L, Dunn R (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annual review of cell and developmental biology 19:141-172. Higa LA, Wu M, Ye T, Kobayashi R, Sun H, Zhang H (2006) CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nature cell biology 8:1277-1283. Higgins JJ, Pucilowska J, Lombardi RQ, Rooney JP (2004) A mutation in a novel ATP-dependent Lon protease gene in a kindred with mild mental retardation. Neurology 63:1927-1931. Hinzpeter A, Lipecka J, Brouillard F, Baudoin-Legros M, Dadlez M, Edelman A, Fritsch J (2006) Association between Hsp90 and the ClC-2 chloride channel upregulates channel function. American journal of physiology Cell physiology 290:C45-56. Hinzpeter A, Fritsch J, Borot F, Trudel S, Vieu DL, Brouillard F, Baudouin-Legros M, Clain J, Edelman A, Ollero M (2007) Membrane cholesterol content modulates ClC-2 gating and sensitivity to oxidative stress. The Journal of biological chemistry 282:2423-2432. Hofmann RM, Pickart CM (1999) Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96:645-653. Hohberger B, Enz R (2009) Cereblon is expressed in the retina and binds to voltage-gated chloride channels. FEBS letters 583:633-637. Holmes KW, Hales R, Chu S, Maxwell MJ, Mogayzel PJ, Jr., Zeitlin PL (2003) Modulation of Sp1 and Sp3 in lung epithelial cells regulates ClC-2 chloride channel expression. American journal of respiratory cell and molecular biology 29:499-505. Hori T, Osaka F, Chiba T, Miyamoto C, Okabayashi K, Shimbara N, Kato S, Tanaka K (1999) Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene 18:6829-6834. Hosseinzadeh Z, Bhavsar SK, Lang F (2012) Downregulation of ClC-2 by JAK2. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 29:737-742. Hurley JH, Stenmark H (2011) Molecular mechanisms of ubiquitin-dependent membrane traffic. Annual review of biophysics 40:119-142. Hwang WW, Venkatasubrahmanyam S, Ianculescu AG, Tong A, Boone C, Madhani HD (2003) A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Molecular cell 11:261-266. Ignoul S, Eggermont J (2005) CBS domains: structure, function, and pathology in human proteins. American journal of physiology Cell physiology 289:C1369-1378. Inobe T, Matouschek A (2014) Paradigms of protein degradation by the proteasome. Current opinion in structural biology 24:156-164. Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y, Handa H (2010) Identification of a primary target of thalidomide teratogenicity. Science 327:1345-1350. Jackson S, Xiong Y (2009) CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends in biochemical sciences 34:562-570. Jacob TC, Moss SJ, Jurd R (2008) GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nature reviews Neuroscience 9:331-343. Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiological reviews 82:503-568. Jeworutzki E, Lopez-Hernandez T, Capdevila-Nortes X, Sirisi S, Bengtsson L, Montolio M, Zifarelli G, Arnedo T, Muller CS, Schulte U, Nunes V, Martinez A, Jentsch TJ, Gasull X, Pusch M, Estevez R (2012) GlialCAM, a protein defective in a leukodystrophy, serves as a ClC-2 Cl(-) channel auxiliary subunit. Neuron 73:951-961. Jo S, Lee KH, Song S, Jung YK, Park CS (2005) Identification and functional characterization of cereblon as a binding protein for large-conductance calcium-activated potassium channel in rat brain. Journal of neurochemistry 94:1212-1224. Johnson ES, Ma PC, Ota IM, Varshavsky A (1995) A proteolytic pathway that recognizes ubiquitin as a degradation signal. The Journal of biological chemistry 270:17442-17456. Jordt SE, Jentsch TJ (1997) Molecular dissection of gating in the ClC-2 chloride channel. The EMBO journal 16:1582-1592. Jutte NH, Jansen R, Grootegoed JA, Rommerts FF, Clausen OP, van der Molen HJ (1982) Regulation of survival of rat pachytene spermatocytes by lactate supply from Sertoli cells. Journal of reproduction and fertility 65:431-438. Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407-410. Kamsteeg EJ, Hendriks G, Boone M, Konings IB, Oorschot V, van der Sluijs P, Klumperman J, Deen PM (2006) Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proceedings of the National Academy of Sciences of the United States of America 103:18344-18349. Kantamneni S, Wilkinson KA, Henley JM (2011) Ubiquitin regulation of neuronal excitability. Nature neuroscience 14:126-128. Kee Y, Huibregtse JM (2007) Regulation of catalytic activities of HECT ubiquitin ligases. Biochemical and biophysical research communications 354:329-333. Kim HR, Kang HS, Kim HD (1999) Geldanamycin induces heat shock protein expression through activation of HSF1 in K562 erythroleukemic cells. IUBMB life 48:429-433. Kittler JT, Rostaing P, Schiavo G, Fritschy JM, Olsen R, Triller A, Moss SJ (2001) The subcellular distribution of GABARAP and its ability to interact with NSF suggest a role for this protein in the intracellular transport of GABA(A) receptors. Molecular and cellular neurosciences 18:13-25. Komander D (2009) The emerging complexity of protein ubiquitination. Biochemical Society transactions 37:937-953. Kronke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, Svinkina T, Heckl D, Comer E, Li X, Ciarlo C, Hartman E, Munshi N, Schenone M, Schreiber SL, Carr SA, Ebert BL (2014) Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343:301-305. L YK, McIntosh CJ, Biasio W, Liu Y, Ke Y, Olson DR, Miller JH, Page R, Snyder PM, McDonald FJ (2013) Regulation of the delta and alpha epithelial sodium channel (ENaC) by ubiquitination and Nedd8. Journal of cellular physiology 228:2190-2201. Lecker SH, Goldberg AL, Mitch WE (2006) Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. Journal of the American Society of Nephrology : JASN 17:1807-1819. Lee J, Zhou P (2007) DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Molecular cell 26:775-780. Lee J, Zhou P (2012) Pathogenic Role of the CRL4 Ubiquitin Ligase in Human Disease. Frontiers in oncology 2:21. Lee K, Hong TJ, Hahn JS (2012) Roles of 17-AAG-induced molecular chaperones and Rma1 E3 ubiquitin ligase in folding and degradation of Pendrin. FEBS letters 586:2535-2541. Lee TT, Zhang XD, Chuang CC, Chen JJ, Chen YA, Chen SC, Chen TY, Tang CY (2013) Myotonia congenita mutation enhances the degradation of human CLC-1 chloride channels. PloS one 8:e55930. Li T, Chen X, Garbutt KC, Zhou P, Zheng N (2006) Structure of DDB1 in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase. Cell 124:105-117. Lin YW, Lin CW, Chen TY (1999) Elimination of the slow gating of ClC-0 chloride channel by a point mutation. The Journal of general physiology 114:1-12. Liu J, Ye J, Zou X, Xu Z, Feng Y, Zou X, Chen Z, Li Y, Cang Y (2014) CRL4A(CRBN) E3 ubiquitin ligase restricts BK channel activity and prevents epileptogenesis. Nature communications 5:3924. Liu L, Lee S, Zhang J, Peters SB, Hannah J, Zhang Y, Yin Y, Koff A, Ma L, Zhou P (2009) CUL4A abrogation augments DNA damage response and protection against skin carcinogenesis. Molecular cell 34:451-460. Lu G, Middleton RE, Sun H, Naniong M, Ott CJ, Mitsiades CS, Wong KK, Bradner JE, Kaelin WG, Jr. (2014) The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343:305-309. Luzio JP, Mullock BM, Pryor PR, Lindsay MR, James DE, Piper RC (2001) Relationship between endosomes and lysosomes. Biochemical Society transactions 29:476-480. MacGurn JA, Hsu PC, Emr SD (2012) Ubiquitin and membrane protein turnover: from cradle to grave. Annual review of biochemistry 81:231-259. McDonald PH, Cote NL, Lin FT, Premont RT, Pitcher JA, Lefkowitz RJ (1999) Identification of NSF as a beta-arrestin1-binding protein. Implications for beta2-adrenergic receptor regulation. The Journal of biological chemistry 274:10677-10680. Merlet J, Burger J, Gomes JE, Pintard L (2009) Regulation of cullin-RING E3 ubiquitin-ligases by neddylation and dimerization. Cellular and molecular life sciences : CMLS 66:1924-1938. Miller C (1982) Open-state substructure of single chloride channels from Torpedo electroplax. Philosophical transactions of the Royal Society of London Series B, Biological sciences 299:401-411. Mohammad-Panah R, Gyomorey K, Rommens J, Choudhury M, Li C, Wang Y, Bear CE (2001) ClC-2 contributes to native chloride secretion by a human intestinal cell line, Caco-2. The Journal of biological chemistry 276:8306-8313. Niemeyer MI, Cid LP, Zuniga L, Catalan M, Sepulveda FV (2003) A conserved pore-lining glutamate as a voltage- and chloride-dependent gate in the ClC-2 chloride channel. The Journal of physiology 553:873-879. Niemeyer MI, Yusef YR, Cornejo I, Flores CA, Sepulveda FV, Cid LP (2004) Functional evaluation of human ClC-2 chloride channel mutations associated with idiopathic generalized epilepsies. Physiological genomics 19:74-83. Niemeyer MI, Cid LP, Sepulveda FV, Blanz J, Auberson M, Jentsch TJ (2010) No evidence for a role of CLCN2 variants in idiopathic generalized epilepsy. Nature genetics 42:3. Nighot P, Young K, Nighot M, Rawat M, Sung EJ, Maharshak N, Plevy SE, Ma T, Blikslager A (2013) Chloride channel ClC-2 is a key factor in the development of DSS-induced murine colitis. Inflammatory bowel diseases 19:2867-2877. Nishimune A, Isaac JT, Molnar E, Noel J, Nash SR, Tagaya M, Collingridge GL, Nakanishi S, Henley JM (1998) NSF binding to GluR2 regulates synaptic transmission. Neuron 21:87-97. Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU (1998) In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. The Journal of cell biology 143:901-910. Osten P, Srivastava S, Inman GJ, Vilim FS, Khatri L, Lee LM, States BA, Einheber S, Milner TA, Hanson PI, Ziff EB (1998) The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and alpha- and beta-SNAPs. Neuron 21:99-110. Palmada M, Dieter M, Boehmer C, Waldegger S, Lang F (2004) Serum and glucocorticoid inducible kinases functionally regulate ClC-2 channels. Biochemical and biophysical research communications 321:1001-1006. Pena-Munzenmayer G, Catalan M, Cornejo I, Figueroa CD, Melvin JE, Niemeyer MI, Cid LP, Sepulveda FV (2005) Basolateral localization of native ClC-2 chloride channels in absorptive intestinal epithelial cells and basolateral sorting encoded by a CBS-2 domain di-leucine motif. Journal of cell science 118:4243-4252. Prodromou C, Panaretou B, Chohan S, Siligardi G, O'Brien R, Ladbury JE, Roe SM, Piper PW, Pearl LH (2000) The ATPase cycle of Hsp90 drives a molecular 'clamp' via transient dimerization of the N-terminal domains. The EMBO journal 19:4383-4392. Rabut G, Peter M (2008) Function and regulation of protein neddylation. 'Protein modifications: beyond the usual suspects' review series. EMBO reports 9:969-976. Rash JE (2010) Molecular disruptions of the panglial syncytium block potassium siphoning and axonal saltatory conduction: pertinence to neuromyelitis optica and other demyelinating diseases of the central nervous system. Neuroscience 168:982-1008. Rinke I, Artmann J, Stein V (2010) ClC-2 voltage-gated channels constitute part of the background conductance and assist chloride extrusion. The Journal of neuroscience : the official journal of the Society for Neuroscience 30:4776-4786. Scheper GC, van Berkel CG, Leisle L, de Groot KE, Errami A, Jentsch TJ, Van der Knaap MS (2010) Analysis of CLCN2 as candidate gene for megalencephalic leukoencephalopathy with subcortical cysts. Genetic testing and molecular biomarkers 14:255-257. Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA, Norman DG, Hardie DG (2004) CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. The Journal of clinical investigation 113:274-284. Sharma P, Nag A (2014) CUL4A ubiquitin ligase: a promising drug target for cancer and other human diseases. Open biology 4:130217. Skaar JR, Florens L, Tsutsumi T, Arai T, Tron A, Swanson SK, Washburn MP, DeCaprio JA (2007) PARC and CUL7 form atypical cullin RING ligase complexes. Cancer research 67:2006-2014. Song I, Kamboj S, Xia J, Dong H, Liao D, Huganir RL (1998) Interaction of the N-ethylmaleimide-sensitive factor with AMPA receptors. Neuron 21:393-400. Soucy TA, Dick LR, Smith PG, Milhollen MA, Brownell JE (2010) The NEDD8 Conjugation Pathway and Its Relevance in Cancer Biology and Therapy. Genes & cancer 1:708-716. Staley K (1994) The role of an inwardly rectifying chloride conductance in postsynaptic inhibition. Journal of neurophysiology 72:273-284. Stauber T, Weinert S, Jentsch TJ (2012) Cell biology and physiology of CLC chloride channels and transporters. Comprehensive Physiology 2:1701-1744. Stolting G, Fischer M, Fahlke C (2014) CLC channel function and dysfunction in health and disease. Frontiers in physiology 5:378. Stolting G, Teodorescu G, Begemann B, Schubert J, Nabbout R, Toliat MR, Sander T, Nurnberg P, Lerche H, Fahlke C (2013) Regulation of ClC-2 gating by intracellular ATP. Pflugers Archiv : European journal of physiology 465:1423-1437. Sugasawa K, Okuda Y, Saijo M, Nishi R, Matsuda N, Chu G, Mori T, Iwai S, Tanaka K, Tanaka K, Hanaoka F (2005) UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 121:387-400. Suzuki T, Rai T, Hayama A, Sohara E, Suda S, Itoh T, Sasaki S, Uchida S (2006) Intracellular localization of ClC chloride channels and their ability to form hetero-oligomers. Journal of cellular physiology 206:792-798. Tang J, Chu G (2002) Xeroderma pigmentosum complementation group E and UV-damaged DNA-binding protein. DNA repair 1:601-616. Tarpey PS et al. (2007) Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor. American journal of human genetics 80:345-352. Tasaki T, Mulder LC, Iwamatsu A, Lee MJ, Davydov IV, Varshavsky A, Muesing M, Kwon YT (2005) A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons. Molecular and cellular biology 25:7120-7136. Tewari KP, Malinowska DH, Sherry AM, Cuppoletti J (2000) PKA and arachidonic acid activation of human recombinant ClC-2 chloride channels. American journal of physiology Cell physiology 279:C40-50. Thiemann A, Grunder S, Pusch M, Jentsch TJ (1992) A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 356:57-60. Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. The EMBO journal 19:94-102. Varela D, Niemeyer MI, Cid LP, Sepulveda FV (2002) Effect of an N-terminus deletion on voltage-dependent gating of the ClC-2 chloride channel. The Journal of physiology 544:363-372. Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annual review of biochemistry 68:1015-1068. Wang H, Zhai L, Xu J, Joo HY, Jackson S, Erdjument-Bromage H, Tempst P, Xiong Y, Zhang Y (2006) Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Molecular cell 22:383-394. Ward CL, Omura S, Kopito RR (1995) Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83:121-127. Xin W, Xiaohua N, Peilin C, Xin C, Yaqiong S, Qihan W (2008) Primary function analysis of human mental retardation related gene CRBN. Molecular biology reports 35:251-256. Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137:133-145. Yan FF, Pratt EB, Chen PC, Wang F, Skach WR, David LL, Shyng SL (2010) Role of Hsp90 in biogenesis of the beta-cell ATP-sensitive potassium channel complex. Molecular biology of the cell 21:1945-1954. Yasui K, Arii S, Zhao C, Imoto I, Ueda M, Nagai H, Emi M, Inazawa J (2002) TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas. Hepatology 35:1476-1484. Ye Y, Rape M (2009) Building ubiquitin chains: E2 enzymes at work. Nature reviews Molecular cell biology 10:755-764. Yusef YR, Zuniga L, Catalan M, Niemeyer MI, Cid LP, Sepulveda FV (2006) Removal of gating in voltage-dependent ClC-2 chloride channel by point mutations affecting the pore and C-terminus CBS-2 domain. The Journal of physiology 572:173-181. Zdebik AA, Cuffe JE, Bertog M, Korbmacher C, Jentsch TJ (2004) Additional disruption of the ClC-2 Cl(-) channel does not exacerbate the cystic fibrosis phenotype of cystic fibrosis transmembrane conductance regulator mouse models. The Journal of biological chemistry 279:22276-22283. Zhao C, Slevin JT, Whiteheart SW (2007) Cellular functions of NSF: not just SNAPs and SNAREs. FEBS letters 581:2140-2149. Zheng YJ, Furukawa T, Ogura T, Tajimi K, Inagaki N (2002) M phase-specific expression and phosphorylation-dependent ubiquitination of the ClC-2 channel. The Journal of biological chemistry 277:32268-32273. Zimmerman ES, Schulman BA, Zheng N (2010) Structural assembly of cullin-RING ubiquitin ligase complexes. Current opinion in structural biology 20:714-721. Zou Y, Mi J, Cui J, Lu D, Zhang X, Guo C, Gao G, Liu Q, Chen B, Shao C, Gong Y (2009) Characterization of nuclear localization signal in the N terminus of CUL4B and its essential role in cyclin E degradation and cell cycle progression. The Journal of biological chemistry 284:33320-33332. Zuniga L, Niemeyer MI, Varela D, Catalan M, Cid LP, Sepulveda FV (2004) The voltage-dependent ClC-2 chloride channel has a dual gating mechanism. The Journal of physiology 555:671-682. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52823 | - |
dc.description.abstract | CLC-2為一種廣泛存在於各種組織的氯離子通道,主要受到膜電位過極化、細胞體積增加、胞內氯離子濃度增加與胞外酸性微量增加等因素調控而活化;但是,CLC-2在細胞中確切的分子調控機轉則仍有待釐清。先前研究指出,cereblon (CRBN)是CLC-2的結合蛋白。近來的研究亦發現CRBN可能是cullin RING E3泛素連接酶複合體 (E3 ubiquitin ligase complex) (CRL)中的受體蛋白受器 (substrate receptor)。然而CRBN是否的確參與CLC-2的蛋白質降解作用,則尚不清楚。另一方面,本實驗室過去利用酵母菌雙雜交技術 (yeast-two hybrid screening)發現NSF是能與CLC-2交互作用的蛋白。本論文的研究方向分為二個主軸,其一是針對CLC-2的降解途徑進行探討,其二則是觀察抑制NSF對於CLC-2蛋白表現量的影響。
我們先以MG132和MLN4924這二種藥物作用的結果推論CLC-2可能是經由CRL進行蛋白酶體降解,我們接著以生化實驗發現CLC-2會與Cullin 4 (CUL4)、DDB1和CRBN存在於同一蛋白質複合體 (protein complex)。我們也證明CUL4和CRBN都會參與CLC-2的降解作用。此外,我們還以只能進行單一泛素 (monoubiquitination)作用的突變種泛素Ub-K0證明CLC-2的降解機制應該是以聚泛素鏈的形式進行泛素標定。另一方面,我們發現若對NSF進行shRNA抑制,雖然不會影響CLC-2的mRNA表現量,但卻造成CLC-2蛋白總量的增加。 | zh_TW |
dc.description.abstract | CLC-2 is a ubiquitously expressed chloride channel, which is mainly activated by membrane potential hyperpolarization, increased cell volume, elevated intracellular chloride concentration and mild extracellular acidification; however, the precise cellular regulatory properties of CLC-2 channel still remain elusive. In recent studies, Cereblon (CRBN) has been considered to be a binding partner of CLC-2. CRBN has also been suggested to play a role as a substrate receptor of the cullin RING E3 ubiquitin ligase complex (CRL). Nevertheless, it is unclear whether CRBN is involved in the protein degradation of CLC-2. In addition, previous studies in our lab utilizing yeast-two hybrid screening of rat brain cDNA library has identified NSF as a CLC-2 interacting protein. Therefore, there are two aims in this study. One aim is to understand the degradation pathway of CLC-2, and the other aim is to observe the effect on CLC-2 protein expression level caused by NSF shRNA knockdown.
Firstly, we reason that the proteasomal degradation of CLC-2 can be mediated by CRL according to effects caused by MG132 and MLN4924 treatments. We then find out the fact that CLC-2 can coexist in the same protein complex with Cullin 4 (CUL4), DDB1 and CRBN based on our biochemical experimental results; moreover, we also prove that both CUL4 and CRBN do play a role in the degradation of CLC-2. By utilizing an ubiquitin mutant, Ub-K0, which can only undergo monoubiquitination, we further prove that CLC-2 shall be ubiquitinated through polyubiquitin chains in its degradation mechanism. Besides, we have also noted that NSF shRNA knockdown results in an increased CLC-2 total protein level. In contrast, the mRNA level of CLC-2 does not be affected by NSF shRNA knockdown. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:29:16Z (GMT). No. of bitstreams: 1 ntu-104-R01441006-1.pdf: 3556827 bytes, checksum: 4d91b71d69fd9e26b4657e805f048c1a (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 中文摘要 1
Abstract 2 附圖目錄 8 第一章 9 導論 9 1.1氯離子通道 (Chloride channels) 9 1.2 CLC-2所參與之生理功能 10 1.3 CLC-2的結構與特性 12 1.4 與CLC-2可能相關的疾病 16 1.5 可能影響CLC-2蛋白表現量或通道功能的蛋白分子 17 1.5.1 影響CLC-2蛋白表現量的其他蛋白分子 17 1.5.2 影響CLC-2通道功能表現的其他蛋白分子 19 1.5.3 其他與CLC-2具交互作用但影響未明的蛋白分子 20 1.6 蛋白質的降解 (Protein degradation) 21 1.7 泛素與蛋白酶體系統 (Ubiquitin and proteasome system) 21 1.8 E3泛素連接酶 (E3 ubiquitin ligase) 23 1.9 研究目的 24 第二章 25 材料與方法 25 2.1 DNA構築質體 (DNA constructs) 25 2.2 細胞培養 (cell culture) 26 2.3 DNA磷酸鈣轉染 (DNA calcium phosphate transfection) 26 2.4 蛋白樣品製備與西方墨點法 (Preparation of protein samples and western blot) 27 2.5 共同免疫沉澱 (Co-immunoprecepitation) 29 2.6 細胞表面生物素標定 (Biotinylation) 30 2.7 Cycloheximide細胞處理 (Cycloheximide treatment) 30 2.8 MLN4924細胞處理 (MLN4924 treatment) 31 2.9 17-AAG細胞處理 (17-AAG treatment) 31 2.10 慢病毒製備與感染 (Lentivirus production and infection) 32 2.11 CLC-2 stable cell line製備 (CLC-2 stable cell line production) 33 2.12 RNA萃取與逆轉錄PCR (RNA extraction and RT-PCR) 33 2.13資料統計分析 (Data analysis) 36 第三章 37 結果 37 3.1 CLC-2的降解途徑探討 37 3.1.1 MG132、HA-Ub-K0與MLN4924使CLC-2蛋白表現總量增加 37 3.1.2 CUL4可能參與CLC-2之蛋白酶體降解之調控 38 3.1.3 DDB1與CLC-2具交互作用 40 3.1.5 CRBN可能扮演CLC-2之substrate receptor 42 3.1.6 DN-CUL4A與DN-CUL4B並未影響CLC-2之代謝半衰期 42 3.1.7 HA-Ub-K0、Flag-DN-CUL4A、Flag-DN-CUL4B使CLC-2在細胞膜上表現量增加 43 3.1.8 HA-CRBN使CLC-2在細胞膜上表現量減少 44 3.1.9 17-AAG使CLC-2蛋白總量增加 44 3.1.10 Caco-2細胞株具內生性CLC-2蛋白表現 45 3.2 抑制NSF對於CLC-2的影響 46 3.2.1 CLC-2與NSF具交互作用 46 3.2.2 大量表現NSF對CLC-2蛋白總量與其在細胞膜上表現量均無影響 (含前人研究) 46 3.2.3 以shRNA壓制NSF對CLC-2 mRNA與蛋白總量表現的影響 47 第四章 50 討論 50 4.1 蛋白酶體降解途徑調控CLC-2之蛋白表現量 50 4.2 CUL4A與CUL4B參與CLC-2之蛋白酶體降解途徑 51 4.3 DDB1扮演CLC-2蛋白酶體降解途徑之adaptor protein 57 4.4 CRBN扮演CLC-2蛋白酶體降解途徑之substrate receptor 57 4.5 Hsp90 抑制劑17-AAG提升CLC-2之蛋白質表現量 59 4.6 抑制NSF對於CLC-2的影響 60 4.7 待釐清之問題以及後續的實驗設計 61 4.7.1 缺少ubiquitination實驗故無法直接證明CUL4A/ 4B與CRBN可參與CLC-2之泛素化 61 4.7.2 缺少壓制CUL4A/ 4B、CRBN的實驗數據 61 4.7.3 CLC-2的聚泛素鏈鍵結型式尚待驗證 62 4.7.4 需在stable cell line中壓制NSF並重複CLC-2之RT-PCR實驗 62 4.7.5 進行shRNA壓制實驗時需控制各系統中的CLC-2表達效率差異 62 結論 63 圖表 64 附圖 92 參考資料 98 | |
dc.language.iso | zh-TW | |
dc.title | E3泛素連接酶與NSF蛋白對第二型氯離子通道的調節機制 | zh_TW |
dc.title | Modulation of CLC-2 chloride channel by E3 ubiquitin ligase and NSF | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄭瓊娟,卓貴美 | |
dc.subject.keyword | CLC-2氯離子孔道,蛋白質降解,E3泛素連接?,NSF, | zh_TW |
dc.subject.keyword | CLC-2 chloride channel,protein degradation,E3 ubiquitin ligase,NSF, | en |
dc.relation.page | 115 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-13 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生理學研究所 | zh_TW |
顯示於系所單位: | 生理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 3.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。