請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52808完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 彭隆瀚 | |
| dc.contributor.author | Po-Chun Yeh | en |
| dc.contributor.author | 葉伯淳 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:28:36Z | - |
| dc.date.available | 2020-08-17 | |
| dc.date.copyright | 2015-08-17 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-13 | |
| dc.identifier.citation | 1 Gordon E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics, pp. 114–117, April 19, 1965.
2 The international technology roadmap for semiconductors, 2011 edition, executive summary. 3 U. K. Mishra, P. Parikh, and W. Yi-Feng, 'AlGaN/GaN HEMTs - an overview of device operation and applications,' Proceedings of the IEEE, vol. 90, pp.1022-1031, 2002. 4 B. J. Baliga, 'Power semiconductor device figure of merit for high-frequency applications,' Electron Device Letters, IEEE, vol. 10, pp. 455-457, 1989. 5 T. Palacios, 'Beyond the AlGaN/GaN HEMT: new concepts for high-speed transistors,' physica status solidi (a), vol. 206, pp. 1145-1148, 2009. 6 G. Meneghesso, F. Rampazzo, P. Kordos, G. Verzellesi, and E. Zanoni, 'Current Collapse and High-Electric-Field Reliability of Unpassivated GaN/AlGaN/GaN HEMTs,' Electron Devices, IEEE Transactions on, vol. 53, pp. 2932-2941, 2006. 7 B. Jong-Ho, H. Injun, S. Jong-Min, K. Hyuck-In, P. Chan Hyeong, H. Jongbong, et al., 'Characterization of traps and trap-related effects in recessed-gate normally-off AlGaN/GaN-based MOSHEMT,' IEDM Technical Digest, 2012, pp. 13.2.1. 8 Shenghou Liu, Yong Cai, Guodong Gu, Jinyan Wang, Chunhong Zeng, Wenhua Shi, Zhihong Feng, Hua Qin, Zhiqun Cheng, Kevin J. Chen, Senior Member, IEEE, and Baoshun Zhang, ' Enhancement-Mode Operation of Nanochannel Array (NCA) AlGaN/GaN HEMTs,' IEEE Electron Device Letters, vol. 33, pp. 354, 2012. 9 Ki-Sik Im, Ryun-Hwi Kim, Ki-Won Kim, Dong-Seok Kim, Chun Sung Lee, Sorin Cristoloveanu, Jung-Hee Lee, ' Normally Off Single-Nanoribbon Al2O3/GaN MISFET,' IEEE Electron Device Letters, vol. 34, pp. 27, 2013. 10 Masataka Higashiwaki and Toshiaki Matsui, ' AlGaN/GaN Heterostructure Field-Effect Transistors with Current Gain Cut-off Frequency of 152 GHz on Sapphire Substrates,' Japanese Journal of Applied Physics, vol. 44, pp. L475, 2005. 11 T. Palacios, C.-S. Suh, A. Chakraborty, S. Keller, S. P. DenBaars, and U. K. Mishra, ' High-performance E-mode AlGaN/GaN HEMTs,' IEEE Electron Device Letters, vol. 27, pp. 428, 2006. 12 Joseph J. Freedsman, Takashi Egawa, Yuya Yamaoka, Yoshiki Yano, Akinori Ubukata, Toshiya Tabuchi, and Koh Matsumoto, ' Normally-OFF Al2O3/AlGaN/GaN MOS-HEMT on 8 in. Si with Low Leakage Current and High Breakdown Voltage (825 V),' Applied Physics Express, vol. 7, 041003, 2014. 13 賴彥霖, '氮化銦鎵(類量子點)/氮化鎵多重量子井之微結構與光學性質之研究,' 博士論文, 材料科學及工程學系, 國立成功大學, 2006. 14 O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, et al., 'Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,' Journal of Applied Physics, vol. 85, p. 3222, 1999. 15 余湘璘, '氮化鋁鎵/氮化鎵高電子遷移率場效電晶體元件結構與鈍化方式對高頻率及高功率之特性分析' 碩士論文, 電機工程研究所, 國立中央大學, 2009. 16 E. T. Yu, X. Z. Dang, P. M. Asbeck, S. S. Lau, and G. J. Sullivan, 'Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures,' Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 17, p. 1742, 1999. 17 T. Yamanaka, K. Sun, Y. Li, M. Dutta, and M. A. Stroscio, 'Spontaneous polarizations, electrical properties, and phononic properties of GaN nanostructures and systems,' pp. 64730F-64730F, 2007. 18 F. Bernardini, V. Fiorentini, and D. Vanderbilt, 'Spontaneous polarization and piezoelectric constants of III-V nitrides,' Physical Review B, vol. 56, pp. R10024-R10027, 10/15/ 1997. 19 AlGaN/GaN HEMTs. Available: http://www.ee.sc.edu/personal/faculty/simin/ELCT871/18%20AlGAN-GaN%20HEMTs.pdf 20 F. Sacconi, A. Di Carlo, P. Lugli, and H. Morkoc, 'Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs,' Electron Devices, IEEE Transactions on, vol. 48, pp. 450-457, 2001. 21 I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, R. Vetury, B. Heying, P. Fini, et al., 'Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy,' Journal of Applied Physics, vol. 86, p. 4520, 1999. 22 B. Jogai, 'Free electron distribution in AlGaN/GaN heterojunction field-effect transistors,' Journal of Applied Physics, vol. 91, p. 3721, 2002. 23 J. Osvald, 'Polarization effects and energy band diagram in AlGaN/GaN heterostructure,' Applied Physics A, vol. 87, pp. 679-682, 2007. 24 S. Sugiura, Y. Hayashi, S. Kishimoto, T. Mizutani, M. Kuroda, T. Ueda, et al., 'Fabrication of normally-off mode GaN and AlGaN/GaN MOSFETs with HfO2 gate insulator,' Solid-State Electronics, vol. 54, pp. 79-83, 2010. 25 J.R. Shealy, T.R. Prunty, E.M. Chumbes, B.K. Ridley, 'Growth and passivation of AlGaN/GaN heterostructures,' Journal of Crystal Growth, vol. 250, pp. 7-13, 2003. 26 Herwig Hahn, Ben Reuters, Holger Kalisch, and Andrei Vescan, Semiconductor Science and Technology, vol. 28, 074017, 2013. 27 Satyaki Ganguly, Jai Verma, Guowang Li, Tom Zimmermann, Huili Xing, and Debdeep Jena, 'Presence and origin of interface charges at atomic-layer deposited Al2O3/III-nitride heterojunctions,' Applied Physics Letters, vol. 99, 193504, 2011. 28 S. Huang, Q. Jiang, S. Yang, C. Zhou, and K. J. Chen, 'Effective passivation of AlGaN/GaN HEMTs by ALD-grown AlN thin film,' Electron Device Letters, IEEE, vol. 33, pp. 516-518, 2012. 29 Y. Yuanzheng, Y. Hao, J. Zhang, J. Ni, W. Mao, F. Qian, et al., 'AlGaN/GaN MOS-HEMT With HfO2 Dielectric and Al2O3 Interfacial Passivation Layer Grown by Atomic Layer Deposition,' Electron Device Letters, IEEE, vol. 29, pp. 838-840, 2008. 30 D. Deen, D. Storm, D. Meyer, D. S. Katzer, R. Bass, S. Binari, et al., 'AlN/GaN HEMTs with high-κ ALD HfO2 or Ta2O5 gate insulation,' physica status solidi (c), vol. 8, pp. 2420-2423, 2011. 31 巫漢敏, '氮化鎵金氧半電容元件之製作與特性研究,' 碩士論文, 光電工程研究所, 國立台灣大學, 2002. 32 Xiaosen Liu, and Kevin J. Chen, 'GaN Single-Polarity Power Supply Bootstrapped Comparator for High-Temperature Electronics,' IEEE Electron Device Letters, vol. 32, no. 1, pp. 27-29, 2011 33 Tetsu Kachi, 'Recent progress of GaN power devices for automotive applications,' Japanese Journal of Applied Physics, vol. 53, 100210, 2014. 34 J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. P. Speck, and U. K. Mishra, 'Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors,' Appllied Physics Letters, vol. 77, pp. 250, 2000. 35 W.B. Lanford, T. Tanaka, Y. Otoki and I. Adesida, 'Recessed-gate enhancement-mode GaN HEMT with high threshold voltage,' Electronics Letters, vol. 41, pp. 449-450, 2005. 36 W. Saito, Y. Takeda, M. Kuraguchi, K. Tsuda, and I. Omura, 'Recessed-gate structure approach toward normally off high-Voltage AlGaN/GaN HEMT for power electronics applications,' IEEE Transactions on Electron Devices, vol. 53, pp. 356-362, 2006. 37 N. Ikeda, R. Tamura, T. Kokawa, H. Kambayashi, Y. Sato, T. Nomura, and S. Kato, 'Over 1.7 kV normally-off GaN hybrid MOS-HFETs with a lower on-resistance on a Si substrate, ' 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2011, pp. 284-287. 38 Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, 'A Normally-off AlGaN/GaN Transistor with RonA=2.6mΩcm2 and BVds=640V Using Conductivity Modulation,' IEDM Technical Digest, 2006, pp.907. 39 O. Hilt, F. Brunner, E. Cho, A. Knauer, E. Bahat-Treidel, and J. Wurfl, 'Normally-off high-voltage p-GaN gate GaN HFET with carbon-doped buffer,' 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2011, pp. 239-242. 40 Y. Cai, Z. Cheng, W. C. W. Tang, K. M. Lau, and K. J. Chen, 'Control of Threshold Voltage of AlGaN/GaN HEMTs by Fluoride-Based Plasma Treatment: From Depletion Mode to Enhancement Mode,' IEEE Transactions on Electron Devices, vol. 53, pp. 2207-2215, 2006. 41 C.-T. Chang, T.-H. Hsu, E.Y. Chang, Y.-C. Chen, H.-D. Trinh and K.J. Chen, 'Normally-off operation AlGaN/GaN MOS-HEMT with high threshold voltage,' Electronics Letters, vol. 46, pp. 1280-1281, 2010. 42 F. Hasegawa, H. Kanbayashi, J. Li, N. Ikeda, T. Nomura, S. Kato, and S. Yoshida, 'Proposal and simulated results of a normally off AlGaN/GaN HFET structure with a charged floating gate,' Physica Status Solidi C, vol. 6, pp. S940-S943, 2009. 43 C. Kirkpatrick, B. Lee, Y. H. Choi, A. Huang, and V. Misra, 'Threshold voltage stability comparison in AlGaN/GaN FLASH MOS-HFETs utilizing charge trap or floating gate charge storage,' Physica Status Solidi C, vol. 9, pp. 864-867, 2012. 44 http://www.irf.com/product-info/ganpowir/GaNAPEC.pdf 45 X. Huang, Z. Liu, Q. Li, and F. C. Lee, 'Evaluation and Application of 600 V GaN HEMT in Cascode Structure,' IEEE Transactions on Power Electronics, vol. 29, pp. 2453-2461, 2014. 46 Xuejue Huang et al., 'Sub 50-nm FinFET: PMOS,' IEDM Technical Digest, 1999, pp. 67-70. 47 Takahiro Tamura, Junji Kotani, Seiya Kasai, and Tamotsu Hashizume, 'Nearly Temperature-Independent Saturation Drain Current in a Multi-Mesa-Channel AlGaN/GaN High Electron Mobility Transistor,' Applied Physics Express, vol. 1, 023001, 2008. 48 Kota Ohi, and Tamotsu Hashizume, 'Drain Current Stability and Controllability of Threshold Voltage and Subthreshold Current in a Multi-Mesa-Channel AlGaN/GaN High Electron Mobility Transistor,' Japanese Journal of Applied Physics, vol. 48, 081002, 2009. 49 Shenghou Liu, Yong Cai, Rumin Gong, Jinyan Wang, Chunhong Zeng, Wenhua Shi, Zhihong Feng, Jingjing Wang, Jiayun Yin, Cheng P. Wen, Hua Qin, and Baoshun Zhang, 'Threshold voltage dependence on channel width in nano-channel array AlGaN/GaN HEMTs,' Physica Status Solidi C, vol. 9, No. 3-4, pp. 879-882, 2012. 50 S. Liu, Y. Cai, G. Gu, J. Wang, C. Zeng, W. Shi, Z. Feng, H. Qin, Z. Cheng, K. J. Chen, and B. Zhang, 'Enhancement-mode operation of nanochannel array (NCA) AlGaN/GaN HEMTs,' IEEE Electron Devices Letters, vol. 33, no. 3, pp. 354-356, 2012. 51 Mohamed A. Alsharef, Ralf Granzner, and Frank Schwierz, 'Theoretical Investigation of Trigate AlGaN/GaN HEMTs,' IEEE Transactions on Electron Devices, vol. 60, no. 10, pp. 3335-3341, 2013. 52 D. A. Neamen, 'Semiconductor Physics and Devices,' Third edition, McGraw-Hill, 2005, pp. 395-398. 53 T. V. Blank, and Yu. A. Gol’dberg, Semiconductors, vol. 41, no. 11, pp. 1263-1292, 2007. 54 M. E. Lin, Z. Ma, F. Y. Huang, Z. F. Fan, L. H. Allen and H. Morkoç, 'Low resistance ohmic contacts on wide band‐gap GaN,' Applied Physics Letters, vol. 64, no. 8, pp. 1003-1005, 1994. 55 A. Vertiatchikh, E. Kaminsky, J. Teetsov, and K. Robinson, 'Structural properties of alloyed Ti/Al/Ti/Au and Ti/Al/Mo/Au ohmic contacts to AlGaN/GaN,' Solid-State Electronics, vol. 50, pp. 1425-1429, 2006. 56 廖清賢, '氮化鎵之光電化學反應與應用, ' 碩士論文, 光電工程研究所, 國立台灣大學, 2000. 57 R. L. Puurunen, 'Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,' Journal of Applied Physics, vol. 97, 121301, 2005. 58 Solid State Technology, March 1, 2007. 59 Stephan Bastiaan Simon Heil., 'Plasma-assisted atomic layer deposition of metal oxides and nitrides,' Eindhoven : Technische Universiteit Eindhoven, 2007. - Proefschrift. 60 Oxford Instruments, http://www.oxford-instruments.com 61 http://www.picosun.com/en/products/picoplasma8482+source+system/ 62 張韶文, '利用硬體結構改善電子束微影中鄰近效應及電荷累積效應,' 碩士論文, 電子工程研究所, 國立台灣大學, 2012. 63 J. A. Bardwell, S. Haffouz, W. R. McKinnon, C. Storey, H. Tang, G. I. Sproule, et al., 'The Effect of Surface Cleaning on Current Collapse in AlGaN/GaN HEMTs,' Electrochemical and Solid-State Letters, vol. 10, p. H46, 2007. 64 R. D. Long and P. C. McIntyre, 'Surface Preparation and Deposited Gate Oxides for Gallium Nitride Based Metal Oxide Semiconductor Devices,' Materials, vol. 5, pp. 1297-1335, 2012. 65 D. A. Stocker, E. F. Schubert, and J. M. Redwing, 'Crystallographic wet chemical etching of GaN,' Applied Physics Letters, vol. 73, pp. 2654-2656, 1998. 66 A. Davydov, A. Motayed, W. Boettinger, R. Gates, Q. Xue, H. Lee, et al., 'Combinatorial optimization of Ti/Al/Ti/Au ohmic contacts to n‐GaN,' physica status solidi (c), vol. 2, pp. 2551-2554, 2005. 67 D.-F. Wang, F. Shiwei, C. Lu, A. Motayed, M. Jah, S. N. Mohammad, et al., 'Low-resistance Ti/Al/Ti/Au multilayer ohmic contact to n-GaN,' Journal of Applied Physics, vol. 89, p. 6214, 2001. 68 周佳伶, '具微米三角柱結構氮化鎵發光二極體之研製, ' 碩士論文, 光電工程研究所, 國立台灣大學, 2008. 69 洪瑞宏, '氮化鋁鎵/氮化鎵金氧半高電子遷移率場效電晶體之製作與特性研究,' 碩士論文, 光電工程研究所, 國立台灣大學, 2013. 70 黃培誠, '以微米小球顯影術及光致化學蝕刻法製作氮化鎵次微米三角柱結構,' 碩士論文, 光電工程研究所, 國立台灣大學, 2006. 71 Robert Schewski, Günter Wagner, Michele Baldini, Daniela Gogova, Zbigniew Galazka, Tobias Schulz, Thilo Remmele, Toni Markurt, Holger von Wenckstern, Marius Grundmann, Oliver Bierwagen, Patrick Vogt, and Martin Albrecht, 'Epitaxial stabilization of pseudomorphic α-Ga2O3 on sapphire (0001),' Applied Physics Express, vol. 8, 011101, 2015. 72 Liandi Li, Wei Wei, and Malte Behrens, 'Synthesis and characterization of a-, b-, and r-Ga2O3 prepared from aqueous solutions by controlled precipitation,' Solid State Sciences, vol. 14, pp. 971-981, 2012. 73 Sanyam Bajaj, Ting-Hsiang Hung, Fatih Akyol, Digbijoy Nath, and Siddharth Rajan, “Modeling of high composition AlGaN channel high electron mobility transistors with large threshold voltage,” Applied Physics Letters, vol. 105, 263503, 2014. 74 Madhu S . Gupta, 'Power gain in feedback amplifiers, a classic revisited,' IEEE Transactions on Microwave Theory and Techniques, Vol. 40 , no. 5, pp. 864-879, 1992. 75 王生圳, 高頻量測技術與見習HF01講義, 國家奈米元件實驗室, 2012. 76 Jinwook W. Chung, Tae-Woo Kim, and Tomás Palacios, 'Advanced Gate Technologies for State-of-the-art fT in AlGaN/GaN HEMTs,' IEDM Technical Digest, 2010, pp. 30.2.1-30.2.4 77 K. Shinohara, D. Regan, A. Corrion, D. Brown, Y. Tang, J. Wong, G. Candia, A. Schmitz, H. Fung, S. Kim, and M. Micovic, 'Self-Aligned- Gate GaN-HEMTs with Heavily-Doped n+-GaN Ohmic Contacts to 2DEG,' IEDM Technical Digest, 2012, pp. 27.2.1-27.2.4 78 Yuanzheng Yue, Zongyang Hu, Jia Guo, Berardi Sensale-Rodriguez, Guowang Li, Ronghua Wang, Faiza Faria, Tian Fang, Bo Song, Xiang Gao, Shiping Guo, Thomas Kosel, Gregory Snider, Patrick Fay, Debdeep Jena, and Huili Xing, 'InAlN/AlN/GaN HEMTs With Regrown Ohmic Contacts and fT of 370 GHz,' IEEE Electron Device Letters, vol. 33, no. 7, pp. 988-990, 2012. 79 Simon Vandenbrouck, Kamel Madjour, Didier Théron, Yajie Dong, Yat Li, Charles M. Lieber, and Christophe Gaquiere, '12 GHz FMAX GaN/AlN/AlGaN Nanowire MISFET,' IEEE Electron Device Letters, vol. 30, no. 4, pp. 322-324, 2009. 80 J.-W. Yu, P.-C. Yeh, S.-L. Wang, Y.-R. Wu, M.-H. Mao, H.-H. Lin, and L.-H. Peng, 'Short channel effects on gallium nitride/gallium oxide nanowire transistors,' Applied Physics Letters, vol. 101, 183501, 2012. 81 L. Nougaret, H. Happy, G. Dambrine, V. Derycke, J. -P. Bourgoin, A. A. Green, and M. C. Hersam, '80 GHz field-effect transistors produced using high purity semiconducting single-walled carbon nanotubes,' Applied Physics Letters, vol. 94, 243505, 2009. 82 Rui Cheng, Jingwei Bai, Lei Liao, Hailong Zhou, Yu Chen, Lixin Liu, Yung-Chen Lin, Shan Jiang, Yu Huang, and Xiangfeng Duan, 'High-frequency self-aligned graphene transistors with transferred gate stacks,' PNAS, vol. 109, no. 29, pp.11588-11592, 2012. 83 S. Arulkumaran, G. I. Ng, C. M. Manoj Kumar, K. Ranjan, K. L. Teo, O. F. Shoron, S. Rajan, S. Bin Dolmanan, and S. Tripathy 'Electron velocity of 6 × 107 cm/s at 300 K in stress engineered InAlN/GaN nano-channel high-electron-mobility transistors,' Applied Physics Letters, vol. 106, 053502, 2015. 84 Po-Chun Yeh, Yun-Wei Lin, Yue-Lin Huang, Jui-Hung Hung, Bo-Ren Lin, Lucas Yang, Cheng-Han Wu, Tzu-Kuan Wu, Chao-Hsin Wu, and Lung-Han Peng, 'Threshold voltage controlled by gate area and gate recess in inverted trapezoidal trigate AlGaN/GaN MOS high-electron-mobility transistors with photoenhanced chemical and plasma-enhanced atomic layer deposition oxides,' Applied Physics Express, vol. 8, 084101, 2015. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52808 | - |
| dc.description.abstract | 本研究中,吾人成功製作出一種增強型鰭狀氮化鋁鎵/氮化鎵金氧半高電子遷移率電晶體,透過結合鰭狀結構與閘極掘入技術,並以光致電化學氧化法(PEC oxidation)與電漿輔助型原子層沉積技術(PE-ALD)生成之雙層氧化層作為閘極絕緣層與表面鈍化層,實驗數據顯示電晶體之臨界電壓(Vth)隨不同閘極掘入深度與不同閘極面積而呈現線性變化,斜率分別為0.36 V/nm與 -0.32 V/μm2。對於閘極長度與寬度為250nm×360nm的元件特性,其臨界電壓Vth = 1.2V,電流開關比(Current on/off ratio)高達10^8,所量得的電流增益截止頻率fT為9GHz,而最大操作頻率fMAX為36GHz。所觀察到的現象可歸因於兩個相互結合的效應:(a) 閘極掘入元件上有一介面負電荷密度為3.2 μC/cm2可以部份抵銷極化電荷的效應;(b) 側壁鈍化提供高電子遷移率的通道。 | zh_TW |
| dc.description.abstract | In this thesis, we present an enhancement-mode AlGaN/GaN fin-shaped metal-oxide-semiconductor high-electron mobility transistors (MOS-HEMT), fabricated by combining gate recess process and fin-shape structure, featuring double-layer oxides composed of photo-enhanced-chemical (PEC) oxidation and plasma-enhanced atomic layer deposition (PE-ALD) oxide, which was shown to support threshold voltage (Vth) with a linear slope of 0.36 V/nm and -0.32 V/μm2, respectively, scaled with recess depth and device area. The proposed device exhibited Vth = 1.2V, current on/off ratio of 10^8, and cutoff frequency of unity current gain/power gain (fT/fmax) = 9/36GHz at gate length/width = 250/360nm. These observations can be ascribed to the combination effects of (a) interfacial negative space charge of 3.2 μC/cm2 in the gate-recessed device to partially compensate the polarization charges, and (b) side-wall passivation to preserve the high mobility channel. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:28:36Z (GMT). No. of bitstreams: 1 ntu-104-D97941006-1.pdf: 11003786 bytes, checksum: c495093b1e2cb166e67e2154f95da739 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 第一章 緒論 1
1.1 簡介 1 1.2 研究動機與目的 6 1.3 論文內容概述 8 第二章 氮化鋁鎵/氮化鎵金氧半高電子遷移率電晶體之理論介紹 11 2.1 氮化鎵之基本特性與二維電子氣形成機制 11 2.2 氮化鋁鎵/氮化鎵金氧半高電子遷移率電晶體 18 2.3 增強型氮化鋁鎵/氮化鎵高電子遷移率電晶體 22 2.4 鰭狀氮化鋁鎵/氮化鎵高電子遷移率電晶體 27 2.5 金屬-半導體接觸原理 30 2.6 光致電化學氧化法原理 34 2.7 原子層沉積技術 36 第三章 增強型鰭狀氮化鋁鎵/氮化鎵金氧半高電子遷移率電晶體元件製程與結果 41 3.1 電子束微影技術 41 3.2 表面清潔 45 3.3 元件隔離 48 3.4 晶格面蝕刻法 49 3.5 歐姆接觸 52 3.6 光致電化學氧化法 54 3.7 電晶體元件結構 56 3.8 電晶體元件製程設計 59 3.9 電晶體製作流程 63 3.10 電晶體元件形貌與結構分析 89 第四章 增強型鰭狀氮化鋁鎵/氮化鎵金氧半高電子遷移率電晶體直流及高頻量測與特性研究 95 4.1 電晶體直流量測系統簡介 95 4.2 電晶體直流特性與討論 97 4.3 電晶體特性對元件尺寸之關係與討論 102 4.4 電晶體高頻量測 108 4.5 電晶體高頻特性與討論 114 4.6 電晶體特性與其他研究成果之比較與討論 116 第五章 結論與未來展望 119 5.1 結論 119 5.2 未來展望 121 參考文獻 123 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電晶體 | zh_TW |
| dc.subject | 鰭狀 | zh_TW |
| dc.subject | 氮化鎵 | zh_TW |
| dc.subject | 增強型 | zh_TW |
| dc.subject | 金氧半高電子遷移率電晶體 | zh_TW |
| dc.subject | Enhancement-Mode | en |
| dc.subject | Fin-Shaped | en |
| dc.subject | GaN | en |
| dc.subject | MOS-HEMT | en |
| dc.subject | Transistor | en |
| dc.title | 增強型鰭狀氮化鋁鎵/氮化鎵金氧半高電子遷移率電晶體之研製 | zh_TW |
| dc.title | Fabrication and Characterization of Enhancement-Mode AlGaN/GaN Fin-Shaped Metal-Oxide-Semiconductor High-Electron Mobility Transistors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王維新,李清庭,綦振瀛,黃玉林,吳育任 | |
| dc.subject.keyword | 電晶體,鰭狀,氮化鎵,增強型,金氧半高電子遷移率電晶體, | zh_TW |
| dc.subject.keyword | Transistor,Fin-Shaped,GaN,Enhancement-Mode,MOS-HEMT, | en |
| dc.relation.page | 133 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 10.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
