請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52788完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐立中(Li-Chung Hsu) | |
| dc.contributor.author | Yu-Hsin Hsieh | en |
| dc.contributor.author | 謝佑鑫 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:27:40Z | - |
| dc.date.available | 2020-09-25 | |
| dc.date.copyright | 2015-09-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-14 | |
| dc.identifier.citation | Akira, S., Takeda, K., Kaisho, T. (2001). Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol, 2(8), 675-680. doi: 10.1038/90609 Akira, S., Uematsu, S., Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell, 124(4), 783-801. doi: 10.1016/j.cell.2006.02.015 Aksoy, E., Taboubi, S., Torres, D., Delbauve, S., Hachani, A., Whitehead, M. A., . . . Vanhaesebroeck, B. (2012). The p110delta isoform of the kinase PI(3)K controls the subcellular compartmentalization of TLR4 signaling and protects from endotoxic shock. Nat Immunol, 13(11), 1045-1054. doi: 10.1038/ni.2426 Bang-Yan Yang, C.-C. C. (2010). The functional roles of TBK1 in TLR3/4 signlings. (Master), National Taiwan University. Bonnard, M., Mirtsos, C., Suzuki, S., Graham, K., Huang, J., Ng, M., . . . Yeh, W. C. (2000). Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-kappaB-dependent gene transcription. EMBO J, 19(18), 4976-4985. doi: 10.1093/emboj/19.18.4976 Bossis, G., Melchior, F. (2006). SUMO: regulating the regulator. Cell Div, 1, 13. doi: 10.1186/1747-1028-1-13 Brubaker, S. W., Bonham, K. S., Zanoni, I., Kagan, J. C. (2015). Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol, 33, 257-290. doi: 10.1146/annurev-immunol-032414-112240 Buss, H., Dorrie, A., Schmitz, M. L., Hoffmann, E., Resch, K., Kracht, M. (2004). Constitutive and interleukin-1-inducible phosphorylation of p65 NF-{kappa}B at serine 536 is mediated by multiple protein kinases including I{kappa}B kinase (IKK)-{alpha}, IKK{beta}, IKK{epsilon}, TRAF family member-associated (TANK)-binding kinase 1 (TBK1), and an unknown kinase and couples p65 to TATA-binding protein-associated factor II31-mediated interleukin-8 transcription. J Biol Chem, 279(53), 55633-55643. doi: 10.1074/jbc.M409825200 Chang, C. H., Lai, L. C., Cheng, H. C., Chen, K. R., Syue, Y. Z., Lu, H. C., . . . Ling, P. (2011). TBK1-associated protein in endolysosomes (TAPE) is an innate immune regulator modulating the TLR3 and TLR4 signaling pathways. J Biol Chem, 286(9), 7043-7051. doi: 10.1074/jbc.M110.164632 Chang, M., Jin, W., Sun, S. C. (2009). Peli1 facilitates TRIF-dependent Toll-like receptor signaling and proinflammatory cytokine production. Nat Immunol, 10(10), 1089-1095. doi: 10.1038/ni.1777 Chao, C.-H. (2013). The functional role of a sorting nexin family protein in TLR4-mediated immune response. (Master), National Taiwan University. Chau, T. L., Gioia, R., Gatot, J. S., Patrascu, F., Carpentier, I., Chapelle, J. P., . . . Chariot, A. (2008). Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated? Trends Biochem Sci, 33(4), 171-180. doi: 10.1016/j.tibs.2008.01.002 Cui, J., Li, Y., Zhu, L., Liu, D., Songyang, Z., Wang, H. Y., Wang, R. F. (2012). NLRP4 negatively regulates type I interferon signaling by targeting the kinase TBK1 for degradation via the ubiquitin ligase DTX4. Nat Immunol, 13(4), 387-395. doi: 10.1038/ni.2239 Cusson-Hermance, N., Khurana, S., Lee, T. H., Fitzgerald, K. A., Kelliher, M. A. (2005). Rip1 mediates the Trif-dependent toll-like receptor 3- and 4-induced NF-{kappa}B activation but does not contribute to interferon regulatory factor 3 activation. J Biol Chem, 280(44), 36560-36566. doi: 10.1074/jbc.M506831200 Deng, L., Wang, C., Spencer, E., Yang, L., Braun, A., You, J., . . . Chen, Z. J. (2000). Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell, 103(2), 351-361. Enesa, K., Ordureau, A., Smith, H., Barford, D., Cheung, P. C., Patterson-Kane, J., . . . Cohen, P. (2012). Pellino1 is required for interferon production by viral double-stranded RNA. J Biol Chem, 287(41), 34825-34835. doi: 10.1074/jbc.M112.367557 Everett, R. D., Boutell, C., Hale, B. G. (2013). Interplay between viruses and host sumoylation pathways. Nat Rev Microbiol, 11(6), 400-411. doi: 10.1038/nrmicro3015 Fitzgerald, K. A., McWhirter, S. M., Faia, K. L., Rowe, D. C., Latz, E., Golenbock, D. T., . . . Maniatis, T. (2003). IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol, 4(5), 491-496. doi: 10.1038/ni921 Flotho, A., Melchior, F. (2013). Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem, 82, 357-385. doi: 10.1146/annurev-biochem-061909-093311 Gareau, J. R., Lima, C. D. (2010). The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol, 11(12), 861-871. doi: 10.1038/nrm3011 Gay, N. J., Symmons, M. F., Gangloff, M., Bryant, C. E. (2014). Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol, 14(8), 546-558. doi: 10.1038/nri3713 Gohda, J., Matsumura, T., Inoue, J. (2004). Cutting edge: TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta (TRIF)-dependent pathway in TLR signaling. J Immunol, 173(5), 2913-2917. Goncalves, A., Burckstummer, T., Dixit, E., Scheicher, R., Gorna, M. W., Karayel, E., . . . Superti-Furga, G. (2011). Functional dissection of the TBK1 molecular network. PLoS One, 6(9), e23971. doi: 10.1371/journal.pone.0023971 Hacker, H., Redecke, V., Blagoev, B., Kratchmarova, I., Hsu, L. C., Wang, G. G., . . . Karin, M. (2006). Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature, 439(7073), 204-207. doi: 10.1038/nature04369 Hacker, H., Tseng, P. H., Karin, M. (2011). Expanding TRAF function: TRAF3 as a tri-faced immune regulator. Nat Rev Immunol, 11(7), 457-468. doi: 10.1038/nri2998 Hamada, M., Haeger, A., Jeganathan, K. B., van Ree, J. H., Malureanu, L., Walde, S., . . . van Deursen, J. M. (2011). Ran-dependent docking of importin-beta to RanBP2/Nup358 filaments is essential for protein import and cell viability. J Cell Biol, 194(4), 597-612. doi: 10.1083/jcb.201102018 Hashizume, C., Kobayashi, A., Wong, R. W. (2013). Down-modulation of nucleoporin RanBP2/Nup358 impaired chromosomal alignment and induced mitotic catastrophe. Cell Death Dis, 4, e854. doi: 10.1038/cddis.2013.370 Helgason, E., Phung, Q. T., Dueber, E. C. (2013). Recent insights into the complexity of Tank-binding kinase 1 signaling networks: the emerging role of cellular localization in the activation and substrate specificity of TBK1. FEBS Lett, 587(8), 1230-1237. doi: 10.1016/j.febslet.2013.01.059 Iwasaki, A., Medzhitov, R. (2015). Control of adaptive immunity by the innate immune system. Nat Immunol, 16(4), 343-353. doi: 10.1038/ni.3123 Jakobs, A., Koehnke, J., Himstedt, F., Funk, M., Korn, B., Gaestel, M., Niedenthal, R. (2007). Ubc9 fusion-directed SUMOylation (UFDS): a method to analyze function of protein SUMOylation. Nat Methods, 4(3), 245-250. doi: 10.1038/nmeth1006 Janeway, C. A., Jr. (1989). Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol, 54 Pt 1, 1-13. Janeway, C. A., Jr., Medzhitov, R. (2002). Innate immune recognition. Annu Rev Immunol, 20, 197-216. doi: 10.1146/annurev.immunol.20.083001.084359 Kagan, J. C., Magupalli, V. G., Wu, H. (2014). SMOCs: supramolecular organizing centres that control innate immunity. Nat Rev Immunol, 14(12), 821-826. doi: 10.1038/nri3757 Kawagoe, T., Sato, S., Matsushita, K., Kato, H., Matsui, K., Kumagai, Y., . . . Akira, S. (2008). Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat Immunol, 9(6), 684-691. doi: 10.1038/ni.1606 Kawai, T., Adachi, O., Ogawa, T., Takeda, K., Akira, S. (1999). Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity, 11(1), 115-122. Kawai, T., Akira, S. (2011). Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity, 34(5), 637-650. doi: 10.1016/j.immuni.2011.05.006 Klein, U. R., Haindl, M., Nigg, E. A., Muller, S. (2009). RanBP2 and SENP3 function in a mitotic SUMO2/3 conjugation-deconjugation cycle on Borealin. Mol Biol Cell, 20(1), 410-418. doi: 10.1091/mbc.E08-05-0511 Lee, C. C., Avalos, A. M., Ploegh, H. L. (2012). Accessory molecules for Toll-like receptors and their function. Nat Rev Immunol, 12(3), 168-179. doi: 10.1038/nri3151 Li, S., Wang, L., Berman, M., Kong, Y. Y., Dorf, M. E. (2011). Mapping a dynamic innate immunity protein interaction network regulating type I interferon production. Immunity, 35(3), 426-440. doi: 10.1016/j.immuni.2011.06.014 Liu, B., Mink, S., Wong, K. A., Stein, N., Getman, C., Dempsey, P. W., . . . Shuai, K. (2004). PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity. Nat Immunol, 5(9), 891-898. doi: 10.1038/ni1104 Liu, S., Cai, X., Wu, J., Cong, Q., Chen, X., Li, T., . . . Chen, Z. J. (2015). Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science, 347(6227), aaa2630. doi: 10.1126/science.aaa2630 Liu, X., Chen, W., Wang, Q., Li, L., Wang, C. (2013). Negative regulation of TLR inflammatory signaling by the SUMO-deconjugating enzyme SENP6. PLoS Pathog, 9(6), e1003480. doi: 10.1371/journal.ppat.1003480 Liu, Y., Bridges, R., Wortham, A., Kulesz-Martin, M. (2012). NF-kappaB repression by PIAS3 mediated RelA SUMOylation. PLoS One, 7(5), e37636. doi: 10.1371/journal.pone.0037636 Ma, X., Helgason, E., Phung, Q. T., Quan, C. L., Iyer, R. S., Lee, M. W., . . . Dueber, E. C. (2012). Molecular basis of Tank-binding kinase 1 activation by transautophosphorylation. Proc Natl Acad Sci U S A, 109(24), 9378-9383. doi: 10.1073/pnas.1121552109 McWhirter, S. M., Fitzgerald, K. A., Rosains, J., Rowe, D. C., Golenbock, D. T., Maniatis, T. (2004). IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci U S A, 101(1), 233-238. doi: 10.1073/pnas.2237236100 Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature, 454(7203), 428-435. doi: 10.1038/nature07201 Medzhitov, R., Preston-Hurlburt, P., Janeway, C. A., Jr. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 388(6640), 394-397. doi: 10.1038/41131 Meylan, E., Burns, K., Hofmann, K., Blancheteau, V., Martinon, F., Kelliher, M., Tschopp, J. (2004). RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol, 5(5), 503-507. doi: 10.1038/ni1061 Moynagh, P. N. (2014). The roles of Pellino E3 ubiquitin ligases in immunity. Nat Rev Immunol, 14(2), 122-131. doi: 10.1038/nri3599 Muzio, M., Ni, J., Feng, P., Dixit, V. M. (1997). IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science, 278(5343), 1612-1615. O'Neill, L. A., Bowie, A. G. (2007). The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol, 7(5), 353-364. doi: 10.1038/nri2079 O'Neill, L. A., Golenbock, D., Bowie, A. G. (2013). The history of Toll-like receptors - redefining innate immunity. Nat Rev Immunol, 13(6), 453-460. doi: 10.1038/nri3446 Ofengeim, D., Yuan, J. (2013). Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol, 14(11), 727-736. doi: 10.1038/nrm3683 Oganesyan, G., Saha, S. K., Guo, B., He, J. Q., Shahangian, A., Zarnegar, B., . . . Cheng, G. (2006). Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature, 439(7073), 208-211. doi: 10.1038/nature04374 Packham, S., Warsito, D., Lin, Y., Sadi, S., Karlsson, R., Sehat, B., Larsson, O. (2015). Nuclear translocation of IGF-1R via p150(Glued) and an importin-beta/RanBP2-dependent pathway in cancer cells. Oncogene, 34(17), 2227-2238. doi: 10.1038/onc.2014.165 Pandey, S., Kawai, T., Akira, S. (2015). Microbial sensing by toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb Perspect Med, 5(1), a016246. Parvatiyar, K., Barber, G. N., Harhaj, E. W. (2010). TAX1BP1 and A20 inhibit antiviral signaling by targeting TBK1-IKKi kinases. J Biol Chem, 285(20), 14999-15009. doi: 10.1074/jbc.M110.109819 Pascual, G., Fong, A. L., Ogawa, S., Gamliel, A., Li, A. C., Perissi, V., . . . Glass, C. K. (2005). A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature, 437(7059), 759-763. doi: 10.1038/nature03988 Pichler, A., Gast, A., Seeler, J. S., Dejean, A., Melchior, F. (2002). The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell, 108(1), 109-120. Saul, V. V., Niedenthal, R., Pich, A., Weber, F., Schmitz, M. L. (2015). SUMO modification of TBK1 at the adaptor-binding C-terminal coiled-coil domain contributes to its antiviral activity. Biochim Biophys Acta, 1853(1), 136-143. doi: 10.1016/j.bbamcr.2014.10.008 Seeler, J. S., Dejean, A. (2003). Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol, 4(9), 690-699. doi: 10.1038/nrm1200 Sehat, B., Tofigh, A., Lin, Y., Trocme, E., Liljedahl, U., Lagergren, J., Larsson, O. (2010). SUMOylation mediates the nuclear translocation and signaling of the IGF-1 receptor. Sci Signal, 3(108), ra10. doi: 10.1126/scisignal.2000628 Shen, R. R., Hahn, W. C. (2011). Emerging roles for the non-canonical IKKs in cancer. Oncogene, 30(6), 631-641. doi: 10.1038/onc.2010.493 Smith, H., Liu, X. Y., Dai, L., Goh, E. T., Chan, A. T., Xi, J., . . . Cheung, P. C. (2011). The role of TBK1 and IKKepsilon in the expression and activation of Pellino 1. Biochem J, 434(3), 537-548. doi: 10.1042/BJ20101421 Suzuki, N., Suzuki, S., Duncan, G. S., Millar, D. G., Wada, T., Mirtsos, C., . . . Yeh, W. C. (2002). Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature, 416(6882), 750-756. doi: 10.1038/nature736 Takeuchi, O., Akira, S. (2010). Pattern recognition receptors and inflammation. Cell, 140(6), 805-820. doi: 10.1016/j.cell.2010.01.022 Takeuchi, O., Hoshino, K., Kawai, T., Sanjo, H., Takada, H., Ogawa, T., . . . Akira, S. (1999). Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity, 11(4), 443-451. Tang, D., Kang, R., Coyne, C. B., Zeh, H. J., Lotze, M. T. (2012). PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev, 249(1), 158-175. doi: 10.1111/j.1600-065X.2012.01146.x Tojima, Y., Fujimoto, A., Delhase, M., Chen, Y., Hatakeyama, S., Nakayama, K., . . . Nakanishi, M. (2000). NAK is an IkappaB kinase-activating kinase. Nature, 404(6779), 778-782. doi: 10.1038/35008109 Tseng, P. H., Matsuzawa, A., Zhang, W., Mino, T., Vignali, D. A., Karin, M. (2010). Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nat Immunol, 11(1), 70-75. doi: 10.1038/ni.1819 Ulrich, H. D. (2012). Ubiquitin, SUMO, and phosphate: how a trio of posttranslational modifiers governs protein fate. Mol Cell, 47(3), 335-337. doi: 10.1016/j.molcel.2012.07.016 Wang, C., Chen, T., Zhang, J., Yang, M., Li, N., Xu, X., Cao, X. (2009). The E3 ubiquitin ligase Nrdp1 'preferentially' promotes TLR-mediated production of type I interferon. Nat Immunol, 10(7), 744-752. doi: 10.1038/ni.1742 Wang, C., Deng, L., Hong, M., Akkaraju, G. R., Inoue, J., Chen, Z. J. (2001). TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature, 412(6844), 346-351. doi: 10.1038/35085597 Werner, A., Flotho, A., Melchior, F. (2012). The RanBP2/RanGAP1*SUMO1/Ubc9 complex is a multisubunit SUMO E3 ligase. Mol Cell, 46(3), 287-298. doi: 10.1016/j.molcel.2012.02.017 Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., . . . Akira, S. (2003). Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science, 301(5633), 640-643. doi: 10.1126/science.1087262 Zanoni, I., Ostuni, R., Marek, L. R., Barresi, S., Barbalat, R., Barton, G. M., . . . Kagan, J. C. (2011). CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell, 147(4), 868-880. doi: 10.1016/j.cell.2011.09.051 Zhang, M., Wu, X., Lee, A. J., Jin, W., Chang, M., Wright, A., . . . Sun, S. C. (2008). Regulation of IkappaB kinase-related kinases and antiviral responses by tumor suppressor CYLD. J Biol Chem, 283(27), 18621-18626. doi: 10.1074/jbc.M801451200 Zhao, W. (2013). Negative regulation of TBK1-mediated antiviral immunity. FEBS Lett, 587(6), 542-548. doi: 10.1016/j.febslet.2013.01.052 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52788 | - |
| dc.description.abstract | 先天性免疫(innate immunity) 是宿主抵抗外來病原體侵略的第一道防線。Toll-like receptors (TLRs) 透過辨識pathogen-associated molecular patterns (PAMPs) 引發下游訊息傳遞,並誘發前發炎細胞激素(pro-inflammatory cytokines)以及第一型干擾素(type I interferon)的產生。TLR4訊息傳遞透過MyD88-IKKα/β-NF-κB以及TRIF- TBK1-IRF3/7途徑,分別參與在前發炎細胞激素以及第一型干擾素的生成。然而,先前研究NF- | zh_TW |
| dc.description.abstract | Toll-like receptors (TLRs) belongs to the pattern-recognition-receptors (PRRs) that sense a variety of pathogen-associated molecular patterns (PAMPs) derived from microbes to initiate the first line of host defense against invading pathogens. TLR4 engagement mediates activation of downstream MyD88-IKK-NF-κB and TRIF-TBK1-IRF3 signaling pathways leading to pro-inflammatory cytokines and type I interferon production, respectively. We previously found that TBK1 deficiency resulted in defective production of certain NF- | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:27:40Z (GMT). No. of bitstreams: 1 ntu-104-R02448004-1.pdf: 3599255 bytes, checksum: e495a29aef37e6c7edf667bdf88f3b9f (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 致謝 ii 摘要 iii Abstract iv Contents 1 Introduction 5 Toll-like Receptors 7 MyD88-dependent signaling pathway 9 TRIF-dependent signaling pathway 10 TRIF-dependent late phase NF-kB activation 12 TBK1 activation and its roles in innate immune signaling 13 SUMO machinery: mechanism and its role in innate immune 15 Specific aims 17 Materials and Methods 18 Antibodies and Reagents List 18 Plasmids List 19 Cell line, Cell culture and Transfection 20 Lentiviral infaction and shRNA-Mediated Gene Silencing 20 Preparation of total cell lysate 21 Immunoblotting 22 Immunoprecipitation 22 Preparation of nuclear and cytosolic extracts 23 Enzyme-linked immunosorbent assay (ELISA) 24 RNA extraction and Quantitative RT-PCR (RT-qPCR) 25 Electroporation 26 CRISPR/Cas9-mediated depletion of TBK1 in RAW264.7 murine macrophages 26 Statistical analysis 27 Results 28 TBK1 is required for p65 phosphorylation at Ser536 but not nuclear translocation upon LPS treatment 28 Generation of TBK1-/- RAW264.7 macrophages using CRISPR/Cas9 system 29 TBK1 deficiency diminishes the expression of both type I interferon and NF-κB-mediated proinflammatory cytokines in LPS- and poly(I:C)-stimulated RAW264.7 macrophages. 30 TBK1 is modified by SUMO1 conjugation upon poly(I:C) treatment. 31 TBK1 SUMOylation is not required for TBK1 activation. 31 TBK1 SUMOylation is critical for the production of pro-inflammatory cytokines upon LPS stimulation. 33 Discussion 34 The role of TBK1 in modulating NF-κB activity 36 Subcellular localization of TBK1 controls downstream signal responses 37 Post-translational modification defines the functional consequences of TBK1 38 The E3 ligase catalyzed TBK1 SUMOylation remains obscure. 40 Figures 43 Figure. 1 TBK1 is necessary for LPS-induced p65 Ser536 phosphorylation without impairing IKK | |
| dc.language.iso | en | |
| dc.subject | TLR訊息傳遞 | zh_TW |
| dc.subject | 小泛素化 | zh_TW |
| dc.subject | TLR signaling pathway | en |
| dc.subject | SUMOylation | en |
| dc.title | TBK1小泛素化在TLR3/4訊號傳遞所扮演之功能角色 | zh_TW |
| dc.title | The functional role of TBK1 SUMOylation in TLR3/4 signaling pathway | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林琬琬(Wan-Wan Lin),劉旻禕(Helene Minyi Liu) | |
| dc.subject.keyword | TLR訊息傳遞,小泛素化, | zh_TW |
| dc.subject.keyword | TLR signaling pathway,SUMOylation, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-14 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
