請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52773
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林金福 | |
dc.contributor.author | Wen-Fu Lo | en |
dc.contributor.author | 羅文甫 | zh_TW |
dc.date.accessioned | 2021-06-15T16:27:00Z | - |
dc.date.available | 2015-08-17 | |
dc.date.copyright | 2015-08-17 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-14 | |
dc.identifier.citation | 1. Chapin, D.M., C. Fuller, and G. Pearson, A new silicon p‐n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics, 1954(25): p. 676-677.
2. Green, M.A., The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Progress in Photovoltaics: Research and Applications, 2009. 17(3): p. 183-189. 3. Green, M.A., et al., Solar cell efficiency tables (Version 45). Progress in photovoltaics: research and applications, 2015. 23(1): p. 1-9. 4. National Renewable Energy Laboratory. 2015; Available from: http://www.nrel.gov/ncpv/. 5. Kearns, D. and M. Calvin, The photovoltaic effect and photoconductivity in laminated organicsystems. Journal of chemical physics, 1958. 29(UCRL--8441). 6. Tang, C.W., Two‐layer organic photovoltaic cell. Applied Physics Letters, 1986. 48(2): p. 183-185. 7. Yu, G., et al., Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science-AAAS-Weekly Paper Edition, 1995. 270(5243): p. 1789-1790. 8. Coakley, K.M. and M.D. McGehee, Conjugated polymer photovoltaic cells. Chemistry of materials, 2004. 16(23): p. 4533-4542. 9. O'regan, B. and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. nature, 1991. 353(6346): p. 737-740. 10. ; Available from: http://www.greenrhinoenergy.com/solar/radiation/spectra.php. 11. Horiuchi, T., et al., High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. Journal of the American Chemical Society, 2004. 126(39): p. 12218-12219. 12. 劉耕硯, 可交聯型釕金屬錯合物在染料敏化太陽能電池上的合成與應用. . 博士論文, 國立台灣大學,, 2011. 13. Gerischer, H., et al., Sensitization of charge injection into semiconductors with large band gap. Electrochimica Acta, 1968. 13(6): p. 1509-1515. 14. Tsubomura, H., et al., Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. 1976. 15. Yella, A., et al., Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. science, 2011. 334(6056): p. 629-634. 16. Docampo, P., et al., Lessons learned: from dye‐sensitized solar cells to all‐solid‐state hybrid devices. Advanced Materials, 2014. 26(24): p. 4013-4030. 17. Nazeeruddin, M.K., et al., Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society, 1993. 115(14): p. 6382-6390. 18. Islam, A., et al., Sensitization of nanocrystalline TiO 2 film by ruthenium (II) diimine dithiolate complexes. Journal of Photochemistry and Photobiology A: Chemistry, 2001. 145(1): p. 135-141. 19. Kuciauskas, D., et al., Electron transfer dynamics in nanocrystalline titanium dioxide solar cells sensitized with ruthenium or osmium polypyridyl complexes. The Journal of Physical Chemistry B, 2001. 105(2): p. 392-403. 20. Geary, E.A., et al., Synthesis, structure, and properties of [Pt (II)(diimine)(dithiolate)] dyes with 3, 3'-, 4, 4'-, and 5, 5'-disubstituted bipyridyl: Applications in dye-sensitized solar cells. Inorganic chemistry, 2005. 44(2): p. 242-250. 21. Herrmann, W.A. and M.J. Morawietz, Synthesis and characterization of bridged half-sandwich amides of titanium and zirconium. Journal of organometallic chemistry, 1994. 482(1): p. 169-181. 22. Jayaweera, P., S. Palayangoda, and K. Tennakone, Nanoporous TiO 2 solar cells sensitized with iron (II) complexes of bromopyrogallol red ligand. Journal of Photochemistry and Photobiology A: Chemistry, 2001. 140(2): p. 173-177. 23. Taratula, O., et al., Binding studies of molecular linkers to ZnO and MgZnO nanotip films. The Journal of Physical Chemistry B, 2006. 110(13): p. 6506-6515. 24. Klein, C., et al., Amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cells. Inorganic chemistry, 2004. 43(14): p. 4216-4226. 25. Robertson, N., Optimizing Dyes for Dye‐Sensitized Solar Cells. Angewandte Chemie International Edition, 2006. 45(15): p. 2338-2345. 26. Polo, A.S., M.K. Itokazu, and N.Y.M. Iha, Metal complex sensitizers in dye-sensitized solar cells. Coordination Chemistry Reviews, 2004. 248(13): p. 1343-1361. 27. Nazeeruddin, M.K., et al., Acid-base equilibria of (2, 2'-bipyridyl-4, 4'-dicarboxylic acid) ruthenium (II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorganic Chemistry, 1999. 38(26): p. 6298-6305. 28. Hoffmann, M.R., et al., Environmental applications of semiconductor photocatalysis. Chemical reviews, 1995. 95(1): p. 69-96. 29. Hagfeldt, A. and M. Grätzel, Molecular photovoltaics. Accounts of Chemical Research, 2000. 33(5): p. 269-277. 30. Zakeeruddin, S., et al., Design, synthesis, and application of amphiphilic ruthenium polypyridyl photosensitizers in solar cells based on nanocrystalline TiO2 films. Langmuir, 2002. 18(3): p. 952-954. 31. Wang, P., et al., A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature materials, 2003. 2(6): p. 402-407. 32. Kuang, D., et al., High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells. Journal of the American Chemical Society, 2006. 128(12): p. 4146-4154. 33. Kuang, D., et al., Stable mesoscopic dye-sensitized solar cells based on tetracyanoborate ionic liquid electrolyte. Journal of the American Chemical Society, 2006. 128(24): p. 7732-7733. 34. Nazeeruddin, M.K., et al., Highly selective and reversible optical, colorimetric, and electrochemical detection of mercury (II) by amphiphilic ruthenium complexes anchored onto mesoporous oxide films. Advanced Functional Materials, 2006. 16(2): p. 189-194. 35. Nazeeruddin, M.K., et al., Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. Journal of the American Chemical Society, 2005. 127(48): p. 16835-16847. 36. Koops, S.E., et al., Parameters influencing the efficiency of electron injection in dye-sensitized solar cells. Journal of the American Chemical Society, 2009. 131(13): p. 4808-4818. 37. Kuang, D., et al., Ion coordinating sensitizer for high efficiency mesoscopic dye-sensitized solar cells: influence of lithium ions on the photovoltaic performance of liquid and solid-state cells. Nano Letters, 2006. 6(4): p. 769-773. 38. Chen, C.Y., et al., A New Route to Enhance the Light‐Harvesting Capability of Ruthenium Complexes for Dye‐Sensitized Solar Cells. Advanced materials, 2007. 19(22): p. 3888-3891. 39. Jiang, K.-J., et al., A novel ruthenium sensitizer with a hydrophobic 2-thiophen-2-yl-vinyl-conjugated bipyridyl ligand for effective dye sensitized TiO 2 solar cells. Chemical Communications, 2006(23): p. 2460-2462. 40. Gao, F., et al., Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. Journal of the American Chemical Society, 2008. 130(32): p. 10720-10728. 41. Karthikeyan, C.S., H. Wietasch, and M. Thelakkat, Highly Efficient Solid‐State Dye‐Sensitized TiO2 Solar Cells Using Donor‐Antenna Dyes Capable of Multistep Charge‐Transfer Cascades. Advanced Materials, 2007. 19(8): p. 1091-1095. 42. http://kuroppe.tagen.tohoku.ac.jp/~dsc/dye/. 43. Ito, S., et al., High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chemical Communications, 2008(41): p. 5194-5196. 44. Shih, Y., et al., Enhancing the photocurrent of perovskite solar cells via modification of the TiO 2/CH 3 NH 3 PbI 3 heterojunction interface with amino acid. Journal of Materials Chemistry A, 2015. 3(17): p. 9133-9136. 45. Kazim, S., et al., Perovskite as light harvester: a game changer in photovoltaics. Angewandte Chemie International Edition, 2014. 53(11): p. 2812-2824. 46. Redmond, G., D. Fitzmaurice, and M. Graetzel, Visible light sensitization by cis-bis (thiocyanato) bis (2, 2'-bipyridyl-4, 4'-dicarboxylato) ruthenium (II) of a transparent nanocrystalline ZnO film prepared by sol-gel techniques. Chemistry of Materials, 1994. 6(5): p. 686-691. 47. Liu, D., G.L. Hug, and P.V. Kamat, Photochemistry on Surfaces. Intermolecular Energy and Electron Transfer Processes between Excited Ru(bpy)32+ and H-Aggregates of Cresyl Violet on SiO2 and SnO2 Colloids. The Journal of Physical Chemistry, 1995. 99(45): p. 16768-16775. 48. Bedja, I., S. Hotchandani, and P.V. Kamat, Preparation and Photoelectrochemical Characterization of Thin SnO2 Nanocrystalline Semiconductor Films and Their Sensitization with Bis(2,2'-bipyridine)(2,2'-bipyridine-4,4'-dicarboxylic acid)ruthenium(II) Complex. The Journal of Physical Chemistry, 1994. 98(15): p. 4133-4140. 49. Nazeeruddin, M.K., et al., Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society, 1993. 115(14): p. 6382-6390. 50. Shklover, V., et al., Structure of Nanocrystalline TiO2 Powders and Precursor to Their Highly Efficient Photosensitizer. Chemistry of Materials, 1997. 9(2): p. 430-439. 51. Grätzel, M., Photoelectrochemical cells. Nature, 2001. 414(6861): p. 338-344. 52. 黃呈加, 工業材料雜誌, 2002. 192: p. 96-101. 53. Bokhimi, X., et al., Local order in titania polymorphs. International Journal of Hydrogen Energy, 2001. 26(12): p. 1279-1287. 54. Reyes-Coronado, D., et al., Phase-pure TiO 2 nanoparticles: anatase, brookite and rutile. Nanotechnology, 2008. 19(14): p. 145605. 55. Banerjee, A.N., The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO(2)-based nanostructures. Nanotechnology, Science and Applications, 2011. 4: p. 35-65. 56. Koelsch, M., et al., Electrochemical comparative study of titania (anatase, brookite and rutile) nanoparticles synthesized in aqueous medium. Thin Solid Films, 2004. 451–452(0): p. 86-92. 57. Park, N.G., J. van de Lagemaat, and A.J. Frank, Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells. The Journal of Physical Chemistry B, 2000. 104(38): p. 8989-8994. 58. Bokhimi, X., et al., Local order in titania polymorphs. International journal of hydrogen energy, 2001. 26(12): p. 1279-1287. 59. Reyes-Coronado, D., et al., Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology, 2008. 19(14): p. 145605. 60. Antonelli, D.M. and J.Y. Ying, Synthesis of Hexagonally Packed Mesoporous TiO2 by a Modified Sol–Gel Method. Angewandte Chemie International Edition in English, 1995. 34(18): p. 2014--2017. 61. Burnside, S.D., et al., Self-Organization of TiO2 Nanoparticles in Thin Films. Chemistry of Materials, 1998. 10(9): p. 2419-2425. 62. 劉耕硯, 可交聯型釕金屬錯合物在染料敏化太陽能電池上的合成與應用, in 材料與工程研究所. 2011, 國立台灣大學. 63. Lin, Z., et al., Anion control in the ionothermal synthesis of coordination polymers. Journal of the American Chemical Society, 2007. 129(34): p. 10334-10335. 64. Peng, B., et al., Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells. Coordination Chemistry Reviews, 2004. 248(13–14): p. 1479-1489. 65. Wolfbauer, G., et al., A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells. Solar energy materials and solar cells, 2001. 70(1): p. 85-101. 66. Feldt, S.M., et al., Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells. Journal of the American Chemical Society, 2010. 132(46): p. 16714-16724. 67. Sapp, S.A., et al., Substituted polypyridine complexes of cobalt (II/III) as efficient electron-transfer mediators in dye-sensitized solar cells. Journal of the American Chemical Society, 2002. 124(37): p. 11215-11222. 68. Gregg, B.A., et al., Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces. The Journal of Physical Chemistry B, 2001. 105(7): p. 1422-1429. 69. Daeneke, T., et al., High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. Nature chemistry, 2011. 3(3): p. 211-215. 70. Bai, Y., et al., High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle. Chemical Communications, 2011. 47(15): p. 4376-4378. 71. Wang, M., et al., An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nature Chemistry, 2010. 2(5): p. 385-389. 72. Tian, H., et al., Organic redox couples and organic counter electrode for efficient organic dye-sensitized solar cells. Journal of the American Chemical Society, 2011. 133(24): p. 9413-9422. 73. Hardin, B.E., H.J. Snaith, and M.D. McGehee, The renaissance of dye-sensitized solar cells. Nature Photonics, 2012. 6(3): p. 162-169. 74. Poole, C.F., et al., Organic salts, liquid at room temperature, as mobile phases in liquid chromatography. Journal of Chromatography A, 1986. 352: p. 407-425. 75. Sun, J., M. Forsyth, and D. MacFarlane, Room-temperature molten salts based on the quaternary ammonium ion. The Journal of Physical Chemistry B, 1998. 102(44): p. 8858-8864. 76. Anastas, P.T. and J.B. Zimmerman, Peer reviewed: design through the 12 principles of green engineering. Environmental science & technology, 2003. 37(5): p. 94A-101A. 77. Hagiwara, R., et al., Acidic 1-ethyl-3-methylimidazolium fluoride: a new room temperature ionic liquid. Journal of fluorine chemistry, 1999. 99(1): p. 1-3. 78. Wang, P., et al., A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells. The Journal of Physical Chemistry B, 2003. 107(48): p. 13280-13285. 79. Wang, P., et al., A solvent-free, SeCN-/(SeCN) 3-based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells. Journal of the American Chemical Society, 2004. 126(23): p. 7164-7165. 80. 馬瑋聆, Sb2S3量子點及脫層蒙脫石/離子液體複合材料之製程及在染料敏化太陽能電池之應用. 碩士論文, 國立台灣大學,, 2015. 81. Petrov, P., et al., High‐Molecular‐Weight Polyoxirane Copolymers and their Use in High‐Performance Dye‐Sensitized Solar Cells. Macromolecular Materials and Engineering, 2008. 293(7): p. 598-604. 82. Longo, C., et al., Solid-state and flexible dye-sensitized TiO2 solar cells: a study by electrochemical impedance spectroscopy. The Journal of Physical Chemistry B, 2002. 106(23): p. 5925-5930. 83. Kang, M.-S., K.-S. Ahn, and J.-W. Lee, Quasi-solid-state dye-sensitized solar cells employing ternary component polymer-gel electrolytes. Journal of Power Sources, 2008. 180(2): p. 896-901. 84. Tu, C.W., et al., Enhancement of photocurrent of polymer‐gelled dye‐sensitized solar cell by incorporation of exfoliated montmorillonite nanoplatelets. Journal of Polymer Science Part A: Polymer Chemistry, 2008. 46(1): p. 47-53. 85. Tu, C.-W., et al., Performance of gelled-type dye-sensitized solar cells associated with glass transition temperature of the gelatinizing polymers. European Polymer Journal, 2008. 44(3): p. 608-614. 86. Chen, P., et al., High open-circuit voltage solid-state dye-sensitized solar cells with organic dye. Nano letters, 2009. 9(6): p. 2487-2492. 87. Bach, U., et al., Charge separation in solid-state dye-sensitized heterojunction solar cells. Journal of the American Chemical Society, 1999. 121(32): p. 7445-7446. 88. Snaith, H.J., Estimating the maximum attainable efficiency in dye‐sensitized solar cells. Advanced Functional Materials, 2010. 20(1): p. 13-19. 89. Burschka, J., et al., Tris (2-(1 H-pyrazol-1-yl) pyridine) cobalt (III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. Journal of the American Chemical Society, 2011. 133(45): p. 18042-18045. 90. Bach, U., et al., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998. 395(6702): p. 583-585. 91. Snaith, H.J. and L. Schmidt‐Mende, Advances in liquid‐electrolyte and solid‐state dye‐sensitized solar cells. Advanced Materials, 2007. 19(20): p. 3187-3200. 92. Karthikeyan, C.S. and M. Thelakkat, Key aspects of individual layers in solid-state dye-sensitized solar cells and novel concepts to improve their performance. Inorganica Chimica Acta, 2008. 361(3): p. 635-655. 93. Park, T., et al., A supramolecular approach to lithium ion solvation at nanostructured dye sensitised inorganic/organic heterojunctions. Chem. Commun., 2003(23): p. 2878-2879. 94. Leijtens, T., et al., Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells. ACS nano, 2012. 6(2): p. 1455-1462. 95. Yang, L., et al., Initial light soaking treatment enables hole transport material to outperform spiro-OMeTAD in solid-state dye-sensitized solar cells. Journal of the American Chemical Society, 2013. 135(19): p. 7378-7385. 96. Ding, I., et al., Pore‐Filling of Spiro‐OMeTAD in Solid‐State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance. Advanced Functional Materials, 2009. 19(15): p. 2431-2436. 97. Weisspfennig, C.T., et al., Dependence of Dye Regeneration and Charge Collection on the Pore‐Filling Fraction in Solid‐State Dye‐Sensitized Solar Cells. Advanced Functional Materials, 2014. 24(5): p. 668-677. 98. Juozapavicius, M., et al., Efficient dye regeneration in solid-state dye-sensitized solar cells fabricated with melt processed hole conductors. Organic Electronics, 2012. 13(1): p. 23-30. 99. Palomares, E., et al., Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. Journal of the American Chemical Society, 2003. 125(2): p. 475-482. 100. Palomares, E., et al., Slow charge recombination in dye-sensitised solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films. Chem. Commun., 2002(14): p. 1464-1465. 101. Goncalves, L.M., et al., Dye-sensitized solar cells: A safe bet for the future. Energy & Environmental Science, 2008. 1(6): p. 655-667. 102. Snaith, H.J., et al., Efficiency Enhancements in Solid-State Hybrid Solar Cells via Reduced Charge Recombination and Increased Light Capture. Nano Letters, 2007. 7(11): p. 3372-3376. 103. Macdonald, J.R., Impedance spectroscopy and its use in analyzing the steady-state AC response of solid and liquid electrolytes. Journal of electroanalytical chemistry and interfacial electrochemistry, 1987. 223(1): p. 25-50. 104. Park, N.-G., J. Van de Lagemaat, and A. Frank, Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells. The Journal of Physical Chemistry B, 2000. 104(38): p. 8989-8994. 105. Krüger, J., et al., Charge transport and back reaction in solid-state dye-sensitized solar cells: a study using intensity-modulated photovoltage and photocurrent spectroscopy. The Journal of Physical Chemistry B, 2003. 107(31): p. 7536-7539. 106. Duffy, N.W., et al., Investigation of the Kinetics of the Back Reaction of Electrons with Tri-Iodide in Dye-Sensitized Nanocrystalline Photovoltaic Cells. The Journal of Physical Chemistry B, 2000. 104(38): p. 8916-8919. 107. Peter, L.M., et al., Transport and interfacial transfer of electrons in dye-sensitized nanocrystalline solar cells. Journal of Electroanalytical Chemistry, 2002. 524–525(0): p. 127-136. 108. Boschloo, G. and A. Hagfeldt, Activation Energy of Electron Transport in Dye-Sensitized TiO2 Solar Cells. The Journal of Physical Chemistry B, 2005. 109(24): p. 12093-12098. 109. Mitsumori, T., et al., Synthesis and color tuning properties of blue highly fluorescent vinyl polymers containing a pendant pyrrolopyridazine. Macromolecules, 2005. 38(11): p. 4698-4704. 110. Farah, A.A. and W.J. Pietro, Telechelic poly (ϵ-caprolactones) with tethered mixed ligand ruthenium (II) chromophores. Canadian journal of chemistry, 2004. 82(5): p. 595-607. 111. Donnici, C.L., et al., Synthesis of the Novel 4, 4-and 6, 6-Dihydroxamic-2, 2-Bipyridines and Improved Routes to 4, 4-and 6, 6-Substituted 2, 2-Bipyridines and Mono-N-Oxide-2, 2-Bipyridine. Journal of the Brazilian Chemical Society, 1998. 9(5): p. 455-460. 112. Ciana, L.D., W.J. Dressick, and A. Von Zelewsky, Synthesis of 4,4′-divinyl-2,2′-bipyridine. Journal of Heterocyclic Chemistry, 1990. 27(2): p. 163-165. 113. Ni, J.-S., et al., Effects of tethering alkyl chains for amphiphilic ruthenium complex dyes on their adsorption to titanium oxide and photovoltaic properties. Journal of colloid and interface science, 2012. 386(1): p. 359-365. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52773 | - |
dc.description.abstract | 本研究利用合成出帶有苯乙烯基官能基的可交聯型釕金屬染料Ru (4,4’-dicarboxylic acid) (4,4'-bis((4-vinylbenzyloxy)methyl)- 2,2'-bipyridine-(NCS)2 (RuS) 經鑑定後應用至固態染料敏化太陽能電池。與N3染料相比開路電壓(Voc)和短路電流(Jsc)皆有明顯提升,惟填充因子受介面電阻較大而降低,效率值僅1.24%。經改良多孔二氧化鈦厚度至1.7µm可使效率提升至1.49%。為改良介面性質以4,4’-Bis((4-vinylbenzyloxy)methyl)-2,2'-bipyridine (ligand)作為交聯劑改變RuS化學結構,染料脫附測驗顯示鹼液浸泡後工作電極上可保留77%的染料,並初步檢驗元件效率可達到2.12%,其他光電特性也一併提升。接著以帶有lithium和1-ethyl-3-methylimidazolium離子之化合物吸附於經交聯ligand的RuS上,結果除了吸附lithium bis(trifluoromethylsulfonyl)imide (LiTFSI)能提升Voc和Jsc並讓效率達到2.55%外其他無法增進元件表現,照光交流阻抗證實吸附後電阻降低。下一步利用苯甲酸鎂與鈣吸附在經ligand交聯的RuS表面上,兩者之Jsc皆比吸附LiTFSI得到更大幅度的提升,吸附苯甲酸鎂後效率值更達到2.66%,照光交流阻抗分析中介面電阻比未吸附下降許多,也證實具有改良介面之效。再利用乙醯丙酮鎂、鈣、鋇吸附在ligand上作成元件,其中吸附乙醯丙酮鎂能得到最大的效率2.82%,交流阻抗中介面電阻也比吸附苯甲酸鎂小。最後以螢光光譜數據分析經交聯ligand的RuS吸附離子後放光能力下降,證明吸附的離子能加速被激發染料的電荷再生速率,FTIR光譜結果也說明吸附離子後會使未吸附二氧化鈦表面之羧酸基訊號產生紅位移,同時使雙吡啶官能基訊號增強,表示吸附離子確實產生鍵結並改善RuS與固態電解質間的介面相容性。 | zh_TW |
dc.description.abstract | In this study the crosslinkable ruthenium complex with styryl groups, denoted as RuS, was synthesized and characterized and applied to solid-state dye sensitized solar cell. The resulting open circuit voltage (Voc) and short circuit current (Jsc) were substantially enhanced compared to N3 dye, but efficiency was only 1.24% due to large interface resistence, leading to lower filled factor. After optimizing the thickness of titanium oxide to 1.7µm, the efficiency was slightly increased to 1.49%. To improve the interface, 4,4’-Bis((4-vinylbenzyloxy)methyl)-2,2'-bipyridine (BVP) ligand was introduced to crosslink with RuS. The crosslinked dye which attached on titanium oxide was more sustainable according to the desorption test. The efficiency rose to 2.12% with enhancement of all the photovoltaic properteis. Then the compounds which consist of Li+ and EMI+ were adsorbed onto the BVP-crosslinked RuS. The efficiency increased to 2.55% as LiTFSI was adsorbed. Not only Voc and Jsc increased, but the interfacial resistence in light condition dramatically decreased. Next, magnesium benzonate and calcium benzonate were individually adsorbed onto the BVP-crosslinked RuS. Both of them could increase the device efficiency, especially for magnesium benzonate. The efficiency was up to 2.66. It is owing to the interface resistence drastically decreased compared to the unadsorbed device. After that, magnesium, calcium and barium acetylacetonate salts were individually adsorbed onto the BVP-crosslinked RuS. By using the optimized amounts of magnesium acetylacetonate, efficiency raised to 2.82%. Compared to magnesium benzonate, the interface resistence with magnesium acetylacetonate was even smaller. Finally, the PL spectra showed that the adsorbed ion could acclerate dye regenegation in view of the decreased PL intensity of dye. IR spectra also showed that the carboxylate signal of RuS became red shift and bpyridine signal enhanced. This results indicated that the ions indeed had the strong interactions with BVP-crosslinked RuS and improved the compatibility between RuS and solid-state electrolyte. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:27:00Z (GMT). No. of bitstreams: 1 ntu-104-R02527030-1.pdf: 5548914 bytes, checksum: a2486536035b33b05d1616b73581a38b (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書 # 誌謝 i 摘要 iii Abstract iv 目錄 vi 圖目錄 x 表目錄 xv Chapter 1 緒論 1 1.1 背景 1 1.1.1 有機高分子太陽能電池 3 1.1.2 染料敏化太陽能電池 4 1.2 太陽光模擬光源與量測 5 1.2.1 太陽光模擬光源 5 1.2.2 太陽能電池光電轉換效率的計算 7 Chapter 2 文獻回顧與研究目的 10 2.1 染料敏化太陽能電池 10 2.2 染料敏化太陽能電池工作原理 10 2.3 光敏化劑 13 2.4 透明導電基板 20 2.5 工作電極 20 2.6 電解質 24 2.6.1 液態電解質 24 2.6.2 離子液體 26 2.6.3 膠態電解質 27 2.6.4 固態電解質 27 2.7 對電極 30 2.8 交流阻抗(AC-impedence) 分析原理 31 2.9 照光強度調制光電壓與光電流圖譜 (Intensity Modulated Photovoltage and Photocurrent Spectroscopy,IMVS/IMPS) 34 2.10 開環電壓衰退的瞬態(open-circuit potential decay transients)與電量收集 (charge extraction)之量測 36 2.11 實驗動機與架構 37 Chapter 3 實驗設備與方法 39 3.1 實驗藥品 39 3.2 實驗儀器與設備 41 3.3 合成方法 42 3.3.1 合成 RuS 42 3.4 二氧化鈦鍍液製備 46 3.5 薄膜電極製備 47 3.5.1 導電玻璃之清洗 47 3.5.2 二氧化鈦緻密層(compact layer)製備 47 3.5.3 多孔性二氧化鈦電極 47 3.5.4 電洞傳輸層(Hole-transporting material, HTM)製備 48 3.5.5 對電極製備 48 3.5.6 量測樣品製備方法 48 3.5.7 太陽能電池光電化學測試 49 Chapter 4 結果與討論 52 4.1 RuS 52 4.1.1 RuS鑑定 52 4.2 未改質RuS之固態染料敏化太陽能電池元件分析 53 4.3 BVP ligand經交聯對RuS元件之影響 63 4.3.1 含有BVP ligand經交聯後之元件表現 67 4.3.2 含有BVP ligand經交聯並以正一價離子吸附之元件表現 74 4.3.3 含有BVP ligand經交聯並以含苯甲酸根之正二價離子吸附後元件表現 89 4.3.4 含有BVP ligand經交聯並以含乙醯丙酮根之正二價離子吸附後元件表現 101 4.3.5 比較經苯甲酸根和乙醯丙酮根之鎂離子吸附後元件表現 111 Chapter 5 結論 124 參考文獻 126 附錄 133 | |
dc.language.iso | zh-TW | |
dc.title | 以交聯劑及陽離子表面改質交聯型釕金屬染料強化固態染料敏化太陽能電池性能之研究 | zh_TW |
dc.title | Interface Engineering of Crosslinkable Ruthenium Complex with Its Ligand Crosslinker and Cations to Enhance the Performance of Solid-State Dye Sensitized Solar Cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 何國川,邱文英 | |
dc.subject.keyword | 染料敏化太陽能電池,可交聯型釕金屬染料,離子吸附, | zh_TW |
dc.subject.keyword | dye sensitized solar cell,crosslinkable ruthenium complex,ion absorption, | en |
dc.relation.page | 134 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-14 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 5.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。