請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52759完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅筱鳳(Hsiao-Feng Lo) | |
| dc.contributor.author | Chan-Chi Wang | en |
| dc.contributor.author | 王展麒 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:26:21Z | - |
| dc.date.available | 2020-09-25 | |
| dc.date.copyright | 2015-09-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-14 | |
| dc.identifier.citation | 于振文、梁曉芳、李延奇、王雪. 2007. 施鉀量與施鉀時期對小麥氮素和鉀吸收利用的影響. 應用生態學報 18(1):69-74. 王淑美、潘瑞熾. 2013. 植物生理學. 藝軒圖書出版社. 臺北. 中央氣象局.2013. 氣候統計. 2013. 03. 23. <http://www.cwb.gov.tw/V7/climate/monthlyData /mD.htm> 行政院農業委員會. 2014. 農業統計要覽(102年). 行政院農業委員會編印. 臺北. 日本全農技術中心. 1997. 蔡金川、李孟穎、蕭吉雄譯. 胡瓜栽培與營養、生理障害. 財團法人農友社會福利基金會編印. 高雄. 古在豐樹. 2011. 方煒譯. 太陽光型植物工廠. 財團法人豐年社. 臺北. 古在豐樹. 2012. 方煒譯. 人工光型植物工廠. 財團法人豐年社. 臺北. 林聖泉. 2003. 溫室結構設計. 設施栽培自動化專輯 11:93-101. 林瑞松. 2003. 設施栽培環境與作物生理. 設施栽培自動化專輯 11:11-50. 方煒. 2003. 設施栽培之降溫方法. 設施栽培自動化專輯 11:21-31. 方煒. 2003. 自動化植物工廠. 設施栽培自動化專輯 11:103-111. 林子凱、蕭吉雄. 2005. 臺灣農家要覽農作篇(二). 豐年社. 臺北. 林聖泉. 2003. 溫室結構設計. 設施栽培自動化專輯 11:93-101. 林瑞松. 2003. 設施栽培環境與作物生理. 設施栽培自動化專輯 11:11-50. 方煒. 2003. 設施栽培之降溫方法. 設施栽培自動化專輯 11:21-31. 方煒. 2003. 自動化植物工廠. 設施栽培自動化專輯 11:103-111. 艾希珍. 2003. 日光溫室黃瓜光能利用與光合效率調節機理的研究. 中國山東農業大學園藝學院博士論文. 中國. 何韻詩. 2004. 椰纖-泥炭土外的選擇. 彰化花卉博覽會花卉新科技海報展專刊 p. 87-88. 邱阿昌. 2009. 常見的果菜-小胡瓜. 園藝之友 132:36-40. 柯文祥. 1995. 臺灣農家要覽-可可椰子. 豐年社. P137-142. 高德錚. 2011. 果菜介質耕栽培技術. 農頁專業訓練講義. 蔬菜栽培. 行政院農業委員會台中區農業改良場. 臺中. 高辻正基. 2011. 方煒譯. 完全控制型植物工廠. 財團法人豐年社. 臺北. 倪禮賓. 2001. 小胡瓜有機栽培之肥培管理技術. 花蓮區農業專訊 37:19-20. 馮丁樹. 2003. 溫網室設備之發展現況. 2015. 06. 11 http://www.bime.ntu.edu.tw/~dsfon/AgriAutomation/greenhouse.htm 陳仁炫. 1991. 土壤管理手冊. 國立中興大學土壤調查試驗中心. p.199-251. 陳鴻堂、吳景和、紀秋來、王銀波. 1994. 本省中部地區設施內土壤鹽分累積調查研究. 台中區農業改良場研究彙報. 45:19-26. 張振賢、周緒元、陳利平. 1997. 主要蔬菜作物光合與蒸騰特性研究. 園藝學報2:155-160. 張榮銑、方志偉. 1994. 不同夜間濕度對小麥旗葉光合作用和單株產量的影響. 作物學報20(6):710-715. 張祖亮. 2003. 設施栽培環境監測與控制. 設施栽培自動化專輯 11:1-20. 張竹青、魯劍巍、孫向陽. 2007. 氮鉀配合施用對桑樹和桑葉產量之影響. 貴州農業科學. 35(2): 65-66. 張耿衡. 2011. 栽培介質及營養管理對火鶴花生育之影響. 臺灣大學農業化學研究所博士論文. 臺北. 張師竹. 2012. 國際瓜果類蔬菜種苗市場概況. 種苗科技暨產業發展研討會專輯. 台南區農業改良場編印. p. 1-21. 臺南. 郭孚燿、吳世偉.1998. 蔬菜設施栽培連作問題及病蟲害管理. 設施園藝研討會專輯. 鳳山熱帶園藝試驗所編印. p. 17-18. 高雄 郭孚燿、張粲如、廖芳心. 2003. 蔬菜實用設施栽培技術. 設施園藝技術第五版. 財團法人豐年社. 臺北. 黃裕銘、陳建中、吳正宗. 2003. 養液氮鉀比及夜間停止養液供應對小白菜生長及養分吸收之影響. 農林學報 52:61-67. 楊文振. 1995. 不同疏果方式對大胡瓜品質及產量之影響. 高雄區農業改良場彙報. 高雄區農業改良場編印. p. 25-34. 高雄. 謝景、劉厚誠、宋世威、孫光聞、陳日遠. 2013. 側面補光對溫室黃瓜(Cucumis sativus L. cv. Shenchun) 果實生長和品質的影響. 瀋陽農業大學學報. 44(5):616-621 謝明憲. 2001. 花胡瓜設施栽培. 臺南區農業專訊. 台南區農業改良場編印. p. 4-10. 臺南 曹幸之、羅筱鳳. 2002. 蔬菜(Ⅱ). 復文書局. p. 140-142. 臺北. 齊文隆. 2000. 胡瓜栽培管理. 苗栗區農業改良場彙報. 苗栗區農業改良場編印. 苗栗. 蔡尚光. 1995. 設施洋香瓜與胡瓜的高品質生產. 淑馨出版社. 臺北. 廖偉順. 2013. 設施小胡瓜椰纖調配介質與養液之開發. 國立臺灣大學園藝學研究所碩士論文. 臺北 劉敏莉. 2008. 小胡瓜種原分類及利用潛力. 高雄區農業專訊 66:8-9. 龍韻存、陳忠益、謝曉澐、張志鵬. 2010. 椰纖應用於無土栽培介質之研究. 華岡紡織期刊17:249-255. 戴振洋、蔡宜峰. 2014. 椰纖介質容量對設施番茄生育之影響. 臺中區農業改良場研究彙報123: 1-9. Abad, M.F., C. Carrion, and V. Noguera. 2005. Physical properties of various coconut coir dust compared to peat. HortScience. 7:2138-2144. Arenas, M., C.S. J.A. Vavrina, E.A. Cornell, and G.J. Hochmuth. 2002. Coir as an alternative to peat in meadia for tomato plant production. Hortsci. 37:309-312. Asao, T., M. Umeyama, K. Ohta, T. Hosoki, N. Ito, and H. Ueda. 1998. Decrease of yield of cucumber by non-renewal of the nutrient hydroponic solution and its reversal by supplementation of activated charcoal. J. Jap. Soc. Hort. 67:99-105. Aghili, F., A.H. Khoshgoftarmanesh, M. Afyuni, and M. Mobli. 2012. Mineral and ascorbic acid concentrations of greenhouse and field grown vegetable:implications for human health. Intl. J. Veg. Sci. 18:64-77. Bakker, J.C. and J. V. D. Vooren. 1985. Stem fruit thinning of greenhouse cucumber. Acta Hort. 156:49-52. Blom, T.J. and F.J. Ingratta. 1984. The effect of high pressure sodium lighting on the production of tomatoes, cucumbers and roses. Acta Hort. 148:905-914. Blain, J., A. Gosselin, M. J. Trudel. 1986. Influence of HPS supplementary on growth and yield of greenhouse cucumbers HortScience 22:38-38. Blevins D.G., A.J. Hiatt, R.H. Lowe, and J.E. Leggett. 1978. Influence of K+ on the uptake, translocation, and reduction of nitrite bt barley seeldings. Agro. J. 70: 393-396. Buchanan, B.B., W. Gruissem, and R.L. Jones. 2000. Biochemistry and molecular biology of plants. P. 787-789. Constable G. A. and H. M. Rawson. 1980. Effect of leaf position, expansion and age on photosynthesis, transpiration and water use efficiency in cotton. Austral. J. of Plant Physiol. 7: 89-100. Chiapusio, G., V. E. J. Jassey, M. I. Hussain, and P. Binet. 2013. Evidences of bryophyte allelochemical interactions: the case of sphagnum. Allelopathy. In: A. Cheema and M. Farooq (eds). Spriger. p. 39-54. London. Dai. J., S. Liu, W. Zhang, R. Xu, W. Luo, S. Zhang, X. Yin, L. Han, and W. Chen. 2011. Quantifying the effects of nitrogen on fruit growth and yield of cucumber crop in greenhouse. Sci. Hort. 130:551-561. Doman, D.C. and D.R. Geiger. 1979. Effect of exogenously supplied potassium on phloem loading in Beta vulgaris L. Plant Physiol. 64:528-533. Delfine, S., F. Loreto, and A. Alvino. 2001. Drought-stress effects onphysiology, growth and biomass production of rainfed and irrigated bellpepper plants in the Mediterranean region. J. Amer. Soc. Hort. Sci. 126:297-304. Evans, M.R., S. Konduru,and R.H. Stamps. 1996. Source variation in physical and chemical properties of coconut coir dust. Hortsci. 31:965-967. Fork, D.C.. 1986. The control by state transitions of the distributions of excitation energy in photosynthesis. Annu. Rev. Plant Physiol. 37:335-361. Förster, J.C. and W.D. Jeschke. 1993. Effect of potassium withdrawal on nitrate transport and on contribution of the root to nitrate reduction in the whole plant. J. Plant Physiol. 141:322-328. Gobeil, G. and A. Gosselin. 1990. Influence of Pruning and season on productivity of Cucumber Plants Grown in a Sequence Cropping system. Scientia Hort. 41:189-200. Hammett, L.K., C,H, Miller, W.H. Swallow, and C. Harden. 1984. Influence of N source, N rate, and K rate on yield and mineral concentration of sweet potato. J. Amer. Soc. Hort. Sci. 109:294-298. Hao, X. and A.P. Papadopoulos. 1999. Effects of supplemental lighting and cover materials on growth, photosynthesis, biomass partitioning, early yield and quality of greenhouse cucumber. Sci. Hortic. 80:1-18. Hao, X. J.M. Zheng and C. Little. 2012. LED inter-lighting in year-round greenhouse mini-cucumber production. Acta Hort. 956:335-340. Hikosaka K., I. Terashima, S. Katoh. 1994.Effect of leaf age, nitrogen nutrition and photo flux density on the distribution of nitrogen among leaves of a vine grown horizontally to avoid mutual shading of leaves. Ocologia. 97: 451-457. Hikosaka K., I. Terashima. 1995. A model of the acclimation of photosynthesis in leaves of C3 plants to sun and shade with respect to nitrogen use. Plant cell Eviron. 18: 605. Hikosaka K. 1996. Effects of leaf age, nitrogen nutrition and photon flux density on the organization of the photosynthetic apparatus in leaves of a vine (Ipomioea tricolor Cav.) grown horizontally to avoid matual shading of leaves. Plant Springer-Verlag 198:144-150. Hogewoning, S.W., G. Trouwborst, H. Maljaars, H. Poorter, W.V. Ieperen, and J. Harbinson. 2010. Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Expt. Bot. 61:3107-3117. Hovi, T., J. Naぴkkilaぴ, R. Tahvonen. 2004. Interlighting improves productivity of year-round cucumber. Sci. Hortic. 102, 283–294. Inokuchi, R., K.I. Kuma, T. Miyata, and M. Okada. 2002. Nitrogen-assimilating enzymes in land plants and algae: phylogenic and physiological perspectives. Physiol. Plantarum. 116:1-11. Kano, Y. and H. Goto. 2003. Relationship between the occurrence of bitter fruit in cucumber (cucumis sativus L.) and the contents of total nitrogen, amino acid nitrogen, protein and HMG-CoA reductase activity. Sci. Hort. 98:1-8. Kreij, C.D., G.J.L. Leeuwen. 2001. Growth of pot plants in treated coir dust as compared to peat. Commun. Soil Sci. Plant Analysis 32:13-14. Koocheki J., B. Lalegani, and S.A. Hosseini. 2013. Ecological consequences of allelopathy. In: A. Cheema and M. Farooq (eds). Spriger. p. 25-38. London. Khayyat, M., E. Tafazoli, S. Eshghi, M. Rahemi, and S. Rajaee. 2007. Salinity, supplementary calcium and potassium effect on fruit yield and quality of strawberry (Fragaria ananassa Duch.). Amer. Eurasian J. Agric Environ. Sci. 2:539-544. Lam, H.M., K.T. Coschigano, I.C. Oliveira, R. Melo-Oliveira and G.M. Coruzzi. 1996. The molecular-genetics of nitrogen assimilation into amino acid in higher plant. Annl. Rev. Plant Physiol. Plant Mol. Biol. 47:569-593. Lin, W.C. and P.A. Jolliffe. 1996. Light intensity and spectral quality affect fruit growth and shelf lift of greenhouse-grown long English cucumber. J. Ameri. Society Hort. Sci. 121(6):1168–1173. Lin D., D. Huang, and S. Wang. 2004. Effects of potassium levels on fruit quality of muskmelon in soilless medium culture. Sci. Hort. 102:53-60. Liebig, H.P. 1981. A growth model to predict yield and economical figures of the cucumber crop. Acta Horticu. 118:165-174. Lee, S.K. and A.K. Adel. 2000. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Tech. 20:207–220. Lester, G.E., J.L. Jifon and G. Rogers. 2005. Supplemental foliar potassium application during muskmelon fruit development can improve fruit quality, ascorbic acid, and beta-carotene contents. J. Ameri. Soc. Soi. 130:649-653. Ma, Y. and D. Nichols. 2004. Phytotoxicity and detoxification of fresh coir dust and coconut shell. Commun. Soil Sci. Plant Analysis 35:205-218. Marti, H.R. and H.A. Mills. 2002. Nitrogen and potassium nutrition affect yield, dry weight partitioning, and nutrient-use efficiency of sweet potato. Commun. Soil Sci. Plant Anal. 33:287-301. Marcelis, L.F.M., E. Heuvelink, and A.N.M. De Koning. 1989. Dynamic simulation of dry matter distribution in greenhouse crops. Acta Hortic. 248: 269-276. Marcelis, L.F.M.. 1992. The dynamics of growth and dry matter distribution in cucumber. Ann. Bot. 69: 487-492. Mareelis, L.F.M., 1993. Fruit growth and biomass allocation to the fruits in cucumber. 1. Effect of fruit load and temperature. Scientia Hort. 54:107-121. Marcelis, L.F.M. 1996. Fruit growth and dry matter partitioning in cucumber. Thesis Wageningen, The Netherlands. Marschner, H. 1995. Mineral nutrition of higher plants. Second edition. Academic. N.Y. p.299-312. Mengel, K. and D.J. Pilbeam. 1992. Proceedings of the phtochemical society of Europe 33:Nitrogen Matabolism of Plants. Oxford Scirnce Publication. New York. Morvant, J.k., J.M. Dole, and E. Allen. 1997. Irrigation system alter distribution of roots soluble salts, nitrogen, and pH in the root medium. HortTechnology(2):56-160. Norrie, J. M.E.D. Graham, J. Charbonneau, and A. Gosselin. 1994. Impact of irrigation management of greenhouse tomato: yield, nutrition, and salinity of peat substrate. Can J. Plant Sci. 74:497-503. Peil, R.M. and J. López-Gálvez. 2002. Effect of Fruit Removal on Growth and Biomass Partitioning in Cucumber. Acta Hort. 588:69-74. Pettigrew, W.T. 2008. Pottasium influences on yield and quality production for maiz, weat, soybean and cotton. Physiol. Plant 133:670-681. Pettersen, R.I., S. Torre, H. R. Gisler?d. 2010. Effects of intracanopy lighting on photosynthetic characteristics in cucumber. Scientia Hort. 125:77-81 Pettersen, R.I., S. Torre, H. R. Gisler?d. 2010. Effects of leaf aging and light duration on photosynthetic characteristics in a cucumber canopy. Scientia Hort. 125:82-87. Pekkanen, T.H., R. Tahvonen. 2008. Effects of interlighting on yield and external fruit quality in year-round cultivated cucumber. ScientiaHort. 116:152-161. Ramirez, D.R., C. Johnson, and C.H. Miller. 1988. Growth analysis of 3 cucumber lines differing in plant habit. HortSci. 23: 145-148. Robbins, N.S. and D.M. Pharr. 1987. Regulation of Photosynthetic Carbon Metabolism in Cucumber. Plant Physiol. 85:592-597. Rossta, H.R. and J.K. Schjoerring. 2007. Effect of ammoniun toxicity on nitrogen metabolism and elemental profile of cucumber plants. J. Plant Nutr. 30:1933-1951. Ruiz, J.M., D.A. Moreno, and L. Romero. 1999. Pyruvate kinase activity as an indicator of the level of K+, Mg2+, and Ca2+ in leaves and fruits of the cucumber: the role of potassium fertilization. J. Agric. Food Chem. 47:845-849. Ruiz, J.M., R.M. Rivero, P.C. García, M. Baghour and L. Romero. 1999. Role of CaCl2 in nitrate assimilation in leaves and root of tobacco plants (Nicotiana tabacum L.). Plant Sci. 141:107-115. Ruiz J.M., D.A. Morero, G. Villora, J. Olivares, P.C. Garcia, J. Hernandez and L. Romero. 2000b. Nitrogen and phosphorus metabolism and yield of capsicum plant in response to increase in NK fertilization. Commun. Soil Sci. Plant Anal. 31:2345-2357. Ruiz J.M. and L. Romero. 2002. Relationship between potassium fertilization and nitrate assimilation in leaves and fruits of cucumber (Cucumis sativus) plants. Ann. Appl. Biol. 140:241-245. Sisson, S.A., T.W. Rufty, R.E. Williamson. 1991. Nitrogen- use efficiency among flue-cured tobacco genotypes. Crop Sci. 31:1615-1620. Schapendonk, A.H.C.M. and P. Brouwer. 1984. Fruit growth of cucumber in relation to assimilate supply and sink activity. Scientia Hortic. 23:21-33. supply and sink activity. Scientia Hortic., 23:21-33. Stevenson Richard,. 2009. The LED’s Dark Secret. IEEE Spectrum. 2015.06.12 < http://spectrum.ieee.org/semiconductors/optoelectronics/the-leds-dark-secret> Savvides, A., D. Fanourakis, and W.V. Ieperen. 2012. Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves. J. Expt. Bot. 63:1135-1143. Stokes, D.A. and G.H. Tinley. 1981. Thermal screen and growing media investigations. Acta Hort. 118:135-148. Stratton, M.L., G.L. Good, and A.V. Barker. 2002. Effect of different nitrogen sources and concentration on the growth and mineral composition of privet. J. Plant Nutri. 24(11):1745-1772. Taiz L., E. Zeiger. 2010. Plant Physiology. 5th ed. Sunderland: Sinauer Associates Inc. Tanemura, R., H. Kurashima, N. Ohtake, K. Sueyoshi, and T. Ohyama. 2008. Asorption and translocation of nitrogen in cucumber (Cucumis sativus L.) plants using the 15N tracer technique. Soil Sci. Plant Nutr. 54:108-117. Takeuchi, Y., S. Kawaguchi, and K.Yoneyama. 2001. Inhibitory and promotive allelopathy in rice (Oryza sativa L.) Weed Biol. Manag. 1:147-156. Yu, J.Q. and Y. Matsui. 1994. Phytotoxic substances in root exudates of cucumber (Cucumis sativus L.). J. Chem. Ecol. 20:21-31 Yu, J.Q. and Y. Matsui. 1997. Effects of root exudates of cucumber (Cucumis sativus L.) and allelochemicals on ion uptake by cucumber seedling. J. Chem. Ecol. 23:817-827. Yu. J.Q., S.F. Ye, M.F. Zhang, and W.H. Hu. 2003. Effect of root exudates and aqueous root extractso of cucumber (Cucumis sativus L.) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem. Syst. Ecol. 31:129-139. Yu. J.Q., S.Y. Shou, Y.R. Qian, Z.J. Zhu, and W.H. Hu. 2000. Autotoxitic potential of cucurbit crops. Plant and soil 223:147-151. Trouwborst G., J. Oosterkamp, S. W. Hogewoning, J. Harbinson. 2010 The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy. Physio. Plant. 138:289-300. Turcotte G., A. Gosselin. 1989. Influence of continuous and discontinuous supplemental lighting on the daily variation in gaseous exchange in greenhouse cucumber. ScientiaHort. 40:9-22. Usherwood, N.R. 1985. The role of potassium in crop quality. Potassium in Agriculture. Amer. Soc. Agron. p. 489-513 Wang, H., M. Gu, J. Cui, K. Shi, Y.H. Zhou, and J.Q. Yu. 2009. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of calvin cycle genes and carbohydrate accumulation in Cucumis sativus. J. Photochem. Photobiol. B Biol. 96: 30-37. Wolff, S.A., A., Langerud. 2006. Fruit yield, starch content and leaf chlorosis in cucumber exposed to continuous lighting. European J. Hort. Sci. 71(6):259–261. Wilcox, G. E., J. R. Magalhaes, and F. L. I. M. Silva. 1985. Ammonium and nitrate concentration as factors in tomato growth and nutrient uptake. J. Plant Nutri. 8: 989-998. Zhou, Y.H., Y.L. Zhang, X.M. Wang, J.X. Cui, X.J. Xia, K. Shi, and J.Q. Yu. 2011. Effects of nitrogen form on growth, CO2 assimilation, chlorophyll fluorescence, and photosynthetic electron allocation in cucumber and rice. J. Zhejiang Univ. Sci. 12:126-134. Zhang, F., Z. Zhua, X. Yang, W. Ran, and Q.shen. 2013. Tricoderma Harzianum T-E5 significantly affects cucumber root exudates and fungal community in the cucumber rhizosphere. Appl. Soil Ecol. 72:41-48. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52759 | - |
| dc.description.abstract | 臺灣北部冬季因受東北季風影響,低溫陰雨連綿,日照時數低,影響設施小胡瓜之生長勢與產量,側面補光可改善其光度不足問題。適當的整枝留果可使莖葉呈最適配置,提高有限面積內之生產效率。小胡瓜於採收後期易有葉片缺鉀及落果情形,施用適當濃度之氮鉀養液可使營養生長及生殖生長達到平衡。本研究探討臺灣北部設施冬作小胡瓜適當之補光、整枝留果方法及養液氮鉀濃度,期可提高產量與品質。 小胡瓜‘秀秀’冬作栽培於臺灣大學太陽光人工光併用型植物工場,利用新調製椰纖屑及第五次使用之調製椰纖屑為栽培介質,在光強度低於30 µmol•m-2•s-1時,以T5燈(Wellypower, FH 28W/865)於側面補光至光強度250 µmol•m-2•s-1及維持光週期14 h/10 h,並以不補光為對照組。相較於不補光者,補光可增加果實頸部與中央果徑,並提高可溶性固形物濃度。補光-新椰纖屑處理比第五次使用之椰纖屑者可提早10天採收,其單株果重935.7 g、單株果數7.6條及果實抗壞血酸含量74.4 µg•g-1最高。另於臺大農業試驗場園藝分場溫網室,亦以新調製及第五次使用之椰纖屑為栽培介質;單株果重、單株果數及單果重於兩介質間無顯著差異;但以新椰纖屑種植之果實抗壞血酸含量123.7 µg•g-1高於第五次使用之椰纖屑者。 春作小胡瓜‘秀秀’以第二次使用之調製椰纖屑為栽培介質,定植於併用型植物工場及溫網室,皆未補光,子蔓留1果或2果,共四處理。栽培期間溫網室內之光強度較併用型植物工場高,故單株果重980 g、單株果數5.3條及果徑3.4 cm皆較併用型植物工場高。兩留果方式之單株果數及單株果重間皆無顯著差異,但留1果處理之果長23.3 cm大於留2果者。 秋作小胡瓜‘秀秀’定植於併用型植物工場,於營養生長期先以N300K240養液栽培,在營養生長與生殖生長同步期間,施用N400K500、N600K750及N800K1000三種氮鉀濃度養液,並搭配除子蔓、子蔓留1果及子蔓留2果三種整枝留果方式,共九種處理;單株果重及單株果數以N600K750-留2果者最高,分別為733 g及8.8條。另亦於溫網室進行上述9種處理,單株果重及單株果數則以N600K750-留1果及N600K750-留2果最佳,分別為532 g、7條及533 g、6.7條。 冬作小胡瓜‘秀秀’於營養生長期先施用N300K240養液栽培,在營養生長與生殖生長同步期間,以N600K750養液及子蔓留2果方式栽培,種植於併用型植物工場,在光強度低於30 µmol•m-2•s-1時,以T5燈於植株兩側或單側補光至光強度250 µmol•m-2•s-1及維持光週期14 h/10 h,並以不補光為對照組。另於溫網室以相同施肥及留果方式做不補光處理。溫網室不補光處理組因栽培期間均溫僅18℃,生長慢、植株最矮、產量最低,但果實可溶性固形物濃度較併用型植物工場高。併用型植物工場不補光處理組,莖徑僅3.5 mm,其徒長、植株最高。併用型植物工場補光組之葉數、莖徑、SPAD-502 value皆最佳;而雙面補光組之單株果數、單株果重、果重、果頸徑、果尾徑及抗壞血酸含量皆為顯著最高,比植物工場不補光及溫網室不補光者,分別提早10天及20天採收。 故於臺灣北部設施內,以調製椰纖屑栽培小胡瓜‘秀秀’,於營養生長期先以N300K240養液栽培,在營養生長與生殖生長同步期改施N600K750養液,於母蔓第五節以上每節留1果,每節子蔓留2果。若於冬季栽培,當光強度小於30 µmol•m-2•s-1時,以T5螢光燈於植株兩側補光至250 µmol•m-2•s-1,並維持光週期14 h/10 h,可達最佳單株果重1222 g、單株果數13條及果實抗壞血酸含量87.3 µg•g-1。 | zh_TW |
| dc.description.abstract | In winter of northern Taiwan, northeast monsoon results in low temperature, frequent rains and low sunshine hours which limit the growth vigor and yield of cucumber in protected structures. Supplemental interlighting could increase low light intensity. Proper fruit thinning could reach optimal arrangement of shoots and increase productive efficiency in limited area. Optimal concentrations of nitrogen and potassium in nutrient solution could balance the vegetative and reproductive growth, and prevent potassium deficiency and fruit abortion in the late stage of harvest. This research aimed to study the optimal supplemental interlighting, fruit thinning method and concentrations of nitrogen and potassium in nutrient solution in winter to increase the yield and quality of cucumber grown in protected structures in northern Taiwan. In the sunlight and artificial light type plant factory in winter at National Taiwan University, cucumber ‘Shioushiou’ was cultivated in new and the 5th-time reused ‘treated coir’, and supplementally interlighted with T5 fluorescent (Wellypower, FH 28W/865) to light intensity 250 µmol•m-2•s-1 and photoperiod 14 h/10 h or no interlighted. Neck and central width and soluble solid content in fruits of plants grown with supplemental interlighting were also higher than those without supplemental interlighting. Cucumbers grown in new treated coir with supplemental interlighting could be harvested 10 days earlier than those in the 5th-time reused treated coir, with highest fruit weight and number per plant (935.7 g and 7.6), and fruit ascorbic acid content (74.4 µg•g-1). ‘Shioushiou’ was also cultivated in new and 5th-time reused treated coir without supplemental interlighting in the greenhouse. The kind of treated coir did not affect fruit weight and number per plant and weight per fruit. The fruit ascorbic acid content (123.7 µg•g-1) from new treated coir was higher than that from the 5th-time reused treated coir. Cucumber ‘Shioushiou’ plants were cultivated in the 2nd-time reused treated coir and thinned to 1 or 2 fruits remained on the secondary suckers both in plant factory and greenhouse in spring, totally 4 treatment. Because of the higher light intensity in the greenhouse, the fruit weight and number per plant (980 g and 5.3) and fruit diameter (3.4 cm) were higher than those in the plant factory. The method of fruit thinning did not significantly affect fruit weight and number per plant. However, in 1 fruit remained treatment, the fruits were longer than those in 2 fruits remained treatment. Cucumber ‘Shioushiou’ was cultivated with N300K240 in vegetative stage, d N400K500, N600K750 and N800K1000 nutrient solution in synchronical stage of vegetative and reproductive growth, and 0, 1 or 2 fruits remained on the secondary suckers in plant factory in autumn. The highest fruit weight and number per plant (733.1 g and 8.8) were shown in N600K750-2 fruits treatment. ‘Shioushiou’ was also cultivated with the same 3 nutrient solutions and 3 fruit thinning methods in the greenhouse. The highest fruit weight and number per plant were exhibited in N600K750-1 fruit (532 g, 7) and N600K750-2 fruits (533 g, 6.7) treatment. In winter, cucumber ‘Shioushiou’ was cultivated with N300K240 nutrient solution in vegetative stage, N600K750 nutrient solution in synchronical stage of vegetative and reproductive growth, and 2 fruits remained on the secondary suckers. No, double-sided and single-sided supplemental interlighting were treated, when light intensity was below 30 µmol•m-2•s-1, supplemental interlighting with T5 fluorescent to light intensity 250 µmol•m-2•s-1 and photoperiod 14 h/10 h in the plant factory, and no supplemental interlighting were treated in the greenhouse. The low tempertature (18℃) in the greenhouse during cultivation resulting in slow growth, hence the shortest stem and the lowest yield in no supplemental interlighting treatment, but soluble solid content was higher than those in plant factory. The stem diameter was only 3.5 mm in plants grown in plant factory without supplemental interlighting resulting These plants were the most slender and the highest stem. Leaf number, stem width and SPAD-502 value in plants grown with supplemental interlighting in plant factory were the highest. The highest fruit weight and number per plant, fresh weight per fruit, neck and central width and ascorbic acid content were exhibited in fruits from double-sided supplemental interlighting treatment and could be harvested 10 days earlier than no supplemental interlighting treatment in plant factory and 20 days earlier than no supplemental interlighting treatment in greenhouse. In conclusion, in the protected structure in northern Taiwan, it is suggested cucumbers ‘Shioushiou’ planted in treated coir, with N300K240 nutrient solution in vegetative stage, N600K750 in synchronical stage of vegetative and reproductive growth, and 1 or 2 fruit(s) remained per sucker above the fifth node. In winter, supplemental interlighting with T5 fluorescent to light intensity 250 µmol•m-2•s-1 and photoperiod 14 h/10 h, the best fruit weight (1222 g) and number (13) per plant and ascorbic acid content (87.3 µg•g-1) of cucumber could be obtained in protected strutures in northern Taiwan. Index words: supplemental interlighting, treated coir fiber dust, pruning, fruit thinning, nitrogen, potassium, nutrient solution culture. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:26:21Z (GMT). No. of bitstreams: 1 ntu-104-R02628103-1.pdf: 4193340 bytes, checksum: 01ec894bae3d59ce410eef9fbae7346f (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 摘要 IV ABSTRACT VI 目錄 IX 表目錄 XII 圖目錄 XV 附錄目錄 XVI 壹、前言 17 貳、前人研究 19 一、胡瓜概述 19 二、設施栽培 20 (一)設施栽培之定義 20 (二)設施栽培之分類 21 (三)臺灣設施栽培之重要性 23 三、小胡瓜光合作用特性 23 (一)光飽和點及光補償點 23 (二)光週期 24 (三)光質 24 四、補光對小胡瓜生育及產量品質之影響 25 (一)補光光源之種類 25 (二)補光方式對胡瓜生育及產量之影響 26 五、胡瓜整枝留果方式對產量之影響 27 六、椰纖屑之利用 28 七、氮鉀元素對胡瓜生育及產量品質之影響 28 (一)氮對小胡瓜生育及產量品質之影響 28 (二)鉀對小胡瓜生育及產量品質之影響 30 (三)氮鉀間交互關係 30 参、材料與方法 32 試驗一、補光與新舊椰纖屑對設施冬作小胡瓜‘秀秀’產量與品質之影響 37 試驗二、留果方式對設施春作小胡瓜‘秀秀’產量與品質之影響 38 試驗三、養液氮鉀濃度與留果方式對設施秋作小胡瓜‘秀秀’產量與品質之影響 39 試驗四、補光對設施冬作小胡瓜‘秀秀’產量與品質之影響 41 肆、結果 42 試驗一、補光與新舊椰纖屑對設施冬作小胡瓜‘秀秀’產量與品質之影響 42 一、補光與新舊椰纖屑對設施冬作小胡瓜‘秀秀’生長之影響 42 二、補光與新舊椰纖屑對設施冬作小胡瓜‘秀秀’產量之影響 45 三、補光與新舊椰纖屑對設施冬作小胡瓜‘秀秀’可銷售果實品質之影響 47 試驗二、留果方式對設施春作小胡瓜‘秀秀’產量與品質之影響 48 一、留果方式對設施春作小胡瓜‘秀秀’生長之影響 48 二、留果方式對設施春作小胡瓜‘秀秀’產量之影響 50 三、留果方式對設施春作小胡瓜‘秀秀’可銷售果實品質之影響 50 試驗三、養液氮鉀濃度與留果方式對設施秋作小胡瓜‘秀秀’產量與品質之影響 51 一、養液氮鉀濃度與留果方式對設施秋作小胡瓜‘秀秀’生長之影響 51 二、養液氮鉀濃度與留果方式對設施秋作小胡瓜‘秀秀’產量之影響 52 三、養液氮鉀濃度與留果方式對設施秋作小胡瓜‘秀秀’可銷售果品質之影響 53 試驗四、補光對設施冬作小胡瓜‘秀秀’產量與品質之影響 54 一、補光對設施冬作小胡瓜‘秀秀’生長之影響 54 二、補光對設施冬作小胡瓜‘秀秀’產量之影響 56 三、補光對設施冬作小胡瓜‘秀秀’可銷售果實品質之影響 57 伍、討論 58 一、補光與新舊椰纖屑對設施冬作小胡瓜‘秀秀’生長之影響 58 二、補光與新舊椰纖屑對設施冬作小胡瓜‘秀秀’產量及品質之影響 60 三、留果方式對設施春作小胡瓜‘秀秀’生長、產量及品質之影響 62 四、養液氮鉀濃度與留果方式對設施秋作小胡瓜‘秀秀’生長之影響 63 五、養液氮鉀濃度與留果方式對設施秋作小胡瓜‘秀秀’產量及品質之影響 63 六、補光對設施冬作小胡瓜‘秀秀’生長、產量及品質之影響 67 陸、結論 69 參考文獻 121 附錄 132 | |
| dc.language.iso | zh-TW | |
| dc.subject | 養液栽培 | zh_TW |
| dc.subject | 補光 | zh_TW |
| dc.subject | 鉀 | zh_TW |
| dc.subject | 氮 | zh_TW |
| dc.subject | 調配椰纖屑 | zh_TW |
| dc.subject | 整枝 | zh_TW |
| dc.subject | 留果 | zh_TW |
| dc.subject | fruit thinning | en |
| dc.subject | potassium | en |
| dc.subject | nitrogen | en |
| dc.subject | nutrient solution culture | en |
| dc.subject | treated coir fiber dust | en |
| dc.subject | Supplemental interlighting | en |
| dc.title | 臺灣北部設施栽培小胡瓜之研究 | zh_TW |
| dc.title | Study on Cucumber (Cucumis sativus L.) Cultivation in Protective Structures in Northern Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊雯如(Wen-Ju Yang),林淑怡(Shu-I Lin) | |
| dc.subject.keyword | 補光,調配椰纖屑,整枝,留果,氮,鉀,養液栽培, | zh_TW |
| dc.subject.keyword | Supplemental interlighting,treated coir fiber dust,fruit thinning,nitrogen,potassium,nutrient solution culture, | en |
| dc.relation.page | 140 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-14 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝學研究所 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 4.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
