請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52738完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林浩雄(Hao-Hsiung Lin) | |
| dc.contributor.author | Mu-Chi Liu | en |
| dc.contributor.author | 劉牧奇 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:25:27Z | - |
| dc.date.available | 2017-08-17 | |
| dc.date.copyright | 2015-08-17 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-14 | |
| dc.identifier.citation | [1] B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, M. G. Ancona, “Antimonide-based compound semiconductors for electronic devices: A review,” Solid-State Electronics, vol. 49, pp. 1875-1895, Sep. 2005.
[2] A. M. Ionescu, H. Riel, “Tunnel field-effect transistors as energy-efficient electronic switches,” Nature, vol. 479, pp. 329, Nov. 2011. [3] U. Singisetti, M. A. Wistey, G. J. Burek, A. K. Baraskar, B. J. Thibeault, A. C. Gossard, et al., “In0.53Ga0.47As channel MOSFETs with self-aligned InAs source/drain formed by MEE regrowth,” IEEE Electron Device Letters, vol. 30, no. 11, pp. 1128-1130, 2009. [4] K. E. Moselund, H. Schmid, C. Bessire, M. T. Bjork, H. Ghoneim, and H. Riel, “InAs-Si nanowire heterojuction tunnel FETs,” IEEE Electron Device Letters, vol. 33, no. 10, pp. 1453-1455, Oct. 2012. [5] J. A. del Alamo, “Nanometre-scale electronics with III-V compound semiconductors,” Nature, vol. 479, pp. 317-323, Nov 2011. [6] G. Stareev, H. Kunzel, and G. Dortmann, “A controllable mechanism of forming extremely low-resistance nonalloyed ohmic contacts to group III-V compound semiconductors,” Journal of Applied Physics, vol. 74, pp. 7344-7356, Dec. 1993. [7] R. Venkatasubramanian, D. L. Dorsey, and K. Mahalingam, “Heuristic rules for group IV dopant site selection in III-V compounds,” Journal of Crystal Growth, vol. 175, pp. 224-228, May 1997. [8] R. C. Newman, “Local Vibrational Mode Spectroscopy of Defects in III/V Compounds,” in Semiconductors and Semimetals, Vol. 38, New York: Academic Press, 1993, pp. 117-187. [9] H. Ono, and R. C. Newman, “The complexing of silicon impurities with point defects in plastically deformed and annealed GaAs,” Jounal of Applied Physics, vol. 66, pp. 141-145, July 1989. [10] S. D. Parker, R. L. Williams, R. Droopad, R. A. Stradling, K. W. J. Barnham, S. N. Holmes, et al., “Observation and control of the amphoteric behaviour of Si-doped InSb grown on GaAs by MBE,” Semiconductor Science and Technology, vol. 4, pp. 663-676, April 1989. [11] R. Addinall, R. Murray, R. C. Newmant, J. Wagner, S. D. Parker, R. L. Williams, et al., “Local vibrational mode spectroscopy of Si donors and Be acceptors in MBE InAs and InSb studied by infrared absorption and Raman scattering,” Semiconductor Science and Technology, vol. 6, pp. 147-154, Nov. 1991. [12] I. Tanaka, T. Mizoguchi, and T. Yamamoto, “XANES and ELNES in ceramic science,” Journal of the American Ceramic Society, vol. 88, no. 8, pp. 2013-2029, Aug. 2005. [13] H. Murata, T. Taniguchi, S. Hishita, T. Yamamoto, F. Oba, and I. Tanaka, “Local environment of silicon in cubic boron nitride,” Journal of Applied Physics, vol. 114, no. 23, pp. 233502, Dec. 2013. [14] 曾健順, “銻磷砷化銦與銻磷化銦之拉曼光譜與紅外線反射光譜研究”, 碩士論文, 國立台灣大學電子工程學研究所, 2010. [15] G. Bunker, Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy, 1st ed. New York: Cambridge University Press, 2010. [16] A. Mihelic, “XANES spectroscopy,” Dec. 2002. [Online]. Available: http://www.ung.si/~arcon/xas/xanes/xanes-theory.pdf. [Accessed: July 14, 2015] [17] M. Newville, Fundamentals of XAFS, Consortium for Advanced Radiation Sources, University of Chicago, Chicago, July 2004. [18] B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30000 eV, Z = 1-92,” Atomic Data and Nuclear Data Tables, vol. 54, pp. 181-324, July 1993. [19] J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, and K. Jorissen, “Parameter-free calculations of X-ray spectra with FEFF9,” Physical Chemistry Chemical Physics, vol. 12, no. 21, pp. 5503-5513, May 2010. [20] J. J. Rehr, A. Ankudinov, B. Ravel, and K. Jorissen, “User’s Guide, FEFF version 9.03,” Univesity of Washington, Seattle, Sep. 2009. [21] Y. Nishi, and R. Doering: Handbook of Semiconductor Manufacturing Technology, 2nd ed. U.S., CRC Press, 2007. [22] D. Haskel, FLUO: Correcting XANES for self-absorption in fluorescence measurements, University of Washington, Seattle, May 1999. [23] C. Kittel, Introduction to Solid State Physics, 8th ed. , Danvers, John Wiley & Sons, Inc., 2004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52738 | - |
| dc.description.abstract | 本論文研究主題為矽(Si)原子在以使用MBE生長的高濃度Si摻雜砷化銦(InAs)薄膜中的短距離結構。我們建立不同的Si原子短距離結構模型,並利用FEFF9軟體模擬各種短距離結構的Si K-edge的X光吸收近緣結構(X-ray absorption near edge structure, XANES)頻譜。藉由比對首次由實驗測得的高濃度Si摻雜InAs薄膜的Si K-edge XANES結果和模擬的圖形來推斷出Si原子的短距離結構。
我們發現在高濃度Si摻雜的InAs薄膜中,Si原子會取代In原子形成SiIn結構,與最鄰近的4個砷(As)原子的長度將縮減至2.230 A,並且帶有+0.5的等效電荷,形成n型摻雜雜質。Si原子取代As原子的短距離結構(SiAs)以及SiIn-SiAs成對摻雜的短距離結構不易出現在高濃度Si摻雜的InAs薄膜中。 | zh_TW |
| dc.description.abstract | We successfully measured the Si K-edge X-ray absorption near edge structure (XANES) spectra within the heavily Si doped InAs thin film grown by molecular beam epitaxy (MBE). By comparing the experiment results with the simulation spectrum of different local structures calculated by FEFF9 program, we realize the local structure of Si atoms within InAs.
Si atom tend to replace the In atom (SiIn) in heavily Si doped InAs, becoming an n-type dopant. The distances between SiIn and 4 nearest As atoms will shrink to 2.230 A, and the SiIn will be ionized by an effective charge of +0.5. The p-type dopant or pair diffusion local structures of Si atom are unlikely to appear in the heavily Si doped InAs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:25:27Z (GMT). No. of bitstreams: 1 ntu-104-R02941044-1.pdf: 3086076 bytes, checksum: 5b46b52b7819048efaa551516719c2e7 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目錄 iv 圖目錄 v 1. 序論 1 1.1. 研究背景與動機 1 1.2. 論文架構 2 2. 實驗原理與架構 4 2.1. 樣品生長 4 2.2. XAS原理與實驗步驟 4 2.2.1. XAS原理 4 2.2.2. XAS實驗步驟 6 2.3. FEFF9軟體模擬步驟 7 3. 實驗結果與討論 10 3.1. XAS實驗數據處理 10 3.2. FEFF9軟體能量校正 10 3.3. n型摻雜結構模擬測試 11 3.3.1. 以HL位能模擬n型摻雜結構 11 3.3.2. 以PN位能模擬n型摻雜結構 12 3.4. 不同SiIn結構模擬結果分析 12 3.4.1. 第一鄰近原子距離變化模擬結果分析 12 3.4.2. 等效電荷變化模擬分析 13 3.4.3. As原子空缺模擬分析 13 3.5. p型摻雜結構模擬測試 14 3.6. 不同SiAs結構模擬分析 14 3.7. SiIn-SiAs成對摻雜模擬分析 15 4. 結論 30 5. 參考文獻 31 | |
| dc.language.iso | zh-TW | |
| dc.subject | 砷化銦 | zh_TW |
| dc.subject | FEFF9 | zh_TW |
| dc.subject | 矽 | zh_TW |
| dc.subject | X光吸收近緣結構 | zh_TW |
| dc.subject | 短距離結構 | zh_TW |
| dc.subject | short-range structure | en |
| dc.subject | FEFF9 | en |
| dc.subject | Si | en |
| dc.subject | InAs | en |
| dc.subject | XANES | en |
| dc.title | 以X光吸收近緣結構分析矽在重度矽摻雜砷化銦中的短距離結構 | zh_TW |
| dc.title | Short-range structure of Si in heavily Si doped InAs studied by X-ray Absorption Near Edge Structure | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 馮哲川(Zhe-Chuan Feng),鄭舜仁(Shun-Jen Cheng) | |
| dc.subject.keyword | 矽,砷化銦,短距離結構,X光吸收近緣結構,FEFF9, | zh_TW |
| dc.subject.keyword | Si,InAs,short-range structure,XANES,FEFF9, | en |
| dc.relation.page | 32 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
