Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52701
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝文陽
dc.contributor.authorYu-Ting Yehen
dc.contributor.author葉宇庭zh_TW
dc.date.accessioned2021-06-15T16:23:54Z-
dc.date.available2016-09-03
dc.date.copyright2015-09-03
dc.date.issued2015
dc.date.submitted2015-08-14
dc.identifier.citation邵廣昭. (1999). 海洋生態學. 明文.
參考文獻
Akagi, Y., Taga, N., & Simidu, U. (1977). Isolation and distribution of oligotrophic
marine bacteria. Canadian journal of microbiology, 23(8), 981-987.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local
alignment search tool. Journal of molecular biology, 215(3), 403-410.
Austin, B. (1988). Marine microbiology. CUP Archive.
Baumann, L., Baumann, P., Mandel, M., & Allen, R. D. (1972). Taxonomy of aerobic
marine eubacteria. Journal of bacteriology, 110(1), 402-429.
Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J.,
& Sayers, E. W. (2013). GenBank. Nucleic acids research, 41(Database issue), D36-42.
Bernhardt, J., Völker, U., Völker, A., Antelmann, H., Schmid, R., Mach, H., & Hecker,
M. (1997). Specific and general stress proteins in Bacillus subtilis–a two-dimensional
protein electrophoresis study. Microbiology, 143(3), 999-1017.
Beumer, R. R., De Vries, J., & Rombouts, F. M. (1992). Campylobacter jejuni non-
culturable coccoid cells. International journal of food microbiology, 15(1), 153-163.
Bruns, A., & Berthe-Corti, L. (1999). Fundibacter jadensis gen. nov., sp. nov., a new
slightly halophilic bacterium, isolated from intertidal sediment. International journal of
systematic bacteriology, 49(2), 441-448.
Cappello, S., Denaro, R., Giuliano, L., & Yakimov, M. M. (2008). Persistence
ofAlteromonas genus during a long-term starvation in a marine microcosm.Annals of
microbiology, 58(1), 15-20.
Carlucci, A. F., Craven, D. B., Robertson, K. J., & Williams, P. M. (1986). Surface-film
microbial populations: diel amino acid metabolism, carbon utilization, and growth
rates. Marine Biology, 92(2), 289-297.
48
Cavallo, R. A., & Stabili, L. (2004). Culturable vibrios biodiversity in the Northern
Ionian Sea (Italian coasts). Scientia Marina, 68(S1), 23-29.
Cheng, H. R., & Jiang, N. (2006). Extremely rapid extraction of DNA from bacteria and
yeasts. Biotechnology letters, 28(1), 55-59.
Colwell, R. R., & Grimes, D. J. (2000). Nonculturable microorganisms in the
environment. ASM press.
Dawson, M. P., Humphrey, B. A., & Marshall, K. C. (1981). Adhesion: a tactic in the
survival strategy of a marine vibrio during starvation. Current Microbiology,6(4), 195-
199.
Day, A. P., & Oliver, J. D. (2004). Changes in membrane fatty acid composition during
entry of Vibrio vulnificus into the viable but non-culturable state.JOURNAL OF
MICROBIOLOGY-SEOUL-, 42(2), 69-73.
Devereux, R., & Wilkinson, S. S. (2004). Amplification of ribosomal RNA
sequences. Molecular microbial ecology manual, 2(1).
Douady, C. J., & Nesbo, C. L. (2007). Reconstructing and interpreting evolutionary
relationships. In C. A. Reddy, T. J. Beveridge, J. A. Breznak, G. A. Marzluf, T. M.
Schmidt & L. R. Snyder (Eds.), Methods for general and molecular microbiology (3rd
ed.): ASM Press.
Duncan, S., Glover, L. A., Killham, K., & Prosser, J. I. (1994). Luminescence-based
detection of activity of starved and viable but nonculturable bacteria.Applied and
Environmental Microbiology, 60(4), 1308-1316.
Efron, B. (1979). Bootstrap methods: another look at the jackknife. The annals of
Statistics, 1-26.
Eguchi, M., & Kawai, A. (1992). Distribution of oligotrophic and eutrophic bacteria in
fish culturing inland bays [Japan]. Bulletin of the Japanese Society of Scientific
Fisheries (Japan).
Evans, D. J., Brown, M. R. W., Allison, D. G., & Gilbert, P. (1990). Susceptibility of
bacterial biofilms to tobramycin: role of specific growth rate and phase in the division
49
cycle. Journal of Antimicrobial Chemotherapy, 25(4), 585-591.
Emerson, D., & Tang, J. (2007). Nutrition and Media†.
Federighi, M., Tholozan, J. L., Cappelier, J. M., Tissier, J. P., & Jouve, J. L. (1998).
Evidence of non-coccoid viable but non-culturableCampylobacter jejunicells in
microcosm water by direct viable count, CTC-DAPI double staining, and scanning
electron microscopy. Food microbiology, 15(5), 539-550.
Garrity, A. (2005). Validation of publication of new names and new combinations
previously effectively published outside the IJSEM. Int J Syst Evol Microbiol, 55, 2235-
2238.
Garrison, T. (2015). Oceanography: an invitation to marine science. Cengage Learning.
Gauthier, M. J., Lafay, B., Christen, R., Fernandez, L., Acquaviva, M., Bonin, P., &
Bertrand, J. C. (1992). Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new,
extremely halotolerant, hydrocarbon-degrading marine bacterium.International Journal
of Systematic Bacteriology, 42(4), 568-576.
Gregersen, T. (1978). Rapid method for distinction of Gram-negative from Gram-
positive bacteria. European Journal of Applied Microbiology and Biotechnology, 5(2),
123-127.
Givskov, M., Eberl, L., M?ller, S., Poulsen, L. K., & Molin, S. (1994). Responses to
nutrient starvation in Pseudomonas putida KT2442: analysis of general cross-protection,
cell shape, and macromolecular content. Journal of Bacteriology, 176(1), 7-14.
Gontang, E. A., Fenical, W., & Jensen, P. R. (2007). Phylogenetic diversity of gram-
positive bacteria cultured from marine sediments. Applied and environmental
microbiology, 73(10), 3272-3282.
González, J. M., Mayer, F., Moran, M. A., Hodson, R. E., & Whitman, W. B. (1997).
Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen.
nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment
community. International journal of systematic bacteriology,47(2), 369-376.
Graeber, I., Kaesler, I., Borchert, M. S., Dieckmann, R., Pape, T., Lurz, R., ... &
50
Szewzyk, U. (2008). Spongiibacter marinus gen. nov., sp. nov., a halophilic marine
bacterium isolated from the boreal sponge Haliclona sp. 1. International journal of
systematic and evolutionary microbiology, 58(3), 585-590.
Guan, S. H., Chen, W. F., Wang, E. T., Lu, Y. L., Yan, X. R., Zhang, X. X., & Chen, W.
X. (2008). Mesorhizobium caraganae sp. nov., a novel rhizobial species nodulated with
Caragana spp. in China. International journal of systematic and evolutionary
microbiology, 58(11), 2646-2653.
Hall, B. G. (2013). Building phylogenetic trees from molecular data with MEGA.
Molecular biology and evolution, 30(5), 1229-1235.
Huo, Y. Y., Xu, X. W., Cao, Y., Wang, C. S., Zhu, X. F., Oren, A., & Wu, M. (2009).
Marinobacterium nitratireducens sp. nov. and Marinobacterium sediminicola sp. nov.,
isolated from marine sediment. International journal of systematic and evolutionary
microbiology, 59(5), 1173-1178.
Huu, N. B., Denner, E. B., Ha, D. T., Wanner, G., & Stan-Lotter, H. (1999).
Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-
producing well. International journal of systematic bacteriology,49(2), 367-375.
Hwang, C. Y., & Cho, B. C. (2009). Spongiibacter tropicus sp. nov., isolated from a
Synechococcus culture. International journal of systematic and evolutionary
microbiology, 59(9), 2176-2179.
Ivanova, E. P., Bowman, J. P., Lysenko, A. M., Zhukova, N. V., Gorshkova, N. M.,
Kuznetsova, T. A., ... & Mikhailov, V. V. (2005). Erythrobacter vulgaris sp. nov., a novel
organism isolated from the marine invertebrates. Systematic and applied
microbiology, 28(2), 123-130.
Jang, G. I., Hwang, C. Y., Choi, H. G., Kang, S. H., & Cho, B. C. (2011). Description of
Spongiibacter borealis sp. nov., isolated from Arctic seawater, and reclassification of
Melitea salexigens Urios et al. 2008 as a later heterotypic synonym of Spongiibacter
marinus Graeber et al. 2008 with emended descriptions of the genus Spongiibacter and
Spongiibacter marinus.International journal of systematic and evolutionary
microbiology, 61(12), 2895-2900.
51
Jarvis, B. D. W., Van Berkum, P., Chen, W. X., Nour, S. M., Fernandez, M. P., Cleyet-
Marel, J. C., & Gillis, M. (1997). Transfer of Rhizobium loti, Rhizobium huakuii,
Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to
Mesorhizobium gen. nov. International Journal of Systematic Bacteriology, 47(3), 895-
898.
Jean, W. D., Huang, S. P., Chen, J. S., & Shieh, W. Y. (2012). Kangiella taiwanensis sp.
nov. and Kangiella marina sp. nov., marine bacteria isolated from shallow coastal
water. International journal of systematic and evolutionary microbiology, 62(Pt 9),
2229-2234.
Jensen, V. A. G. N. (1968). The plate count technique. The ecology of soil bacteria.
Liverpool University Press, Liverpool, United Kingdom, 158-170.
Jensen, P. R., & Fenical, W. (1995). The relative abundance and seawater requirements
of gram-positive bacteria in near-shore tropical marine samples.Microbial
ecology, 29(3), 249-257.
Kaeppel, E. C., Gärdes, A., Seebah, S., Grossart, H. P., & Ullrich, M. S. (2012).
Marinobacter adhaerens sp. nov., isolated from marine aggregates formed with the
diatom Thalassiosira weissflogii. International journal of systematic and evolutionary
microbiology, 62(1), 124-128.
Kaiser, M. J., & Attrill, M. J. (2011). Marine ecology: processes, systems, and impacts.
Oxford University Press.
Kell, D. B., Kaprelyants, A. S., Weichart, D. H., Harwood, C. R., & Barer, M. R. (1998).
Viability and activity in readily culturable bacteria: a review and discussion of the
practical issues. Antonie van Leeuwenhoek, 73(2), 169-187.
Kim, B. C., Park, J. R., Bae, J. W., Rhee, S. K., Kim, K. H., Oh, J. W., & Park, Y. H.
(2006). Stappia marina sp. nov., a marine bacterium isolated from the Yellow
Sea. International journal of systematic and evolutionary microbiology, 56(1), 75-79.
52
Kim, Y. G., Jin, Y. A., Hwang, C. Y., & Cho, B. C. (2008). Marinobacterium
rhizophilum sp. nov., isolated from the rhizosphere of the coastal tidal-flat plant Suaeda
japonica. International journal of systematic and evolutionary microbiology, 58(1), 164-
167.
Kjelleberg, S., Humphrey, B. A., & Marshall, K. C. (1983). Initial phases of starvation
and activity of bacteria at surfaces. Applied and Environmental Microbiology, 46(5),
978-984.
Kuznetsov, S. I., Dubinina, G. A., & Lapteva, N. A. (1979). Biology of oligotrophic
bacteria. Annual Reviews in Microbiology, 33(1), 377-387.
Lee, S. Y., Park, S., Oh, T. K., & Yoon, J. H. (2013). Kangiella sediminilitoris sp. nov.,
isolated from a tidal flat sediment. International journal of systematic and evolutionary
microbiology, 63(Pt 3), 1001-1006.
Li, G., Lai, Q., Liu, X., Sun, F., Du, Y., Li, G., & Shao, Z. (2013). Maricoccus atlantica
gen. nov. sp. nov., isolated from deep sea sediment of the Atlantic Ocean. Antonie van
Leeuwenhoek, 104(6), 1073-1081.
Li, H. J., Zhang, X. Y., Chen, C. X., Zhang, Y. J., Gao, Z. M., Yu, Y., ... & Zhang, Y. Z.
(2011). Zhongshania antarctica gen. nov., sp. nov. and Zhongshania guokunii sp. nov.,
gammaproteobacteria respectively isolated from coastal attached (fast) ice and surface
seawater of the Antarctic.International journal of systematic and evolutionary
microbiology, 61(9), 2052-2057.
Lo, N., Kang, H. J., & Jeon, C. O. (2014). Zhongshania aliphaticivorans sp. nov., an
aliphatic hydrocarbon-degrading bacterium isolated from marine sediment, and transfer
of Spongiibacter borealis Jang et al. 2011 to the genus Zhongshania as Zhongshania
borealis comb. nov. International journal of systematic and evolutionary
microbiology, 64(Pt 11), 3768-3774.
Mandel, M. J., & Silhavy, T. J. (2005). Starvation for different nutrients in Escherichia
coli results in differential modulation of RpoS levels and stability.Journal of
bacteriology, 187(2), 434-442.
53
McGovern, V. P., & Oliver, J. D. (1995). Induction of cold-responsive proteins in Vibrio
vulnificus. Journal of bacteriology, 177(14), 4131-4133.
Morita, R. Y. (1982). Starvation-survival of heterotrophs in the marine environment.
In Advances in microbial ecology (pp. 171-198). Springer US.
Morita, R. Y. (1990). The starvation-survival state of microorganisms in nature and its
relationship to the bioavailable energy. Experientia, 46(8), 813-817.
Morita, R. Y., & Morita, R. Y. (1997). Bacteria in oligotrophic environments:
starvation-survival lifestyle (Vol. 1). New York: Chapman & Hall.
Morton, D. S., & Oliver, J. D. (1994). Induction of carbon starvation-induced proteins in
Vibrio vulnificus. Applied and environmental microbiology, 60(10), 3653-3659.
Munn, C. (2011). Marine microbiology. Garland Science.
Novitsky, J. A., & Morita, R. Y. (1976). Morphological characterization of small cells
resulting from nutrient starvation of a psychrophilic marine vibrio. Applied and
Environmental Microbiology, 32(4), 617-622.
Novitsky, J. A., & Morita, R. Y. (1977). Survival of a psychrophilic marine vibrio under
long-term nutrient starvation. Applied and Environmental Microbiology,33(3), 635-641.
Novitsky, J. A., & Morita, R. Y. (1978). Possible strategy for the survival of marine
bacteria under starvation conditions. Marine Biology, 48(3), 289-295.
Novick, N. J., & Tyler, M. E. (1985). Notes: Isolation and Characterization of
Alteromonas luteoviolacea Strains with Sheathed Flagella. International journal of
systematic bacteriology, 35(1), 111-113.
Nwoguh, C. E., Harwood, C. R., & Barer, M. R. (1995). Detection of induced β‐
galactosidase activity in individual non‐culturable cells of pathogenic bacteria by
quantitative cytological assay. Molecular microbiology, 17(3), 545-554.
54
Oliver, J. D. (2000). The public health significance of viable but nonculturable bacteria.
In Nonculturable microorganisms in the environment (pp. 277-300). Springer US.
Oliver, J. D. (2005). The viable but nonculturable state in bacteria. J Microbiol,43(1),
93-100.
Page, R. D. M., & Holmes, E. C. (1998). Molecular evolution: a phylogenetic approach
(Blackwell Science).
Page, R. D., & Holmes, E. C. (2009). Molecular evolution: a phylogenetic approach.
John Wiley & Sons.
Rao, S. S. (1978). Surface Distributions of Aerobic Heterotrophs and their Relationships
to Temperature and Nutrients in Lake Superior Durng 1973.Journal of Great Lakes
Research, 4(3), 408-414.
Pearson, W. R. (2007). Characterization of bacterial genome sequences by similarity
searching. In C. A. Reddy, T. J. Beveridge, J. A. Breznak, G. A. Marzluf, T. M. Schmidt
& L. R. Snyder (Eds.), Methods for general and molecular microbiology (3rd ed.): ASM
Press.
Peerzada, K., Ul Hussain, M., Jan, N., Verrna, V., Qazi, G. N., & Andrabi, K. I. (2009).
Functional cloning and predictive structural modeling of a novel esterase from Bacillus
subtilis strain, RRL 1789. Journal of General and Applied Microbiology, 55(5), 317-
321.
Petersen, J. M., Ramette, A., Lott, C., Cambon‐Bonavita, M. A., Zbinden, M., &
Dubilier, N. (2010). Dual symbiosis of the vent shrimp Rimicaris exoculata with
filamentous gamma‐and epsilonproteobacteria at four Mid‐Atlantic Ridge hydrothermal
vent fields. Environmental microbiology, 12(8), 2204-2218.
Poindexter, J. S. (1981). Oligotrophy. In Advances in microbial ecology (pp. 63-89).
Springer US.
55
Porter, J., Edwards, C., & Pickup, R. W. (1995). Rapid assessment of physiological
status in Escherichia coli using fluorescent probes. Journal of applied
bacteriology, 79(4), 399-408.
Pujalte, M. J., Macián, M. C., Arahal, D. R., & Garay, E. (2005). Stappia alba sp. nov.,
isolated from Mediterranean oysters. Systematic and applied microbiology, 28(8), 672-
678.
Romanenko, L. A., Schumann, P., Rohde, M., Zhukova, N. V., Mikhailov, V. V., &
Stackebrandt, E. (2005). Marinobacter bryozoorum sp. nov. and Marinobacter
sediminum sp. nov., novel bacteria from the marine environment.International journal
of systematic and evolutionary microbiology, 55(1), 143-148.
Polovina, J. J., Howell, E. A., & Abecassis, M. (2008). Ocean's least productive waters
are expanding. Geophysical Research Letters, 35(3).
Roszak, D. B., & Colwell, R. R. (1987). Survival strategies of bacteria in the natural
environment. Microbiological reviews, 51(3), 365.
Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Molecular biology and evolution, 4(4), 406-425.
Shiba, T., & Simidu, U. (1982). Erythrobacter longus gen. nov., sp. nov., an aerobic
bacterium which contains bacteriochlorophyll a. International Journal of Systematic
Bacteriology, 32(2), 211-217.
Shieh, W. Y., Chen, Y. W., Chaw, S. M., & Chiu, H. H. (2003). Vibrio ruber sp. nov., a
red, facultatively anaerobic, marine bacterium isolated from sea water.International
Journal of Systematic and Evolutionary Microbiology, 53(2), 479-484.
Signoretto, C., del Mar Lleo, M., & Canepari, P. (2002). Modification of the
peptidoglycan of Escherichia coli in the viable but nonculturable state. Current
microbiology, 44(2), 125-131.
Stackebrandt, E., & Goebel, B. M. (1994). Taxonomic note: a place for DNA-DNA
reassociation and 16S rRNA sequence analysis in the present species definition in
bacteriology. International Journal of Systematic Bacteriology,44(4), 846-849.
56
Stenström, T. A. (1989). Bacterial hydrophobicity, an overall parameter for the
measurement of adhesion potential to soil particles. Applied and Environmental
Microbiology, 55(1), 142-147.
Strom, M. S., & Paranjpye, R. N. (2000). Epidemiology and pathogenesis of Vibrio
vulnificus. Microbes and infection, 2(2), 177-188.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011).
MEGA5: molecular evolutionary genetics analysis using maximum likelihood,
evolutionary distance, and maximum parsimony methods. Molecular biology and
evolution, 28(10), 2731-2739.
Teske, A., Cypionka, H., Holt, J. G., & Krieg, N. R. (2007). Enrichment and isolation.
In C. A. Reddy, T. J. Beveridge, J. A. Breznak, G. A. Marzluf, T. M. Schmidt & L. R.
Snyder (Eds.), Methods for general and molecular microbiology (3rd ed.): ASM Press.
Tholozan, J. L., Cappelier, J. M., Tissier, J. P., Delattre, G., & Federighi, M. (1999).
Physiological Characterization of Viable-but-Nonculturable Campylobacter
jejuniCells. Applied and Environmental Microbiology, 65(3), 1110-1116.
Tindall, B. J., Sikorski, J., Smibert, R.A., & Krieg, N. R. (2007). Phenotypic
characterization and the principles of comparative systematics. In C. A. Reddy, T. J.
Beveridge, J. A. Breznak, G. A. Marzluf, T. M. Schmidt & L. R. Snyder
Whitesides, M. D., & Oliver, J. D. (1997). Resuscitation of Vibrio vulnificus from the
Viable but Nonculturable State. Applied and environmental microbiology,63(3), 1002-
1005.
Uchino, Y., Hirata, A., Yokota, A., & Sugiyama, J. (1998). Reclassification of marine
Agrobacterium species: proposals of Stappia stellulata gen. nov., comb. nov., Stappia
aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria
gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen.
nov., sp. nov., nom. rev. The Journal of general and applied microbiology, 44(3), 201-
210.
57
Urios, L., Agogué, H., Intertaglia, L., Lesongeur, F., & Lebaron, P. (2008). Melitea
salexigens gen. nov., sp. nov., a gammaproteobacterium from the Mediterranean
Sea. International journal of systematic and evolutionary microbiology, 58(11), 2479-
2483.
Vandecandelaere, I., Nercessian, O., Segaert, E., Achouak, W., Mollica, A., Faimali,
M., ... & Vandamme, P. (2008). Alteromonas genovensis sp. nov., isolated from a marine
electroactive biofilm and emended description of Alteromonas macleodii Baumann et
al. 1972 (Approved Lists 1980).International journal of systematic and evolutionary
microbiology, 58(11), 2589-2596.
Wang, E. T., Van Berkum, P., Sui, X. H., Beyene, D., Chen, W. X., & Martínez-Romero,
E. (1999). Diversity of rhizobia associated with Amorpha fruticosa isolated from
Chinese soils and description of Mesorhizobium amorphae sp. nov. International
Journal of Systematic Bacteriology, 49(1), 51-65.
Watson, J. D. (2008). Molecular biology of the gene (6th ed.: Pearson/Benjamin
Cummings).
Xu, M., Xin, Y., Yu, Y., Zhang, J., Zhou, Y., Liu, H., ... & Li, Y. (2010). Erythrobacter
nanhaisediminis sp. nov., isolated from marine sediment of the South China
Sea. International journal of systematic and evolutionary microbiology, 60(9), 2215-
2220.
Yakimov, M. M., Golyshin, P. N., Lang, S., Moore, E. R., Abraham, W. R., Lünsdorf,
H., & Timmis, K. N. (1998). Alcanivorax borkumensis gen. nov., sp. nov., a new,
hydrocarbon-degrading and surfactant-producing marine bacterium. International
Journal of Systematic Bacteriology, 48(2), 339-348.
Yanagita, T., Ichikawa, T., Tsuji, T., Kamata, Y., Ito, K., & Sasaki, M. (1978). Two
trophic groups of bacteria, oligotrophs and eutrophs: Their distributions in fresh and sea
water areas in the central northern Japan. The Journal of General and Applied
Microbiology, 24(1), 59-88.
Yaron, S., & Matthews, K. R. (2002). A reverse transcriptase‐polymerase chain reaction
assay for detection of viable Escherichia coli O157: H7: investigation of specific target
genes. Journal of Applied Microbiology, 92(4), 633-640.
58
Yi, H., Bae, K. S., & Chun, J. (2004). Aestuariibacter salexigens gen. nov., sp. nov. and
Aestuariibacter halophilus sp. nov., isolated from tidal flat sediment, and emended
description of Alteromonas macleodii. International journal of systematic and
evolutionary microbiology, 54(2), 571-576.
Yoon, J. H., Kim, I. G., Shin, D. Y., Kang, K. H., & Park, Y. H. (2003). Microbulbifer
salipaludis sp. nov., a moderate halophile isolated from a Korean salt
marsh. International Journal of Systematic and Evolutionary Microbiology,53(1), 53-
57.
Yoon, J. H., Kang, K. H., Oh, T. K., & Park, Y. H. (2004). Halobacillus locisalis sp.
nov., a halophilic bacterium isolated from a marine solar saltern of the Yellow Sea in
Korea. Extremophiles, 8(1), 23-28.
Yoon, J. H., Kang, S. J., Jung, Y. T., & Oh, T. K. (2007). Halobacillus campisalis sp.
nov., containing meso-diaminopimelic acid in the cell-wall peptidoglycan, and emended
description of the genus Halobacillus.International journal of systematic and
evolutionary microbiology, 57(9), 2021-2025.
Zhang, D. C., Li, H. R., Xin, Y. H., Chi, Z. M., Zhou, P. J., & Yu, Y. (2008).
Marinobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from the
Arctic. International journal of systematic and evolutionary microbiology,58(6), 1463-
1466.
Zhang, J., Wang, J., Fang, C., Song, F., Xin, Y., Qu, L., & Ding, K. (2010). Bacillus
oceanisediminis sp. nov., isolated from marine sediment. International journal of systematic and evolutionary microbiology, 60(Pt12), 2924-2929.

dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52701-
dc.description.abstract海洋中營養鹽的分布通常是不均勻的,且會依季節與區域變化,但就整體而 言,海洋是一廣闊而低營養的環境。為進一步瞭解能夠存活於低營養環境中的海 洋細菌,本研究利用採自台灣北部南雅、石城及磅磅子的海水,將之存放超過七 年時間之後進行細菌的分離、培養與分析 。本研究自三地區水樣共分離出 25 株 細菌,根據 16S rRNA gene 的定序及比對,初步鑑定該 25 分離株細菌分別屬於 Stappia(6 株)、Alteromonas(4 株)、Oceanococcus(2 株)、Marinobacter(3 株)、Mesorhizobium(1 株)、Alcanivorax(4 株)、Kangiella(1 株)、Halobacillus (1 株)、Spongiibacter(1 株)、Erythrobacter(1 株)及 Marinobacterium(1 株)各屬。分離株經各種生理、生化特性檢測後,皆無法利用葡萄糖發酵產酸, 均能在 1-5%NaCl 濃度、pH 8-9 及 25-30°C 下生長,均不產生吲哚及硫化氫。 Na1 經 16S rRNA gene 比對,與 Spongiibacter tropicus CL-CB221T 序列相似度為 95.9%,Na1 為好氧且具鈉鹽需求性之革蘭氏陰性細菌,最適合生長於 30-37°C、 1-3%NaCl 及 pH7-8 的培養基中,依初步生理生化特性及序列分析,分離株 Na1 可能為新種細菌。為瞭解實驗菌株在低營養環境中的增殖情況,本研究將分離株 N1C 及 N2B 進行四種濃度的低營養培養,並連日以細胞平板計數法(plate count method)觀察比較其增殖情形,結果顯示二分離株皆能夠在 40 mg/L 濃度碳源下 快速生長。zh_TW
dc.description.abstractThe distribution of nutrients in marine environments is usually uneven, and varys between seasons and regions, but on a whole, the ocean is a vast, low-nutrient environment. To further understand the marine bacteria able to survive in low nutritious environments, we isolated, purified and analyzed the bacteria in the aged seawater samples collected from northern Taiwan which have been stored for more than 7 years. We isolated 25 isolates from the samples, and according to the sequences of 16S rRNA gene, they belong to the following genera: Stappia(6 isolates)、Alteromonas(4 isolates)、Oceanococcus(2 isolates)、Marinobacter(3 isolates)、Mesorhizobium(1 isolate)、Alcanivorax(4 isolates)、Kangiella(1 isolate)、Halobacillus(1 isolate)、 Spongiibacter(1 isolate)、Erythrobacter(1 isolate)and Marinobacterium(1 isolate). According to the physiological and biochemical tests, we found that all the isolates are negative for glucose fermentation, indole and H2S production, and can grow under 1-5% NaCl、pH 8-9 and 25-30°C. Based on the 16S rRNA sequence, the similarity between Na1 and Spongiibacter tropicus CL-CB221T is 95.9%. Na1 is a sea salt-needing, aerobic and gram’s negative bacteria, and the optimal range for growth is 30-37°C, 1-3% NaCl and pH7-8. Na1 may be a novel bacterium of genus Spongiibacter according to the cross- matching between the study and reported data. In order to understand the proliferation of the isolates in low-nutrietion environment, we cultivated isolates N1C and N2B in medium, and observed the enumerational change by plate count method. The results showed that the two isolates are able to grow rapidly in a medium with carbon source of 40 mg / L.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:23:54Z (GMT). No. of bitstreams: 1
ntu-104-R01241211-1.pdf: 1236725 bytes, checksum: 2aca3e232fd2349f3685b3e03057ff5e (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents中文摘要 ii Abstract iii 圖目錄 vi 表目錄 vii 附表目錄 viii 第一章 前言1
第一節 海洋中的細菌1 第二節 海洋中的營養鹽 1 第三節 寡養細菌 3第四節 海洋細菌的飢餓存活3 第五節 活而不長(viable but nonculturable).4 第六節 本研究的目標 5第二章 材料及方6 第一節 培養基6 第二節 樣本採集 6 第三節 細菌計數、分離與純化7 第四節 菌株分離純化與保存7 第五節 分離株形態及生理生化特性測試7 第六節 分離株 rRNA 基因序列的取得並與基因資料庫比對13 第七節 根據分離株 rRNA 基因序列的親緣分析16iv第八節 菌株低營養培養基增殖實驗18 第三章 結果20 第一節 久置海水中細菌數量估計20 第二節 久置海水分離株之分離純化20 第三節 久置海水分離株生理生化特性20 第四節 各分離株 16s rRNA 基因序列比對及親緣分析 21 第五節 分離株低營養培養基增殖實驗39 第四章 討論41 第一節 久置水樣中細菌數量討論41 第二節 分離株鑑定探討 42 第三節 久置水樣之細菌種類多樣性42 第四節 分離株低營養培養增殖結果討論 44 總結47 參考文獻 48v圖目錄
圖一、本研究流程架構 76 圖二、台灣北部暨本實驗採樣位置示意圖77 圖三、三地久置水樣可培養細菌密度圖78 圖四、分離株 N2B 穿透式電子顯微鏡圖 79 圖五、分離株 Na1 穿透式電子顯微鏡圖 80 圖六、1/10 PY 培養基中 5 日內細胞數量變化圖81 圖七、1/100 PY 培養基中 5 日內細胞數量變化圖82 圖八、1/1,000 PY 培養基中 5 日內細胞數量變化圖83 圖九、1/10,000 PY 培養基中 5 日內細胞數量變化圖84 圖十、Υ-Proteobacteria 綱分離株及相近菌種 16S rRNA 基因序列親緣關係樹85 圖十一、Υ-Proteobacteria 綱外分離株及相近菌種 16S rRNA 基因序列親緣關係樹86 圖十二、分離株 Na1 及其相近菌種的 16S rRNA 基因序列親緣關係樹87表一、分離株第一群與相似菌種標準株之相似度60 表二、分離株第二群與相似菌種標準株之相似度61 表三、分離株第三、五及六群與相似菌種標準株之相似度62 表四、分離株第七、八、九、十及十一群與相似菌種標準株之相似度63 表五、第一群分離株與相近菌種標準株之特性比較表65 表六、第二群分離株與相近菌種標準株之特性比較表67 表七、第三群分離株與相近菌種標準株之特性比較表68 表八、第五群分離株與相近菌種標準株之特性比較表69 表九、第六群分離株與相近菌種標準株之特性比較表71 表十、第七群分離株與相近菌種標準株之特性比較表72 表十一、第八群分離株與相近菌種標準株之特性比較表70 表十二、第九群分離株與相近菌種標準株之特性比較表71 表十三、第十群分離株與相近菌種標準株之特性比較表 72 表十四、第十一群分離株與相近菌種標準株之特性比較表73 表十五、分離株 Na1 與相近菌種 API ZYM 及 API 20NE 測試結果比較表74 表十六、分離株 Na1 與相近菌種脂肪酸組成比較75附表一、含蛋白腖及酵母萃取物的培養基88 附表二、CM 培養基89 附表三、聚合酶連鎖反應液的組成及反應條件90 附表四、分離株 Na1 的 16s rRNA 序列91
dc.language.isozh-TW
dc.subject低營養培養zh_TW
dc.subject營養鹽zh_TW
dc.subject細胞平板計數法zh_TW
dc.subject16s rRNAzh_TW
dc.subjectlow-nutrient mediumen
dc.subjectnutrienten
dc.subject16s rRNAen
dc.subjectplate count methoden
dc.title臺灣北部沿岸久置海水中細菌的分離和特性研究zh_TW
dc.titleIsolation and characterization of bacteria in aged coastal seawater from north Taiwanen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李宗徽,陳卓昇,簡文達,李重義
dc.subject.keyword營養鹽,低營養培養,細胞平板計數法,16s rRNA,zh_TW
dc.subject.keywordnutrient,low-nutrient medium,plate count method,16s rRNA,en
dc.relation.page91
dc.rights.note有償授權
dc.date.accepted2015-08-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
1.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved