Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52696
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪一平
dc.contributor.authorChen-Hsin Hsiehen
dc.contributor.author謝成鑫zh_TW
dc.date.accessioned2021-06-15T16:23:41Z-
dc.date.available2017-08-20
dc.date.copyright2015-08-20
dc.date.issued2015
dc.date.submitted2015-08-14
dc.identifier.citation[1] CMU Graphics Lab Motion Capture Database: http://mocap.cs.cmu.edu.
[2] Chua, P. T., Crivella, R., Daly, B., Hu, N., Schaaf, R., Ventura, D., Camill, T., Hodgins, J. & Pausch, R. Training for physical tasks in virtual environments: Tai Chi. In IEEE Virtual Reality, 87-94, 2003.
[3] O. Portillo-Rodriguez, O. O. Sandoval-Gonzalez, E. Ruffaldi, R. Leonardi, C. A. Avizzano, and M. Bergamasco. Real-Time Gesture Recognition, Evaluation and Feed-Forward Correction of a Multimodal Tai-Chi Platform. Haptic and Audio Interaction Design, 5270:30–39, 2008.
[4] Anderson, F., Grossman, T., Matejka, J., & Fitzmaurice, G. YouMove: enhancing movement training with an augmented reality mirror. In ACM UIST, 311-320, 2013.
[5] Jacky CP Chan, Howard Leung, Jeff KT Tang, and Taku Komura. A virtual reality dance training system using motion capture technology. Learning Technologies, IEEE Transactions on, 4(2):187–195, 2011.
[6] Kozaburo Hachimura, Hiromu Kato, and Hideyuki Tamura. A prototype dance training support system with motion capture and mixed reality technologies. In Robot and Human Interactive Communication, 2004. ROMAN 2004. 13th IEEE International Workshop on, pages 217–222. IEEE, 2004.
[7] Richard Tang, Anthony Tang, Xing-Dong Yang, Scott Bateman, and Joaquim Jorge. Physio@ home: Exploring visual guidance and feedback techniques for physiotherapy exercises. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pages 4123–4132. ACM, 2015.
[8] Motokawa, Y., & Saito, H. Support system for guitar playing using augmented reality display. In ISMAR, 243-244, 2006.
[9] Sodhi, R., Benko, H., & Wilson, A. LightGuide: projected visualizations for hand movement guidance. In ACM SIGCHI, 179-188, 2012.
[10] Winkler, C., Seifert, J., Dobbelstein, D., & Rukzio, E. Pervasive information through constant personal projection: the ambient mobile pervasive display (AMP-D). In ACM SIGCHI, 4117-4126, 2014.
[11] Velloso, E., Bulling, A., & Gellersen, H. MotionMA: motion modelling and analysis by demonstration. In ACM SIGCHI, 1309-1318, 2013.
[12] White, S., Lister, L., & Feiner, S. Visual hints for tangible gestures in augmented reality. In ISMAR, 1-4, 2007.
[13] Rumen Filkov. Unity package Kinect v2 with MS-SDK http://rfilkov.com/2014/08/01/kinect-v2-with-ms-sdk/
[14] Zhang, Z. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334, 2000.
[15] Steptoe, W., Julier, S., & Steed, A. Presence and discernability in conventional and non-photorealistic immersive augmented reality. In ISMAR, 213-218, 2014.
[16] Bouguet, J.Y. Camera calibration toolbox. http://www.vision.caltech.edu/bouguetj/calib_doc/
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52696-
dc.description.abstract在現今高齡化社會中,良好的運動習慣備受重視,而科技的進步使得人們能在家中運用多媒體設備來學習各種運動,像是透過教學影片來學習太極拳動作。藉由此方式,使用者雖然可觀看太極拳老師的動作精華,但多媒體影片只有平面的影像資訊,對於空間位置資訊是缺乏的。除此之外,本身並沒有任何回饋資訊,導致使用者無法知道自己的動作是否做正確。在傳統的運動訓練班中,動作的學習會經由教練的指導與回饋來提升其正確性。在沒有教練的情況下,學員很難自行學習正確動作。因此本研究透過結合視訊穿透式頭戴顯示器與深度攝影機來提供使用者以第一人稱的方式來學習太極拳,其中包含骨架疊合之校正方法,並在擴增實境(Augmented Reality)中,設計兩種不同的引導方式。其一為教練環顧引導,在使用者的四周圍擺放虛擬教練來讓使用者可以觀看不同角度的虛擬教練所打出的動作來學習,藉此獲得更多的角度資訊來達到動作的理解性;其二為跟隨球引導,我們在使用者預做動作的關節點上擺放一顆虛擬球,並讓使用者跟隨AR環境中的虛擬球,來提升動作之正確性。
最後本研究透過姿勢、動作與太極拳案例三種不同使用者研究,並以抽象動作、運動動作及太極拳動作來進行實驗。在姿勢(Posture)與動作(Movement)的研究結果共同顯示出,混合教練環顧與跟隨球引導可提升姿勢與動作之正確性外,在身體動作的理解上也較容易了解;其中使用者在姿勢的表現上整體平均可在 0.142公尺差異內完成;動作的表現上整體平均可在 0.144公尺差異內完成。
zh_TW
dc.description.abstractPeople are paying more and more attention to having good exercise habits in this aging society. The advancement of technology grants the possibility of learning various kinds of exercises using various multi-media equipment. For instance, Tai Chi Chuan movements can be learned through watching instruction videos. Through this method, users can examine the teacher demonstrating most important parts of movements. However, multi-media videos not only lack feedback information but also only let users understand the movements by showing the plane images. In a traditional exercise class, the movements of students are taught by a teacher directly. Without a teacher, students would have difficulty learning movements by themselves.
This research provides users a way in the first-person point of view to learn Tai Chi Chuan through combining the video see-through head-mounted display and depth camera. It contains the method for skeleton calibration and two different kinds of guidance are designed to carry out in Augmented Reality (AR). One is Coach-Surrounding guidance. In this approach, virtual coaches are set surrounding the user. Virtual coaches allow the user to see demonstration movement from different viewing angles. Thus users can acquire more visual information of the movement which allow them to gain a clearer understanding. The other is Ball-Following guidance. In this approach, we set virtual balls on certain joint points and require user to follow virtual balls in Augmented Reality (AR) in order to promote the accuracy of movements.
Finally, we conducted three user studies-a posture study, a movement study, and a Tai Chi Chuan study. Both posture and movement studies show common results that combined Coach-Surrounding and Ball-Following guidance can promote the accuracy of movements. In addition, it is easier for users to understand the physical action. Exceeding our expectations, participants performed postures with an average error of 0.142m, and performed movement with an average error of 0.144m.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:23:41Z (GMT). No. of bitstreams: 1
ntu-104-R02922033-1.pdf: 11569975 bytes, checksum: 6439259d4061b25303715e471d87d065 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 x
第 1 章 緒論 1
第 2 章 文獻探討 3
2.1 身體動作訓練 3
2.2 動作引導 4
第 3 章 身體動作引導之設計考量 6
第 4 章 實作 9
4.1 視訊穿透頭戴顯示器 9
4.2 頭戴顯示器與骨架偵測 11
4.3 區分前景與背景 19
4.4 動作比較 20
第 5 章 使用者研究 21
5.1 使用者研究 1 – 姿勢 22
5.1.1 實驗設計 22
5.1.2 實驗結果 24
5.1.3 實驗討論 27
5.2 使用者研究 2 – 動作 28
5.2.1 實驗設計 28
5.2.2 實驗結果 31
5.2.3 實驗討論 34
5.3 使用者研究 3 – 太極動作 35
5.3.1 實驗設計 35
5.3.2 實驗結果 36
5.3.3 實驗討論 37
第 6 章 結論與未來發展 38
參考文獻 39
dc.language.isozh-TW
dc.subject自我中心提示zh_TW
dc.subject身體動作引導zh_TW
dc.subject擴增實境zh_TW
dc.subject頭戴式顯示器zh_TW
dc.subject太極拳zh_TW
dc.subjectEgocentric Hintsen
dc.subjectHead-Mounted Displayen
dc.subjectAugmented Realityen
dc.subjectBody Movement Guidanceen
dc.subjectTai Chi Chuanen
dc.title使用視訊穿透式頭戴顯示裝置應用於太極拳學習之全身動作引導zh_TW
dc.titleFull-Body Movement Guidance For Learning Tai Chi Chuan With A Video See-Through Head-Mounted Display.en
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王鈺強,石勝文,邱志義,王勝輝
dc.subject.keyword擴增實境,身體動作引導,自我中心提示,太極拳,頭戴式顯示器,zh_TW
dc.subject.keywordAugmented Reality,Body Movement Guidance,Egocentric Hints,Tai Chi Chuan,Head-Mounted Display,en
dc.relation.page40
dc.rights.note有償授權
dc.date.accepted2015-08-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
11.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved