Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52629
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張智星(Jyh-Shing Jang)
dc.contributor.authorYen-Ju Tungen
dc.contributor.author董晏儒zh_TW
dc.date.accessioned2021-06-15T16:21:02Z-
dc.date.available2020-08-20
dc.date.copyright2015-08-20
dc.date.issued2015
dc.date.submitted2015-08-17
dc.identifier.citation[1] 跑者廣場全國賽事統計 http://www.taipeimarathon.org.tw/contestnew.aspx
[2] Tokyo Marathon 2014 http://www.tokyo42195.org/2014en/past/index.html
[3] Terry, P. C., Karageorghis, C. I., Mecozzi Saha, A., & D’Auria, S, “Effects of synchronous music on treadmill running among elite triathletes” Journal of Science and Medicine in Sport, 15, 52-57. 2012.
[4] Pollster波仕特線上市調:【跑步收聽音樂習慣調查報告】http://www.pollster.com.tw/Aboutlook/lookview_item.aspx?ms_sn=2357
[5] S. Jayalath, N. Abhayasinghe, I. Murray, 'A Gyroscope Based Accurate Pedometer Algorithm' , 2013 International Conference on Indoor Positioning and Indoor Navigation
[6] M. Tomlein, et al, “Advanced Pedometer For Smartphone-Based Activity Tracking”, 2012 International Conference on Health Informatics
[7] T. OlutoyinOshin, S. Poslad, “ERSP: An Energy-efficient Real-time Smartphone Pedometer”, 2013 IEEE Systems, Man, and Cybernetics Society
[8] 'Nyquist–Shannon sampling theorem', n.d, in Wikipedia, retrieved June 20, 2015, from https://en.wikipedia.org/wiki/Nyquist–Shannon_sampling_theorem
[9] D. Sugimori, et al, 'A Study about Identification of Pedestrian by Using 3-axis Accelerometer', 2011, 17th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications
[10] Jason A. Hockman ,et al, 'Real-time Phase Vocoder Manipulation by Runner’s Pace', 2009 International Conference on New Interfaces for Musical Expression
[11] Nike+ Running, http://www.nike.com/us/en_us/c/running/nikeplus/gps-app
[12] TempoRun, http://www.temporunapp.com/
[13] Sony, Smart B-Trainer, http://smartsports.sony.net/b-trainer/product/1G/WW/en/
[14] SoundTouch Audio Processing Library, http://www.surina.net/soundtouch/
[15] W. Verhelst, M. Roelands, “An overlap-add technique based on waveform similarity (WSOLA) for high quality time-scale modification of speech”, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[16] Daniel P. W. Ellis, “Beat Tracking by Dynamic Programming”, Journal of New Music Research , vol. 36, no. 1, pp. 51-60, 2007
[17] Juan Pablo Bello, et al, 'A Tutorial on Onset Detection in Music Signals', IEEE Transactions on speech and audio processing,2005
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52629-
dc.description.abstract本論文是有關於我們所開發出的一個手機應用程式 MART (Music Assisted Run Trainer),這個應用程式的目的是要利用控制音樂的節奏快慢來讓使用者可以跑得更輕鬆。MART可以透過使用者手機中的三軸加速度計跟陀螺儀,來即時推算出使用者的步頻,再藉由波形相似性疊加法的技術,來合成出與使用者步頻相同節奏的音樂。前人的腳步偵測研究,大都是採用閥值判斷的方法,但MART是使用一個類似音樂訊號處理中節拍追蹤的方法,來做腳步偵測跟步頻分析。本論文共提出了四種抓取步頻的方法,三種是使用時域上的自相關函數,最後一種則是使用頻域上的倒頻來做運算。我們設計了兩種實驗來驗證我們的系統,分別是對腳步預測的正確性,以及算出的步頻跟實際步頻的誤差值。最後根據實驗結果,我們發現時域的方法的正確性,都比頻域的方法來得高。zh_TW
dc.description.abstractThis thesis describes a smartphone app we developed called MART (Music Assisted Run Trainer). The goal is to assist users to jog easily and pleasantly through controlling the tempo of the music. MART estimates the runner’s SPM (steps-per-minute) in real-time via the tri-accelerometer and gyroscope in the smartphone. The music whose tempo is the same as the runner’s SPM is then synthesized via Waveform Similarity Based Overlap-Add (WSOLA). Most of the existing research in step detection uses threshold-based methods, while MART adopts a method which is based on a beat tracking algorithm. We propose four methods for finding the step period. Three of them are based on autocorrelation function in the time domain, while the other one is based on cepstrum in the frequency domain. We design two experiments to evaluate the performance of MART in detecting steps and estimating step frequency. Experimental result shows that the accuracy of the time-domain methods is better than the frequency-domain method.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:21:02Z (GMT). No. of bitstreams: 1
ntu-104-R02944031-1.pdf: 5709170 bytes, checksum: 60f2bf3410b0f910abb42addf6486245 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xi
Chapter 1 Introduction 1
Chapter 2 Related Work 4
2.1 Step Detection Methods 4
2.1.1 Gyroscope-based Algorithm 4
2.1.2 Accelerometer-based Algorithms 5
2.2 Commercial Products 11
2.2.1 Nike+ Running 11
2.2.2 TempoRun 12
2.2.3 Sony – Walkman NW-S200 Series 12
2.2.4 Sony – Smart B-Trainer 13
Chapter 3 Methods 14
3.1 System Overview 14
3.2 Beat Tracking 15
3.2.1 Fast Fourier Transform 15
3.2.2 Mel-Band Filter 16
3.2.3 Spectral Flux 18
3.2.4 Smoothing and Trend Removal via Gaussian Filter 20
3.2.5 Autocorrelation Function (ACF) 20
3.2.6 Detecting Beats 22
3.3 Step Tracking 24
3.3.1 Signal Types 26
3.3.2 Step Period Finding 27
3.3.1 Strength Curve 34
3.3.2 Steps Detecting 37
3.3.3 Step Predicting 37
3.4 Music Tempo Selection 39
3.5 Time-scale Modification of Music 40
3.6 Step Matching 40
Chapter 4 Experiment 41
4.1 Dataset 41
4.1.1 Collection Method 41
4.1.2 Data Content 41
4.1.3 GroundTruth Labeling 42
4.2 Parameter Setting 43
4.2.1 Signal & Onset Strength Curve 45
4.2.2 Method 1 – Correction by Last Step 47
4.2.3 Method 2 – Noise Removal 48
4.2.4 Method 3 – Cepstrum 49
4.2.5 Method 4 – All Signals 50
4.2.6 Step Frequency & Music Tempo 51
4.3 Experimental Result 53
Chapter 5 Conclusions & Future Works 55
5.1 Conclusions 55
5.2 Future Works 56
REFERENCE 58
dc.language.isoen
dc.subject步頻分析zh_TW
dc.subject陀螺儀zh_TW
dc.subject三軸加速度計zh_TW
dc.subject腳步偵測zh_TW
dc.subjecttri-accelerometeren
dc.subjectstep-per-minute analysisen
dc.subjectstep detectionen
dc.subjectgyroscopeen
dc.title基於使用者步頻的音樂輔助跑步系統zh_TW
dc.titleMusic Assisted Running Trainer Based on Runner’s Step Frequenciesen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王新民(Hsin-Min Wang),鄭士康(Shyh-Kang Jeng),蘇黎(Li Su)
dc.subject.keyword步頻分析,腳步偵測,三軸加速度計,陀螺儀,zh_TW
dc.subject.keywordstep-per-minute analysis,step detection,tri-accelerometer,gyroscope,en
dc.relation.page59
dc.rights.note有償授權
dc.date.accepted2015-08-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
5.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved