請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52624
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭茂坤 | |
dc.contributor.author | Wu-Chun Lin | en |
dc.contributor.author | 林吳駿 | zh_TW |
dc.date.accessioned | 2021-06-15T16:20:49Z | - |
dc.date.available | 2015-08-20 | |
dc.date.copyright | 2015-08-20 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-17 | |
dc.identifier.citation | [1] S. J. Park, T. A. Taton, and C. A. Mirkin, “Array-based electrical detection of DNA with nanoparticle probes,” Science 295, 1503-1505, 2002.
[2] J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?,” J. Am. Chem. Soc. 120, 4640-4650, 2001. [3] K. L. Kelly, A. A. Lazarides, and G. C. Schatz, “Computational electromagnetics of metal nanoparticles and their aggregates,” IEEE Comp. Sci. Engi. 3, 67-73, 2001. [4] T. J. Silve, and S. Schultz, “A scanning near-field optical microscope for the imaging of magnetic domains in reflection,” Rev. Sci. Instrum. 67, 715-720, 1996. [5] J. C. Hulteen, D. A. Treichel, M.T. Smith, M. L. Duval, T. R. Jensen, and R. P. Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103, 3854-3863, 1999. [6] R. M. Stockle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131-136, 2000. [7] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phy. 116, 6755-6759, 2002. [8] E. Dvjardin, L. B. Hsin, C. R. C. Wang, and S. Mann, “DNA-driven self-assembly of gold nanorods,” Chem. Comm. 14, 1264-1265, 2001. [9] H. Xu, E. J. Bjerneld, and M. Kall, “Spectroscopy of single hemoglobin molecule by surface-enhanced Raman scattering,” Phys. Rev. Lett. 22, 4357-4360, 1999. [10] S. S. Chang, and C. R. C. Wang, “The synthesis and absorption spectra of several metal nanoparticle systems,” Chem. 56, 209-222, 1998. [11] C. F. Bohern, and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983. [12] U. Kreibig, and M. Vollmer, Optical Properties of Metal Cluster, Springer Verlag, Berlin, 1995. [13] X. Haung, Ivan H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cells Assemble and Align Gold Nanorods Conjugated to Antibodies to Produce Highly Ehnhanced, Sharp, and Polarized Surface Raman Spectra: A Potential Cancer Diagnostic Marker,” Nano. Lett. 7, 1591-1597, 2007 [14] V. M. Agranovich, and D. L. Mills, Surface Polaritons Electromagnetic at Surfaces and Interfaces, North-Holland, New York, 1982. [15] R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874, 1957. [16] E. Burstein, Polariton, Pergamon, New York, 1974. [17] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nacture 424, 824-830, 2003. [18] S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. Chris Wang, “The shape transition of gold nanorods,” Langmuir 15, 701-709, 1999. [19] S. Eustis, and E. S. Mostafa, “Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods: experimental and simulation study,” J. Phys. Chem. B 109, 16350-16356, 2005. [20] 黃駿惠,“奈米桿表面電漿共振模態分析,”國立臺灣大學應用力學研究所碩士論文,2012。 [21] J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594-4602, 1989. [22] K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42-55, 2008 [23] M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349-356, 2011 [24] R. Saija, P. Denti, F. Borghese, O. M. Marago, and M. A. Iati, “Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres,” Opt. Express. 17, 10231-10241, 2009. [25] K. C. Toussaint, Jr., M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, and N. F. Scherer, “Plasmon resonance-based optical trapping of single and multiple Au nanoparticles,” Optics Express 15, 12017-12029, 2007. [26] S. H. Simpson, and S. Hanna, “Orbital motion of optically trapped particles in Laguerre-Gaussian beams,” Opt. Soc. Am. A 27, 2061-2071, 2010. [27] R. Kumar, D. S. Mehta, and C. Shakher, “Clustering of optically trapped large diameter plasmonic gold nanoparticles by laser beam of hybrid-TEM11 mode,” J. Nanophotonics 5 053511, 2010. [28] L. Tong, V. D. Miljkovic, and M. Kall, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10 268-273, 2010. [29] L. Ling, H. L. Guo, X. L. Zhong, L. Huang, J. F. Li, L. Gan, and Z. Y. Li, “Manipulation of glod nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23, 215302, 2012. [30] O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotech. 8, 807–819, 2013. [31] X. Li, T. H. Lan, C. H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998, 2012. [32] A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13, 3129−3134, 2013. [33] Z. Yan, and N. F. Scherer, “Optical vortex induced rotation of silver nanowires,” J. Phys. Chem. Lett. 4, 2937−2942, 2013. [34] Z. Yan, M. Pelton, L. vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7, 8794-8800, 2013. [35] P. Zijlstra, M. van Stee, N. Verhart, Z. Gu, and M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14, 4584-4588, 2012. [36] J. W. Liaw, W. J. Lo, and M. K. Kuo, “Wavelength-dependent longitudinal polarizability of gold nanorod on optical torque,” Opt. Express 22, 10858−10867, 2014. [37] J. Liu, C. Kan, Y. Li, H. Xu, Y.Ni, D. Shi, “Plasmonic properties of the end-to-end and side-by-side assembled au nanorods,” Plasmonics 10, 117−124, 2015. [38] Z. D, X. Xiao, W. Wu, L. Liao, F. Mei, X. Yu, S. Guo, J. Ying, F. Ren, C. Jiang, “Side-to-side alignment of gold nanorods with polarization-free characteristic for highly reproducible surface enhanced Raman scattering,” Appl. Phys. Lett. 105, 211902, 2014. [39] R. Zhao, P. Tassin, T. Koschny, C. M. Soukoulis, “Optical forces in nanowire pairs and metamaterials,” Opt. Express 18, 25665−25676, 2010. [40] H. S. Park, A. Agarwal, N. A. Kotov, O. D. Lavrentovich, “Controllable side-by-side and end-to-end assembly of au nanorods by lyotropic chromonic materials,” Langmuir 24, 13833-13837, 2008. [41] A. F. Stewart, B. P. Gagnon, G. C. Walker, “Forming end-to-end oligomers of gold nanorods using porphyrins and phthalocyanines,” Langmuir 31, 6902-6908, 2015. [42] L. Wang, Y. Zhu, L. Xu, W. Chen, H. Kuang, L. Liu, A. Agarwal, C. Wu, N. A. Kotov, “Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing,” Angew. Chem. Int. Ed. 49, 5472-5475, 2010. [43] H. Ma, P. M. Bendix, and L. B. Oddershede, “Large-scale orientation dependent heating from a single irradiated gold nanorod,” Nano Lett. 12, 3954-3960, 2012. [44] W. S. Chang, J. W. Ha L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensor,” Proc. Natl. Acad. Sci. USA 107, 2781-2786, 2010. [45] W. Ni, H. Ba, A. A. Lutich, F. Jackel, and J. Feldmann, “Enhancing single-nanoparticle surface-chemistry by plasmonic overheating in an optical trap,” Nano Lett. 12, 4647-4650, 2012. [46] D. J. Griffiths, Introduction to Electrodynamics, Prentice Hall, New Jersey, 1996. [47] P. B. Johnson, and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379, 1972. [48] J. A. Stratton, Electromagnetic Theory, McGraw Hill, New York, 1941. [49] G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 25, 377-452, 1908. [50] K. T. Mcdonald, “Total and frustrated reflection of a gaussian optical beam,” Joseph Henry Laboratories, Princeton University, 2009. [51] M. Thomas, J. J. Greffet, R. Carmitati, and J. R. Arias-Gonzalez, “Single-moledcule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863, 2004. [52] C. Hafner, “Beitrage zur berechnung der ausbreitung electromagneitscher wellen in zylindrischen struckturen mit hilfe des point-matching ver fahrens,” Swiss Polytechnical Institute of Technology, Switzerland, 1980. [53] N. Kuster, and R. Ballisti, “MMP method simulation of antenna with scattering object in the closer-near field,” IEEE. Trans. Magn. 26, 658-661, 1990. [54] C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics, Artech. House, Boston, 1990. [55] C. Hafner, and N. Kuster, “Computation of electromagnetic fields by multiple multipole method (generalized multipole technique),” Radio. Sci. 26, 291-297, 1991. [56] I. N. Vekua, New Methods for Solving Elliptic Equations, North-Holland, New York, 1967. [57] F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transfer 79, 775-824, 2003. [58] H. P. William, A. T. Saul, T. V. William, and P. F. Brian, Numerical Recipes C++, Cambridge University Press, New York, 2002. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52624 | - |
dc.description.abstract | 本文研究光誘導的雙金桿之方向性附著,以及高斯光束下奈米粒子的力學行為。根據Maxwell電磁理論作為基礎,數值方法是利用多重展開中心法作計算,並利用Maxwell應力張量分析奈米粒子上的光力和光力矩。由數值結果得知,雙金桿之方向性附著會有兩種結合方式,一種為相互並排(side-by-side),另一種為頭尾相接(end-to-end),而金桿的行為與入射波長和初始姿態有關係。若在短波長要結合,雙金桿呈現相互並排;若在長波長要結合,雙金桿呈現頭尾相接。出現這兩種的結合方式是因為金桿處於不同模態,當入射波長在短軸共振波長(TSPR)與長軸共振波長(LSPR)之間為垂直模態(perpendicular mode);當入射波長大於長軸共振波長則為平行模態(parallel mode),而當波長為LSPR時光力矩為零,為兩種模態的轉捩點(turning point)。當然在某些初始姿態下金桿也會互相排斥。
高斯光束方面的研究,由於高斯光束的梯度力(gradient force),當金桿往外移動時,金桿會被抓取到高斯光束之中間,且隨著電場極化方向旋轉。另一方面,研究金、銀奈米球的穩定點,由於入射光產生的光壓會使奈米粒子前進,但是在高斯光束作用下會被抓回來,而作用力互相抵消之後,即為穩定點。穩定點的位置與材料、高斯光束之腰寬、尺寸以及入射波長有關。結果顯示,在相同條件下,銀球比金球容易達到穩定點,因為銀的吸收比金的小。 | zh_TW |
dc.description.abstract | In this thesis, we theoretically studied the plasmon-mediated oriented attachments of two gold nanorods (GNRs) irradiated by a linearly polarized (LP) plane wave and mechanical responses of a single nanoparticle (NP) by Gaussian beam. Based on Maxwell’s equations, the multiple-multipole (MMP) method was used to calculate Maxwell stress tensor for the analysis of optical forces and torques exerted on these nanoparticles. Numerical results show that due to the short-range interaction the end-to-end or side-by-side coalescence of two nearby GNRs could be induced by a LP plane wave, depending on the wavelength. The short wavelength most likely induces the side-by-side oriented attachment, whereas the long wavelength most likely induces the end-to-end oriented attachment. The turning point between the two behaviors is at LSPR. This is because that GNR performs two alignment modes as irradiated by a LP light. One is the perpendicular mode; the range is between the longitudinal surface plasmon resonance (LSPR) and transverse surface plasmon resonance (TSPR). The other is the parallel mode as the wavelength is longer than LSPR. On the other hand, for some initial conditions the two GNRs could repulse each other.
Numerical result also shows that due to the gradient force of LP Gaussian beam a GNR tends to be trapped at the center of Gaussian beam and aligned by the polarization. Moreover, we investigated the stagnation point of Au or Ag NP along the axis of Gaussian beam, where the optical pushing force in the downstream direction vanishes. This is because that the optical gradient force and the optical radiative force are in balance. This behavior is sensitive to the waist of Gaussian beam and wavelength. We found that the stagnation point of Ag NP is induced easily compared to Au NP because the absorption of Ag NP is smaller than Au one of the same size. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:20:49Z (GMT). No. of bitstreams: 1 ntu-104-R02543044-1.pdf: 9772435 bytes, checksum: 3be76daa181aafa7dbc36c0757c6f6cf (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 v 圖表目錄 vii 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 本文內容 3 第二章 電磁理論 5 2.1 Maxwell 方程式與邊界條件[46] 5 2.2 Helmholtz方程式[48]與球向量波函數[49] 7 2.3入射平面波之電磁場 10 2.4高斯光束(Gaussian Beam)[50] 11 2.5散射、吸收與消散截面積效率[51] 12 2.6 Maxwell應力張量相關電磁問題 13 第三章 多重中心展開法(MMP) 18 3.1 MMP的基本觀念 18 3.2 利用MMP表示散射體之電磁場 18 3.3 奇異值拆解法求解電磁場未知係數 21 第四章 數值結果分析與討論 28 4.1光誘導的雙金桿之方向性附著 28 4.1.1 入射波長為800 nm 36 4.1.2入射波長為1064 nm 52 4.1.3入射波長為1700 nm 68 4.2 高斯光束之力學效應 84 4.2.1 金桿之梯度力 84 4.2.2 金、銀奈米球之穩定點 90 第五章 結論與未來展望 95 5.1 結論 95 5.2 未來展望 96 參考文獻 97 附錄A 高斯光束之繞射極限 103 附錄B MMP擺點 107 | |
dc.language.iso | zh-TW | |
dc.title | 光誘導的雙金桿之方向性附著 | zh_TW |
dc.title | Light-Mediated Oriented Attachment of Two Gold Nanorods | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 廖駿偉 | |
dc.contributor.oralexamcommittee | 鄧崇任 | |
dc.subject.keyword | 雙金桿之方向性附著,長軸表面電漿子共振,高斯光束,Maxwell應力張量,光力,光力矩,多重多極展開法,垂直模態,平行模態,相互並排,頭尾相接,腰寬,穩定點,梯度力, | zh_TW |
dc.subject.keyword | oriented atoriented attachment,longitudinal surface plasmon resonance,side by side,end to end,multiple-multipoles method,Maxwell stress tensor,optical force,optical torque,parallel mode,perpendicular mode,Gaussian beam,waist,gradient force,stagnation point, | en |
dc.relation.page | 107 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-17 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 9.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。