Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52610
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林恭如
dc.contributor.authorBo-Ji Huangen
dc.contributor.author黃博基zh_TW
dc.date.accessioned2021-06-15T16:20:19Z-
dc.date.available2017-08-28
dc.date.copyright2015-08-28
dc.date.issued2015
dc.date.submitted2015-08-17
dc.identifier.citation1. Kirchain, R. & Kimerling, L. C. A roadmap for nanophotonics, Nat. Photon. 1, 303-305 (2007).
2. Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nature Photon. 4, 518-526 (2010).
3. Rong, H., Liu, Jones, A., Cohen, R. O., Hak, D., Nicolaescu, R., Fang, A. and Paniccia, M. An all-silicon Raman laser. Nature 433, 292–294 (2005).
4. Liu, Y. and Tsang, H. K. Nonlinear absorption and Raman gain in helium-ion-implanted silicon waveguides. Opt. Lett. 31, 1714–1716 (2006).
5. Tanabe, T., Nishiguchi, K., Shinya, A., Kuramochi, E., Inokawa, H., Notomi, M., Yamada, K., Tsuchizawa, T., Watanabe, T., Fukuda, H., Shinojima, H. & Itabashi, S. Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities, Appl. Phys. Lett. 90, 031115 (2007).
6. Wright, N. M., Thomson, D. J., Litvinenko, K. L., Headley, W. R., Smith, A. J., Knights, A. P., Deane, J. H. B., Gardes, F. Y., Mashanovich, G. Z., Gwilliam, R. and Reed, G. T. Free carrier lifetime modification for silicon waveguide based devices. Opt. Exp. 16, 19779–19784 (2008).
7. Turner-Foster, A. C., Foster, M. A., Levy, J. S., Poitras, C. B., Salem, R., Gaeta, A. L. & Lipson, M. Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides. Opt. Exp. 18, 3582-3591 (2010).
8. Soref, R. A. & Bennett, B. R. Electrooptical Effects in Silicon. IEEE J. Quant. Electron. QE-23, 123–129 (1987).
9. Densmore, A., Janz, S., Ma, R., Schmid, J. H., Xu, D.-X., Delふage, A., Lapointe, J., Vachon, M. & Cheben, P. Compact and low power thermo-optic switch using folded silicon waveguides. Opt. Exp. 17, 10457–10465 (2009).
10. Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325-327 (2005).
11. Hsieh, M.-K., Ku, K.-N. & Lee, M.-C. Enhanced photon-induced carrier density in silicon-on-insulator via surface recombination suppression for increasing plasma dispersion effect. J. Appl. Phys. 105, 074510 (2009).
12. Liao, L., Samara-Rubio, D., Morse, M., Liu, A., Hodge, D., Rubin, D., Keil, U. D. and Franck, T. High speed silicon Mach Zehnder modulator. Opt. Exp. 13, 3129–3135 (2005).
13. Liu, A., Jones, R., Liao, L., Samara-Rubio, D., Rubin, D., Cohen, O., Nicolaescu, R. & Paniccia, M. A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature 427, 615–618 (2004).
14. Li, C., Luo, X. & Poon, A. W. Dual-microring-resonator electro-optic logic switches on a silicon chip. Semicond. Sci. Technol. 23, 064010 (2008).
15. Xu, Q. & Lipson, M. All-optical logic based on silicon micro-ring resonators. Opt. Exp. 15, 924–929 (2007).
16. Bogaerts, W., Heyn, P. D., Vaerenbergh, T. V., Vos, K. D., Selvaraja, S. K., Claes, T. Dumon, P., Bienstman, P., Thourhout, D. V. & Baets, R. Silicon microring resonators. Laser Photon. Rev. 6, 47–73 (2012)
17. Teng, J., Dumon, P., Bogaerts, W., Zhang, H., Jian, X., Han, X., Zhao, M., Morthier, G. & Baets, R. Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. Opt. Express 17, 14627-14633 (2009)
18. Taillaert, D., Paepegem, W. V., Vlekken, J. & Baets, R. A thin foil optical strain gage based on silicon-on-insulator microresonators. Proc. SPIE 6619, 661914 (2007)
19. Oates, T. C. & Lloyd W. Burgess Sensitive Refractive Index Detection Using a Broad-Band Optical Ring Resonator. Anal. Chem. 84, 7713–7720 (2012)
20. Manolatou C, Lipson M. All-optical silicon modulators based on carrier injection by two-photon absorption. J. Lightwave Technol. 24, 1433-1439 (2006).
21. Wu, C.-L. & Lin, G.-R. Inhomogeneous linewidth broadening and radiative lifetime dispersion of size dependent direct bandgap radiation in Si quantum dot. AIP Adv. 2, 042162 (2012).
22. Kekatpure, R. & Brongersma, M. Quantification of Free-Carrier Absorption in Silicon Nanocrystals with an Optical Microcavity. Nano Lett. 8, 3787–3793 (2008).
23. Marchena, E., Redding, B., Creazzo, T. and Prather, D. Mitigation of Si nanocrystal free carrier absorption loss at 1.5 μm in a concentric microdisk structure. Opt. Lett. 35, 2182–2184 (2010).
24. Navarro-Urrios, D., Pitanti, A., Daldosso, N., Gourbilleau, F., Rizk, R., Pucker, G. and Pavesi, L. Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54m. Appl. Phys. Lett. 92, 051101 (2008).
25. Kekatpure, R. & Brongersma, M. Near-infrared free-carrier absorption in silicon nanocrystals Opt. Lett. 34, 3397–3399 (2009).
26. Creazzo, T., Redding, B., Marchena, E., Shi, S. & Prather, D. Free-carrier absorption modulation in silicon nanocrystal slot waveguides. Opt. Lett. 35, 3691-3693 (2010).
27. Wu, C.-L., Su, S.-P. & Lin, G.-R. All-optical modulation based on silicon quantum dot doped SiOx:Si-QD waveguide. Laser Photon. Rev. 8, 766-776 (2014).
28. Lin, G.-R., Chang, C.-H., Cheng, C.-H., Wu, C.-I and Wang, P.-S. Transient UV and Visible Luminescent Dynamics of Si-Rich SiOx Metal–Oxide–Semiconductor Light-Emitting Diodes. IEEE Photonics Journal. 4, 1351-1364 (2012).
29. Xie, M., Li, D., Wang, F. & Yang, D. Luminescence Properties of Silicon-Rich Silicon Nitride Films and Light Emitting Devices. ECS Trans. 35, 3-19 (2011)
30. Blasco, J., Galán, J. V., Sanchis, P., Martínez, J. M., Martínez, A., Jordana, E., Fedeli, J. M. & Martí, J. FWM in silicon nanocrystal-based sandwiched slot waveguides. Opt. Commun. 283, 435-437 (2010).
31. Liu, Q. Gao, S., Li, Z., Xie, Y. & He, S. Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion. Appl. Optics 35, 1260-1265 (2011).
32. Trita, A., Lacava, C., Minzioni, P., Colonna, J.-P., Gautier, P., Fedeli, J.-M. & Cristiani, I. Ultra-high four wave mixing efficiency in slot waveguides with silicon nanocrystals. Appl. Phys. Lett. 99, 191105 (2011).
33. Martinez, A., Blasco, J., Sanchis, P., Galan, J. V., Garcia-Ruperez, J., Jordana, E., Gautier, P., Lebour, Y., Hernandez, S., Spano, R., Guider, R., Daldosso, N., Garrido, B., Fedeli, J. M., Pavesi, L. & Marti, J. Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. Nano Lett. 34, 1506-1511 (2010).
34. Ikeda, K., Saperstein, R.-E., Alic, N. & Fainman, Y. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides. Opt. Express 16, 12987-12994 (2008).
35. Levy, J.-S., Gondarenko, A., Foster, M.-A., Turner-Foster, A.-C., Gaeta, A.-L. & Lipson, M. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nature photon. 4, 37-40 (2010).
36. Tan, D. T. H., Ikeda, K., Sun, P. C. & Fainman, Y. Group velocity dispersion and self phase modulation in silicon nitride waveguides. Appl. Phys. Lett. 96, 061101 (2010).
37. Demichelisa, F., Crovinia, G., Pirria, C. F., Tressoa, E., Gallonib, R., Rizzolib, R., Summonteb, C., Zignanic, F., Ravad, P. & Madane, A. The influence of hydrogen dilution on the optoelectronic and structural properties of hydrogenated amorphous silicon carbide films. Philos. Mag. B. 69, 377-386 (1994).
38. Lef`evre, J., Costantini, J.-M., Esnouf, S. & Petite, G. Thermal stability of irradiation-induced point defects in cubic silicon carbide. J. App. Phys. 106, 083509 (2009).
39. Ščajev, P., Gudelis, V., Jarašiūnas, K. and Klein, P. B. Fast and slow carrier recombination transients in highly excited 4H– and 3C–SiC crystals at room temperature. J. Appl. Phys. 108, 023705 (2010)
40. Niedermeier, S., Schillinger, H., Sauerbrey, R., Adolph, B. & Bechstedt, F. Second-harmonic generation in silicon carbide polytypes. Appl. Phys. Lett. 75, 618-620 (1999).
41. Strait, J. H., George, P. A., Dawlaty, J., Shivaraman, S., Chandrashekhar, M., Rana, F. & Spencer, M. G. Emission of terahertz radiation from SiC. Appl. Phys. Lett. 95, 051912. (2009)
42. Wu, I. J. & Guo, G. Y. Second-harmonic generation and linear electro-optical coefficient of SiC polysytpes and nanotubes. Phys. Rev. B. 78, 035447 (2008).
43. Schubert, M. F. & Rana, F. SiGeC/Si Electrooptic Modulators. J. Lightw. Technol. 25, 866-874 (2007).
44. Soref, R. A. Optical band gap of the ternary semiconductor Si1−x−yGexCy. J. Appl. Phys. 70, 2470 (1991)
45. Soref, R. A. Infrared waveguiding in Si1-x-yGexCy upon silicon. Opt. Express. 21, 345-347 (1996).
46. Carrolla, M. S. & King, C. A. Dependence of the electron minority carrier lifetime on interstitial oxygen and substitutional carbon in pseudomorphically strained SiGeC heterostructures. Appl. Phys. Lett. 93, 1656-1660 (2003).
47. Cheng, C.-H., Wu, C.-L., Chen, C.-C., Tsai, L.-H., Lin, Y.-H. & Lin, G.-R. Si-rich SixC1-x light-emitting diodes with buried Si quantum dots. IEEE Photonics J. 4, 1762-1775 (2012)
48. Neria, F. Trussob, S., Vasib, C., Barrecaa, F. & Valisac, P. Raman microscopy study of pulsed laser ablation deposited silicon carbide films. Thin Solid Films. 332, 290-294 (1998)
49. Baohong, JIN and Nanlin, SHI. Analysis of Microstructure of Silicon Carbide Fiber by Raman Spectroscopy. J. Mater. Sci. Technol. 24, 261-264 (2008).
50. Zi, J., Büscher, H., Falter, C., Ludwig, W., Zhang, K. & Xie, X. Raman shifts in Si nanocrystals. Appl. Phys. Lett. 69, 200-202 (1996).
51. Faraci, G., Gibilisco, S., Russo, P., & Pennisi, A. R. Modified Raman confinement model for Si nanocrystals. Phys. Rev. B. 73, 033307 (2006)
52. Almeida, V. R., Panepucci, R. R. & Lipson, M. Nanotaper for compact mode conversion. Opt. Lett. 28, 1302-1304 (2003)
53. Rabus, DG. Integrated ring resonators, Ring Resonators: Theory and Modeling. (Springer, 2007).
54. Rauscher, C. & Laenen, R. Analysis of picosecond mid-infrared pulses by two-photon absorption in germanium. J. Appl. Phys. 81, 2818-2821 (1997)
55. Chandrakasan, A. P., Sheng, S. & Brodersen, R. W. Low-Power CMOS Digital Design. IEEE J. Solid-ST CIRC. 27, 473-483 (1992)
56. Wu, C.-L., Su, S.-P. & Lin, G.-R. All-optical data inverter based on free-carrier absorption induced cross-gain modulation in Si quantum dot doped SiOx waveguide. IEEE J. Sel. Topics Quantum Electron. 20, 8200909 (2014)
57. Li, R., Schneck, J. R., Warga, J. Ziegler, L. D. & Dal Negro, L. Carrier dynamics and erbium sensitization in silicon-rich nitride nanocrystals. Appl. Phys. Lett. 93, 091119 (2008)
58. Almeida, V. R., Barrios, C. A., Panepucci, R. R., Lipson, M., Foster, M. A., Ouzounov, D. G. & Gaeta, A. L. All-optical switching on a silicon chip. Opt. Lett. 29, 2867-2869 (2004)
59. Peignon, M. C., Cardinaud, Ch. & Turban, G. X-ray photoelectron study of the reactive ion etching of SixGe1-x alloys in SF6 plasmas. J. Vac. Sci. Technol. A 14, 156-164 (1996)
60. Tsang, H. K., Snow, P. A., Day, I. E., White, I. H., Penty, R. V., Grant, R. S., Su, Z., Kennedy, G. T. & Sibbett, W. All‐optical modulation with ultrafast recovery at low pump energies in passive InGaAs/InGaAsP multiquantum well waveguides. Appl. Phys. Lett. 62, 1451-1453 (1993).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52610-
dc.description.abstract近年來為了實現全光高速訊號與數據傳輸,矽光子學被視為相當重要的研究主題。在此研究中,我們利用非線性雙光子吸收引發自由載子吸收以及光學克爾效應兩種調變機制,以碳化矽與摻鍺碳化矽製備超高速全光波導調變器。
首先,我們藉由高強度脈衝光源引發富矽碳化矽中之雙光子吸收效應進而產生自由載子。自由載子將吸收耦合入波導之探測光源使之進行波長轉換以達皮秒等級之全光波導調變器,該效應稱之為跨吸收光學調變機制。然而,我們進一步觀察到微弱的非線性克爾效應所造成之波長紅移導致該調變機制之調變深度受到影響。在此研究中,我們發現富矽碳化矽中之矽量子點可提供一相當大的跨吸收調變機制使之可應用於全光調變器與光學邏輯閘之全光開關。我們首度成功利用鑲嵌矽量子點之富矽碳化矽製備全光脈衝歸零開關訊號之反向格式轉換器,其調變位元率可達 1.2 Gbit/s。
接著,我們使用三種不同組成比例之碳化矽製備全光波導調變器,其中包括富矽碳化矽、碳化矽與富碳碳化矽。我們將調變位元率為1.2 以及12 Gbit/s 之全光脈衝歸零開關訊號序列個別耦合進入此三種波導中以展示全光訊號調變。實際上,我們於富矽碳化矽中觀察到非對稱的反向訊號形狀,其消光比僅有8.7 dB。於接近標準組成比例之碳化矽波導中,由於環形共振腔結構內之自由載子吸收較弱,當探測光集中於環形共振腔內將使得訊號序列進行波長轉換,消光比高達14 dB,但其直線波導中仍存在強烈的雙光子吸收現象。然而我們在富矽碳化矽波導中觀察到對稱性的正向及反向格式轉換。為了瞭解元件最大的頻寬限制,我們將調變位元率為12 Gbit/s 之全光脈衝歸零開關訊號序列耦合入該波導。其中我們可於富矽碳化矽中觀察到非線性克爾效應所產生之對稱性正向以及反向訊號調變,其消光比高達20 dB。值得注意的是,由於我們將組成比例調整至富矽碳化矽使得雙光子吸收誘發自由載子吸收效應被抑制,因此富矽碳化矽全光調變器具有最高的調變頻寬,能夠傳輸位元率為12 Gbit/s之全光脈衝歸零開關訊號。
最後,我們於碳化矽中摻鍺以降低自由載子活期,進而提升全光調變器之調變頻寬,並展示快速雙光子吸收之全光調變開關波長轉換及格式反轉。藉由將鍺摻雜入碳化矽主體內以及進一步降低入射脈衝能量,可有效降低碳化矽摻鍺之自由載子時間至皮秒等級。當泵浦能量由0.5 nJ降低至22 pJ時,載子活期成功地由350 ps降低至10 ps。由實驗結果觀察,即使注入較低的入射光能量,仍可以產生跨吸收調變效應達到超快全光開關。為了確認其調變頻寬,我們將調變位元率由1.2增加至6 Gbit/s 之脈衝歸零開關訊號序列耦合入該波導,並成功以摻鍺碳化矽之全光波導調變器傳輸全光脈衝歸零開關訊號。
zh_TW
dc.description.abstractDevelopment of Si-based all optical waveguide modulator for transmitting ultrafast optical signal becomes an important research topic in Si photonics. In this thesis, all-optical modulation with wavelength conversion and data inversion has been demonstrated by using the SiCx and SiCGe waveguides.
At first, the Si quantum-dots (QDs) doped Si-rich SiCx waveguide modulator is demonstrated for the first time to perform the 1.2 Gbit/s all-optical format inversion with a pulsed return-to-zero on-off-keying (PRZ-OOK) data-stream. The sub-bandgap cross-absorption-modulation (XAM) has been preliminarily observed and confirmed as a new kind of wavelength conversion process to enable ultrafast optical switching in Si-QDs. The XAM effect induces a wavelength-converted picosecond all-optical switching between pump and probe signals, which is attributed to the free-carrier absorption induced by the two-photon-absorption effect. The pump-probe analysis also shows a weak nonlinear Kerr effect with an ultrafast switching response from the changing envelope of the XAM probe pulse at red-shifted wavelength. These observations declare that the nano-scale Si-QDs can provide sufficiently large XAM effect to enable the ultrafast all-optical switching capability.
Afterwards, the all-optical waveguide modulator is fabricated by the nonstoichiometric SiCx with different composition ratio, including Si-rich SiCx, nearly stoichiometric SiC, and C-rich SiCx. The modulation mechanism is changed from the TPA effect to the nonlinear Kerr effect by detuning the nonstoichiometric SiCx from Si-rich to C-rich condition. The inversely modulated probe data stream reveals an asymmetric bit shape data with an extinction ratio (ER) of only 8.7 dB in Si-rich SiCx. When coinciding the probe wavelength with the transmission dip, the high-speed wavelength conversion of data stream with an ER of 14 dB can be observed by eliminating the FCA effects in the nearly stoichiometric SiCx micro-ring waveguide. To completely suppress the trailing edge, a symmetrically converted and inverted data with high on/off extinction at 1.2 Gbit/s can be observed in the C-rich SiCx waveguide modulator. To demonstrate the ultrafast all-optical modulation, the wavelength-converted and sign-reversible PRZ-OOK data switching at bit rate up to 12 Gbit/s can be delivered via the C-rich SiCx waveguide modulator due to strong Kerr nonlinearity of C-rich SiCx. Because of the suppressed TPA induced FCA effect, the C-rich SiCx based waveguide exhibits a better performance on responding the continuously incoming on-level bits than that of the nearly stoichiometric SiCx and Si-rich SiCx waveguides.
Eventually, the SiCGe based ultrafast all-optical waveguide modulator enables the wavelength conversion and format inversion with a PRZ-OOK data-stream has been demonstrated for the first time. Under the operation of intensive optical pulse illumination, the TPA effect can be observed when the total energy of two incident photons exceeds beyond the bandgap energy of SiCGe, in which the induced free carriers in the SiCGe will absorb the probe beam to reduce its throughput intensity. As a result, the probe beam can be inversely modulated to cause XAM by intensive pump pulse induced TPA/FCA effect. The picosecond effective carrier lifetime of the SiCGe can be obtained by adding the Ge content into the SiC matrix with a reduced pumping energy. By reducing the pumping energy from 0.5 nJ to 22 pJ, the carrier lifetime shortens from 350 to 10 ps, which can provide sufficient large XAM effect to enable the ultrafast all-optical switching.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:20:19Z (GMT). No. of bitstreams: 1
ntu-104-R02941008-1.pdf: 4624779 bytes, checksum: e7782c2599b8de8e4b43aa004b454ff2 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsCONTENTS
口試委員會審定書 #
謝誌 ii
中文摘要 iv
ABSTRACT vi
CONTENTS viii
LIST OF FIGURES xi
LIST OF TABLES xvi
Chapter 1 Introduction 1
1.1 Historical review of Si modulators and switches 1
1.2 Recent Progress on Si and nanocrystal based FCA modulator 2
1.3 The advantage of nonlinear optical effect in the non-stoichiometric SiCx and SiCGe based waveguide 3
1.4 Motivation 5
1.5 Organization of thesis 6
Chapter 2 All-optical Cross-Absorption-Modulation Based Picosecond Switching with Silicon Quantum Dots 8
2.1 Introduction 8
2.2 Experimental Setup 8
2.2.1 Structural and compositional characteristics of Si-rich SiCx film 8
2.2.2 Design and fabrication of the SiCx:Si-QD micro-ring resonator 10
2.2.3 Pump-probe system for measuring Si-rich SiCx:Si-QD based XAM switch 12
2.3 Results and discussions 13
2.3.1 Transmission spectra of SiCx:Si-QD micro-ring resonator with different gap spacings 13
2.3.2 XAM switching and Carrier lifetime estimation in SiCx:Si-QD waveguide 17
2.3.3 Hybrid Strong XAM and Weak Kerr Switching Effects in SiCx:Si-QD based all-optical switching 21
2.3.4 1.2 Gbit/s all-optical PRZ-OOK data inversion in SiCx:Si-QD based all-optical XAM switch. 26
2.4 Summary 31
Chapter 3 Ultrafast data switching in the non-stoichiometric SiCx ring waveguide 34
3.1 Introduction 34
3.2 Experimental setup 35
3.2.1 Sythesis of non-stoichiometric SiCx film 35
3.2.2 Fabrication of SiCx micro-ring resonator waveguide 36
3.2.3 The experimental setup of transient pump-probe system 37
3.3 Result and Discussion 39
3.3.1 Design and fabrication of the non-stoichiometric SiCx micro-ring resonator 39
3.3.2 Transmittance spectra of non-stoichiometric SiCx micro-ring resonator with different fluence ratio 40
3.3.3 Carrier lifetime and nonlinear refractive index of non-stoichiometric SiCx 44
3.3.4 All-optical wavelength conversion and sign inversion of 1.2-Gbit/s PRZ-OOK data in SiCx ring waveguide 53
3.3.5 Performing all-optical PRZ-OOK wavelength conversion and sign inversion with different SiCx ring waveguides up to 12 Gbit/s 55
3.4 Summary 57
Chapter 4 SiCGe waveguide for optical data switching 61
4.1 Introduction 61
4.2 Experimental setup 62
4.2.1 Fabrication of the SiCGe waveguide 62
4.2.2 Experimental setup of pump-probe system 63
4.3 Result and Discussion 65
4.3.1 Composition ratio of the SiCGe film 65
4.3.2 Working principle FCA effect via TPA 65
4.3.3 All-optical modulation in the SiCGe waveguide 67
4.3.4 All-optical PRZ-OOK wavelength conversion and data inversion in the SiCGe waveguide with increasing bit rate from 1.2 to 6 Gbit/s 70
4.4 Summary 74
Chapter 5 Conclusion 76
REFERENCE 78
LIST OF FIGURES
Figure 2.1 The XPS spectrum and Raman spectrum of Si-rich SiCx film. (a) The XPS spectrum of Si-rich SiCx film. (b) and (c) The Raman spectrum of Si-rich SiCx, and the deconvoluted Si-Si related Raman signal. 10
Figure 2.2 Design of SiCx:Si-QD micro-ring resonator (a) The refractive index spectrum of Si-rich SiCx films deposited on Si substrate. (b) The cross-section view of the SiCx:Si-QD based channel waveguide. (c) The simulation of transverse modes for TE0 and TM0 modes. (d) The scheme of SiCx:Si-QD micro-ring channel waveguide. 12
Figure 2.3 The experimental setup of pump-probe system for all-optical CAM switching. A pump-probe system for measuring the all-optical cam switching of SiCx:Si-QD based all-optical XAM switch resonator. 13
Figure 2.4 The transmission spectra of SiCx:Si-QD based all-optical XAM switch. The experimental and simulated transmission spectra of SiCx:Si-QD bus and based all-optical XAM switch with different gap spacings between bus and based all-optical XAM switch. (a) Dgap = 500 nm. (b) Dgap = 600 nm. (c) Dgap = 700 nm. 15
Figure 2.5 Simulated Q factor of SiCx:Si-QD micro-ring resonator. (a) Refractive index profile of bus and based all-optical XAM switch. (b) The coupled optical intensity varied with the propagating length through the bus waveguide. (c) The simulated and experimental Q factor of SiCx:Si-QD based all-optical XAM switch with different gap spacing. 17
Figure 2.6 The modulated probe beam in the SiCx:Si-QD based all-optical XAM switch induced by hybrid FCA and Kerr effects. The modulated probe beam in SiCx:Si-QD micro-ring resonator with corresponding fitting curves of FCA and Kerr effects at different wavelengths. (a) probe: 1564.82 nm (b) probe: 1564.84 nm (c) probe: 1564.86 nm (d) probe: 1564.88 nm (e) probe: 1564.90 nm (f) probe: 1564.92 nm 19
Figure 2.7 The output power versus input power in the SiCx:Si-QD based all-optical switch. 21
Figure 2.8 The schematic diagrams of TPA induced free carrier and the FCA effect inside the Si-rich SiCx. Left: The TPA effect induced free carrier in the SiCx:Si-QD. Right: TPA effect induced FCA in the SiCx:Si-QD. 22
Figure 2.9 The schematic diagrams of all-optical switching in the SiCx:Si-QD based all-optical XAM switch induced by (a) FCA effect and (b) nonlinear Kerr effect. 23
Figure 2.10 Nonlinear Kerr effect in the SiCx:Si-QD based all-optical XAM switch. (a) The power ratio of modulated probe beam contributed by nonlinear Kerr effect (PKerr) and FCA effect (PFCA) at different wavelength. (b) The transmission spectra of SiCx:Si-QD micro-ring resonator with and without pumping 25
Figure 2.11 All-optical data inversion in SiCx:Si-QD based XAM switch. The delivered PRZ-OOK data with (a) 1.2 and (b) 2.4 Gbit/s in SiCx:Si-QD based XAM switch. 27
Figure 2.12 The repetitively sampled data trace of the inverted PRZ-OOK data in the SiCx:Si-QD based XAM switch. (a) 1.2 and (b) 2.4 Gbit/s PRZ-OOK data obtained at the probe output from the SiCx:Si-QD based XAM switch. 29
Figure 3.1 The XPS spectrum of SiC films with different fluence ratio. 36
Figure 3.2 Architecture of non-stoichiometric SiCx micro-ring resonator (a) The schematic diagram of the non-stoichiometric SiCx micro-ring channel waveguide. (b) The thickness of SiCx film. (c) The SEM image of the non-stoichiometric SiCx micro-ring resonator. 37
Figure 3.3 The experimental setup of pump-probe system (a) The experimental setup of pump-probe system for all-optical nonlinear Kerr and XAM switching. (b) A high intensity pump system and (c) a continue-wave probe system for measuring the all-optical nonlinear Kerr switching of SiCx micro-ring waveguide resonator. 38
Figure 3.4 (a) The refractive index and absorption spectra of the non-stoichiometric SiCx films with different fluence ratio measured by using the ellipsometer. (b) The cross-section view of the non-stoichiometric SiCx based channel waveguide. (c) The simulated fundamental modes at 1550 nm in non-stoichiometric SiCx waveguide with different fluence ratio. 40
Figure 3.5 The SEM images and transmission spectra of SiCx micro-ring waveguide with different composition ratio. (a) The SEM images of SiCx micro-ring waveguide. (b) The experimental and simulated transmission spectra of Si-rich, nearly stoichiometric and C-rich SiCx micro-ring waveguides 41
Figure 3.6 The schematic diagrams nonlinear Kerr effects in the non-stoichiometric SiCx micro-ring waveguide. (a) FCA effect induced all-optical XAM switching in the non-stoichiometric SiCx micro-ring waveguide. (b) Nonlinear Kerr effect induced all-optical XAM switching in the non-stoichiometric SiCx micro-ring waveguide. 44
Figure 3.7 Hybrid XAM and nonlinear Kerr effect in the Si-rich SiCx micro-ring waveguide. (a) The modulated probe beam in Si-rich SiCx micro-ring resonator with corresponding fitting curves of FCA and Kerr effects at different wavelengths. (b) The power ratio of modulated probe beam contributed by nonlinear Kerr effect (PKerr) and FCA effect (PFCA) at different wavelength. (c) The transmission spectra of Si-rich SiCx micro-ring resonator with and without pumping. 46
Figure 3.8 Hybrid XAM and nonlinear Kerr effect in the nearly stoichiometric SiCx micro-ring waveguide. (a) The modulated probe beam in nearly stoichiometric SiCx micro-ring resonator with corresponding fitting curves of FCA and Kerr effects at different wavelengths. (b) The power ratio of modulated probe beam contributed by nonlinear Kerr effect (PKerr) at different wavelength. (c) The transmission spectra of nearly stoichiometric SiCx micro-ring resonator with and without pump beam. 49
Figure 3.9 Nonlinear Kerr effect in the C-rich SiCx micro-ring waveguide. (a) The modulated probe beam in C-rich SiCx micro-ring resonator with corresponding fitting curves of FCA and Kerr effects at different wavelengths. (b) The power ratio of modulated probe beam contributed by nonlinear Kerr effect (PKerr) at different wavelength. (c) The transmission spectra of C-rich SiCx micro-ring resonator with and without pumping. 52
Figure 3.10 1.2-Gbit/s all-optical PRZ-OOK data conversion and inversion in SiCx waveguides with different composition ratios. 55
Figure 3.11 12-Gbit/s all-optical data inversion with PRZ-OOK data format in SiCx waveguide with different composition ratio. 57
Figure 4.1 (a) The cross-section view of the SiCGe based channel waveguide. (b) The simulated fundamental modes at 1550 nm in SiCGe waveguide. (c) The SEM images of the inverse taper and bus waveguide. 63
Figure 4.2 The experimental setup of pump-probe system (a) The experimental setup of pump-probe system for all-optical XAM switching. (b) Long and (c) short pump pulsewidth with (d) a continue-wave probe system for measuring the all-optical nonlinear XAM switching. 64
Figure 4.3 (a) The XPS spectrum of SiCGe film. (b) The refractive index and absorption spectrum of SiCGe film. 65
Figure 4.4 The schematic diagrams of TPA induced free carrier and the FCA effect inside the SiCGe. (a) Left: The TPA effect induced free carrier in the SiCGe. Right: TPA effect induced FCA absorption in the SiCGe. (b) FCA effect induced all-optical XAM switching in the non-stoichiometric SiCGe waveguide. 66
Figure 4.5 Broadband modulation in SiCGe waveguide by TPA induce FCA effect. (a) The optical spectra of pump and probe beams. (b) The pump beam and modulated probe beam in time-domain. 68
Figure 4.6 Broadband modulation in SiCGe waveguide with shorter pump pulse. (a) The optical spectra of pump and probe beams. Inset: the autocorrelation trace of pump pulse. (b) The pump beam and modulated probe beam in time-domain. 69
Figure 4.7 All-optical data inversion with PRZ-OOK data format in the SiCGe waveguide. PRZ-OOK data format delivered by the SiCGe waveguide by the FCA effect. (a) Bit rate: 1.2 Gbit/s (b) Bit rate: 2.4 Gbit/s (c) Bit rate: 4 Gbit/s (d) Bit rate: 6 Gbit/s 73
LIST OF TABLES
Table 2.1 The optical properties and simulated parameters of Si-rich SiCx micro-ring resonator 15
Table 2.2 The simulated parameters from TPA induced FCA and nonlinear Kerr effect in Si-rich SiCx at different wavelength 20
Table 2.3 Performance comparison of the all-optical modulation in the Si-QD based waveguide 30
Table 3.1 The composition ratio of the non-stoichiometric SiCx measured by XPS 36
Table 3.2 The optical properties and simulated parameters of the non-stoichiometric SiCx micro-ring resonators 42
Table 3.3 The simulated parameters from TPA induced FCA and nonlinear Kerr effect in Si-rich SiCx at different wavelength 47
Table 3.4 The simulated parameters from TPA induced FCA and nonlinear Kerr effect in the nearly stoichiometric SiCx waveguide at different wavelength 50
Table 4.1 The simulated parameters from TPA induced FCA effect in SiCGe waveguide at different wavelength 68
Table 4.2 The simulated parameters from TPA induced FCA and nonlinear Kerr effect in SiCGe waveguide at different wavelength with short pulsewidth pump 70
dc.language.isozh-TW
dc.subject雙光子吸收zh_TW
dc.subject非線性克爾效應zh_TW
dc.subject碳化矽zh_TW
dc.subject碳化矽摻鍺zh_TW
dc.subject全光調變器zh_TW
dc.subjectnonlinear Kerr effecten
dc.subjecttwo photon absorptionen
dc.subjectall-optical modulatoren
dc.subjectSiCGeen
dc.subjectSiCen
dc.title基於非線性雙光子吸收與克爾效應之碳化矽/碳化矽摻鍺全光調變器zh_TW
dc.titleSiCx/ SiCGe waveguide all-optical modulator based on nonlinear two photon absorption and Kerr effecten
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳志毅,黃鼎偉,李明昌,李晁逵
dc.subject.keyword雙光子吸收,非線性克爾效應,碳化矽,碳化矽摻鍺,全光調變器,zh_TW
dc.subject.keywordtwo photon absorption,nonlinear Kerr effect,SiC,SiCGe,all-optical modulator,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2015-08-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
4.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved