Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52607
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳國慶
dc.contributor.authorWan-Lin Hsiehen
dc.contributor.author謝萬霖zh_TW
dc.date.accessioned2021-06-15T16:20:13Z-
dc.date.available2018-08-20
dc.date.copyright2015-08-20
dc.date.issued2015
dc.date.submitted2015-08-17
dc.identifier.citation[1] Lippmann G 1875 Relations entre les phénomènes électriques et capillaires: Gauthier-Villars Ann. Chim Phys. 5 494.
[2] Berge B 1993 Electrocapillarité et mouillage de films isolants par l'eau Comptes rendus de l'Académie des sciences Série 2, Mécanique, Physique, Chimie, Sciences de l'univers, Sciences de la Terre 317 157-63.
[3] Fair R B 2007 Digital microfluidics: is a true lab-on-a-chip possible? Microfluid. Nanofluid. 3 245-81.
[4] Berge B and Peseux J 2000 Variable focal lens controlled by an external voltage: An application of electrowetting Eur. Phys. J. E 3 159-63.
[5] Kuiper S and Hendriks B 2004 Variable-focus liquid lens for miniature cameras Appl. Phys. Lett. 85 1128-30.
[6] Krupenkin T, Yang S and Mach P 2003 Tunable liquid microlens Appl. Phys. Lett. 82 316-8.
[7] Murade C, Oh J, Van den Ende D and Mugele F 2011 Electrowetting driven optical switch and tunable aperture Opt. Express 19 15525-31.
[8] Krupenkin T and Taylor J A 2011 Reverse electrowetting as a new approach to high-power energy harvesting Nat. Commun. 2 448.
[9] Hayes R A and Feenstra B 2003 Video-speed electronic paper based on electrowetting Nature 425 383-5.
[10] Sun B and Heikenfeld J 2008 Observation and optical implications of oil dewetting patterns in electrowetting displays J. Micromech. Microeng. 18 025027.
[11] Ku Y S, Kuo S W, Tsai Y H, Cheng P P, Chen J L, Lan K W, Lo K L, Lee K C and Cheng W Y 2012 The Structure and Manufacturing Process of Large Area Transparent Electrowetting Display SID Symp. Dig. Tech. Papers 43 850-2.
[12] Jones T B 2002 On the relationship of dielectrophoresis and electrowetting Langmuir 18 4437-43.
[13] McHale G, Brown C, Newton M I, Wells G and Sampara N 2011 Dielectrowetting driven spreading of droplets Phys. Rev. Lett. 107 186101.
[14] McHale G, Brown C and Sampara N 2013 Voltage-induced spreading and superspreading of liquids Nat. Commun. 4 1605.
[15] Zhou K, Heikenfeld J, Dean K, Howard E and Johnson M 2009 A full description of a simple and scalable fabrication process for electrowetting displays J. Micromech. Microeng. 19 065029.
[16] Ku Y S, Kuo S W, Huang Y S, Chen C Y, Lo K L, Cheng W Y and Shiu J W 2011 Single‐layered multi‐color electrowetting display by using ink‐jet‐printing technology and fluid‐motion prediction with simulation J. Soc. Inf. Disp. 19 488-95.
[17] Giraldo A, Vermeulen P, Figura D, Spreafico M, Meeusen J A, Hampton M W and Novoselov P, editors. Improved Oil Motion Control and Hysteresis‐Free Pixel Switching of Electrowetting Displays. SID Symp. Dig. Tech. Papers 43 265-8.
[18] Roghair I, Musterd M, van den Ende D, Kleijn C, Kreutzer M and Mugele F 2015 A numerical technique to simulate display pixels based on electrowetting Microfluid. Nanofluid. 1-18.
[19] Zhao R, Cumby B, Russell A and Heikenfeld J 2013 Large area and low power dielectrowetting optical shutter with local deterministic fluid film breakup Appl. Phys. Lett. 103 223510.
[20] Russell A and Heikenfeld J 2014 Scaling Dielectrowetting Optical Shutters to Higher Resolution: Microfluidic and Optical Implications Langmuir 30 5357-62.
[21] Mugele F and Baret J C 2005 Electrowetting: from basics to applications J. Phys. Condens. Matter 17 R705.
[22] Brown C, Wells G, Newton M and McHale G 2009 Voltage-programmable liquid optical interface Nat. Photonics 3 403-5.
[23] Oh J M, Ko S H and Kang K H 2008 Shape oscillation of a drop in ac electrowetting Langmuir 24 8379-86.
[24] McManamon P F, Bos P J, Escuti M J, Heikenfeld J, Serati S, Xie H and Watson E 2009 A review of phased array steering for narrow-band electrooptical systems Proc. IEEE 97 1078-96.
[25] Berthier J 2008 Micro-drops and digital microfluidics (New York: William Andrew N).
[26] Baret J C 2005 Morphological transitions in simple electrocapillary systems: tools for microfluidic liquid manipulation (University of Twente).
[27] Eral H and Oh J 2013 Contact angle hysteresis: a review of fundamentals and applications Prog. Colloid Polym. Sci. 291 247-60.
[28] Quere D, de Gennes P, Brochard-Wyart F and Reisinger A 2004 Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (New York: Springer).
[29] Furmidge C 1962 Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention J. Colloid Sci. 17 309-24.
[30] Dussan V E and Chow R T-P 1983 On the ability of drops or bubbles to stick to non-horizontal surfaces of solids J. Fluid Mech. 137 1-29.
[31] Heikenfeld J and Steckl A 2005 Intense switchable fluorescence in light wave coupled electrowetting devices Appl. Phys. Lett. 86 011105.
[32] Heikenfeld J and Steckl A 2005 High-transmission electrowetting light valves Appl. Phys. Lett. 86 151121.
[33] Heikenfeld J, Drzaic P, Yeo J S and Koch T 2011 Review Paper: A critical review of the present and future prospects for electronic paper J. Soc. Inf. Disp. 19 129-56.
[34] Hou L, Smith N and Heikenfeld J 2007 Electrowetting manipulation of any optical film Appl. Phys. Lett. 90 251114.
[35] Smith N R, Abeysinghe D C, Haus J W and Heikenfeld J 2006 Agile wide-angle beam steering with electrowetting microprisms Opt. Express 14 6557-63.
[36] Adamson A W and Gast A P 1967 Physical chemistry of surfaces (New York: John Wiley and Sons).
[37] Sondag-Huethorst J and Fokkink L 1994 Potential-dependent wetting of electroactive ferrocene-terminated alkanethiolate monolayers on gold Langmuir 10 4380-7.
[38] Welters W J and Fokkink L G 1998 Fast electrically switchable capillary effects Langmuir 14 1535-8.
[39] Mugele F and Buehrle J 2007 Equilibrium drop surface profiles in electric fields J. Phys. Condens. Matter 19 375112.
[40] Drygiannakis A I, Papathanasiou A G and Boudouvis A G 2008 On the connection between dielectric breakdown strength, trapping of charge, and contact angle saturation in electrowetting Langmuir 25 147-52.
[41] Schultz A, Chevalliot S, Kuiper S and Heikenfeld J 2013 Detailed analysis of defect reduction in electrowetting dielectrics through a two-layer ‘barrier’approach Thin Solid Films 534 348-55.
[42] Dhindsa M, Heikenfeld J, Weekamp W and Kuiper S 2011 Electrowetting without electrolysis on self-healing dielectrics Langmuir 27 5665-70.
[43] Blake T D, Clarke A and Stattersfield E 2000 An investigation of electrostatic assist in dynamic wetting Langmuir 16 2928-35.
[44] Hong J S, Ko S H, Kang K H and Kang I S 2008 A numerical investigation on AC electrowetting of a droplet Microfluid. Nanofluid. 5 263-71.
[45] Mugele F 2009 Fundamental challenges in electrowetting: from equilibrium shapes to contact angle saturation and drop dynamics Soft Matter 5 3377-84.
[46] Lee J, Moon H, Fowler J, Schoellhammer T and Kim C-J 2002 Electrowetting and electrowetting-on-dielectric for microscale liquid handling Sens. Actuators, A 95 259-68.
[47] Paik P, Pamula V K and Fair R B 2003 Rapid droplet mixers for digital microfluidic systems Lab Chip 3 253-9.
[48] Dieter't Mannetje S G, Lagraauw R, Otten S, Pit A, Berendsen C, Zeegers J, van den Ende D and Mugele F 2014 Trapping of drops by wetting defects Nat. Commun. 5 3559.
[49] Cho S K, Moon H and Kim C-J 2003 Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits J. Microelectromech. Syst.12 70-80.
[50] Srinivasan V, Pamula V K and Fair R B 2004 An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids Lab Chip 4 310-5.
[51] Yoon J Y and Garrell R L 2003 Preventing biomolecular adsorption in electrowetting-based biofluidic chips Anal. Chem.75 5097-102.
[52] Heikenfeld J and Steckl A 2005 Electrowetting light valves with greater than 80% transmission, unlimited view angle, and video response SID Symp. Dig. Tech. Papers 36 1674-77.
[53] Dijk R, Feenstra B, Hayes R, Camps I, Boom R, Wagemans M, Giraldo A, Los R and Feil H 2006 Gray scales for video applications on electrowetting displays SID Symp. Dig. Tech. Papers 37 1926-9.
[54] Rawert J, Jerosch D, Blankenbach K and Bartels F 2010 Bistable D3 electrowetting display products and applications SID Symp. Dig. Tech. Papers 41 199-202.
[55] Giraldo A, Aubert J, Bergeron N, Derckx E, Feenstra B J, Massard R, Mans J, Slack A and Vermeulen P 2010 Transmissive electrowetting‐based displays for portable multimedia devices J Soc Inf Disp. 18 317-25.
[56] Kuo S W, Chang Y P, Cheng W Y, Lo K L, Lee D W, Lee H H, Chen K T, Tsai Y H, Chen Y C and Chiu Y H 2009 Novel development of multi‐color electrowetting display SID Symp. Dig. Tech. Papers 40 483-6.
[57] Heikenfeld J, Zhou K, Kreit E, Raj B, Yang S, Sun B, Milarcik A, Clapp L and Schwartz R 2009 Electrofluidic displays using Young–Laplace transposition of brilliant pigment dispersions Nat. Photonics 3 292-6.
[58] Hagedon M, Yang S, Russell A and Heikenfeld J 2012 Bright e-Paper by transport of ink through a white electrofluidic imaging film Nat. Commun. 3 1173.
[59] Pohl H A and Pohl H 1978 Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields (Cambridge: Cambridge university press).
[60] Agastin S, King M R and Jones T B 2009 Rapid enrichment of biomolecules using simultaneous liquid and particulate dielectrophoresis Lab Chip 9 2319-25.
[61] Weber A P, Seipenbusch M and Kasper G 2003 Size effects in the catalytic activity of unsupported metallic nanoparticles J. Nanopart. Res. 5 293-8.
[62] Fan S K, Huang P W, Wang T T and Peng Y H 2008 Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting Lab Chip 8 1325-31.
[63] Asbury C L, Diercks A H and van den Engh G 2002 Trapping of DNA by dielectrophoresis Electrophoresis 23 2658-66.
[64] Cheng C C, Chang C A and Yeh J A 2006 Variable focus dielectric liquid droplet lens Opt. Express 14 4101-6.
[65] Herminghaus S 1999 Dynamical instability of thin liquid films between conducting media Phys. Rev. Lett. 83 2359.
[66] Staicu A and Mugele F 2006 Electrowetting-induced oil film entrapment and instability Phys. Rev. Lett. 97 167801.
[67] Yue P, Feng J J, Liu C and Shen J 2004 A diffuse-interface method for simulating two-phase flows of complex fluids J. Fluid Mech. 515 293-317.
[68] Cahn J W and Hilliard J E 1958 Free energy of a nonuniform system. I. Interfacial free energy J. Chem. Phys. 28 258.
[69] Castellanos A, Ramos A, Gonzalez A, Green N G and Morgan H 2003 Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws J. Phys. D: Appl. Phys. 36 2584.
[70] Landau L D, Lifšic E M, Sykes J B, Bell J S, Kearsley M and Pitaevskii L P 1960 Electrodynamics of continuous media (Oxford: Pergamon).
[71] Jackson J D 1999 Classical electrodynamics (New York: Wiley).
[72] Amestoy P R, Duff I S, L'Excellent J-Y and Koster J 2001 A fully asynchronous multifrontal solver using distributed dynamic scheduling SIAM J. Matrix Anal. Appl. 23 15-41.
[73] You H and Steckl A 2013 Versatile electrowetting arrays for smart window applications-from small to large pixels on fixed and flexible substrates Sol. Energy Mater. Sol. Cells 117 544-8.
[74] You H and Steckl A 2012 Electrowetting on flexible substrates J. Adhes. Sci. Technol. 26 1931-9.
[75] Jones T B 2005 An electromechanical interpretation of electrowetting J. Micromech. Microeng. 15 1184.
[76] Vermeulen P, Feenstra J, Giraldo A, Hampton M W, Oh J M and Mugele F 2011 Modeling of the Performance of Electrowetting Displays SID Symp. Dig. Tech. Papers 42(1) 1573-6.
[77] Jones T B, Gunji M, Washizu M and Feldman M 2001 Dielectrophoretic liquid actuation and nanodroplet formation J. Appl. Phys. 89 1441-8.
[78] Jones T B, Fowler J D, Chang Y S and Kim C-J 2003 Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation Langmuir 19 7646-51.
[79] Arzpeyma A, Bhaseen S, Dolatabadi A and Wood-Adams P 2008 A coupled electro-hydrodynamic numerical modeling of droplet actuation by electrowetting Colloids Surf., A 323 28-35.
[80] Roques-Carmes T, Hayes R A and Schlangen L J 2004 A physical model describing the electro-optic behavior of switchable optical elements based on electrowetting J. Appl. Phys. 96 6267-71.
[81] Roques-Carmes T, Hayes R A, Feenstra B and Schlangen L 2004 Liquid behavior inside a reflective display pixel based on electrowetting J. Appl. Phys. 95 4389-96.
[82] Lin J L, Lee G B, Chang Y H and Lien K Y 2006 Model description of contact angles in electrowetting on dielectric layers Langmuir 22 484-9.
[83] Sun B, Zhou K, Lao Y, Heikenfeld J and Cheng W 2007 Scalable fabrication of electrowetting displays with self-assembled oil dosing Appl. Phys. Lett. 91 011106.
[84] Pellat H 1895 Mesure de la force agissant sur les diélectriques liquides non électrisés placés dans un champ élitrique CR Acad Sci Paris 119 691-4.
[85] Pohl H A 2004 Some effects of nonuniform fields on dielectrics J. Appl. Phys. 29 1182-8.
[86] Bruus H 2008 Theoretical microfluidics (New York: Oxford University Press).
[87] Green N G, Ramos A and Morgan H 2002 Numerical solution of the dielectrophoretic and travelling wave forces for interdigitated electrode arrays using the finite element method J. Electrostat. 56 235-54.
[88] Ren H, Xu S and Wu S T 2011 Voltage-expandable liquid crystal surface Lab Chip 11 3426-30.
[89] McHale G, Brown C V, Newton M I, Wells G G and Sampara N 2012 Developing interface localized liquid dielectrophoresis for optical applications Photonics Asia 855703-8.
[90] Brown C V, McHale G and Mottram N J 2011 Analysis of a static undulation on the surface of a thin dielectric liquid layer formed by dielectrophoresis forces J. Appl. Phys. 110 024107.
[91] Lorrain P and Corson D 1970 Electromagnetic fields and waves (New York: Freeman).
[92] Masuda S, Washizu M and Iwadare M 1987 Separation of small particles suspended in liquid by nonuniform traveling field EEE Trans. Ind. Appl. 3 474-80.
[93] Morgan H, Izquierdo A G, Bakewell D, Green N G and Ramos A 2001 The dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays: analytical solution using Fourier series J. Phys. D: Appl. Phys. 34 1553.
[94] Wang X, Wang X B, Becker F and Gascoyne P R 1996 A theoretical method of electrical field analysis for dielectrophoretic electrode arrays using Green's theorem J. Phys. D: Appl. Phys. 29 1649.
[95] Rosenthal A and Voldman J 2005 Dielectrophoretic traps for single-particle patterning Biophys. J. 88 2193-205.
[96] Wang X B, Huang Y, Burt J, Markx G and Pethig R 1993 Selective dielectrophoretic confinement of bioparticles in potential energy wells J. Phys. D: Appl. Phys. 26 1278.
[97] Hughes M P, Pethig R and Wang X B 1996 Dielectrophoretic forces on particles in travelling electric fields J. Phys. D: Appl. Phys. 29 474.
[98] Redon C, Brochard-Wyart F and Rondelez F 1991 Dynamics of dewetting Phys. Rev. Lett. 66 715.
[99] Taylor G and Michael D 1973 On making holes in a sheet of fluid J. Fluid Mech. 58 625-39.
[100] Sharma A and Ruckenstein E 1989 Dewetting of solids by the formation of holes in macroscopic liquid films J. Colloid Interface Sci. 133 358-68.
[101] Wells G, Trabi C and Brown C 2010 Fast reconfigurable liquid optical interface: investigation of higher harmonics in the periodic liquid surface wrinkle Proc. SPIE 7716 art. 7160G.
[102] Brown C, Wells G G, Newton M and McHale G 2009 Voltage-programmable liquid optical interface Nat. Photonics 3 403-5.
[103] Brown C, Al-Shabib W, Wells G, McHale G and Newton M I 2010 Amplitude scaling of a static wrinkle at an oil-air interface created by dielectrophoresis forces Appl. Phys. Lett. 97 242904.
[104] Cooney C G, Chen C Y, Emerling M R, Nadim A and Sterling J D 2006 Electrowetting droplet microfluidics on a single planar surface Microfluid. Nanofluid. 2 435-46.
[105] Hou L, Zhang J, Smith N, Yang J and Heikenfeld J 2010 A full description of a scalable microfabrication process for arrayed electrowetting microprisms J. Micromech. Microeng. 20 015044.
[106] Hsieh W L, Lin C H, Lo K L, Lee K C, Cheng W Y and Chen K C 2014 3D electrohydrodynamic simulation of electrowetting displays J. Micromech. Microeng. 24 125024.
[107] Chang R L J, Liu P W, Wu C Y, Cheng P P, Chen J L, Chen K C and Hsieh W L 2014 Reliable and High Performance Transparent Electrowetting Displays SID Symp. Dig. Tech. Papers 45(1) 758-8.
[108] Russell A, Hsieh W L, Chen K C and Heikenfeld J 2014 Experimental and Numerical Insights into Isotropic Spreading and Deterministic Dewetting of Dielectrowetted Films Langmuir 31 637-42.
[109] Chevalliot S, Heikenfeld J, Clapp L, Milarcik A and Vilner S 2011 Analysis of nonaqueous electrowetting fluids for displays J. Disp. Technol. 7 649-56.
[110] Maillard M, Legrand J and Berge B 2009 Two liquids wetting and low hysteresis electrowetting on dielectric applications Langmuir 25 6162-7.
[111] Jones T B, Wang K L and Bei S 2006 Interfacial transients at a moving liquid meniscus 13th Int'l Coating Science and Technology Symposium.
[112] Washio H, Maeda K, Kaise Y, Kubota Y, Hijikigawa M, Brownlow M and Cairns G 2001 TFT‐LCDs with monolithic multi‐Drivers for high performance video and low‐power text modes SID Symp. Dig. Tech. Papers 32 276-9.
[113] Bucaro M A, Kolodner P R, Taylor J A, Sidorenko A, Aizenberg J and Krupenkin T N 2008 Tunable liquid optics: electrowetting-controlled liquid mirrors based on self-assembled janus tiles Langmuir 25 3876-9.
[114] de Boer B, Suijver F, Megens M, Deladi S and Kuiper S 2010 Control of an electrowetting-based beam deflector J. Appl. Phys. 107 063101.
[115] Yole Development 2013 Microfluidic applications in the pharmaceutical, life sciences, in-vitro diagnostic and medical device markets report.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52607-
dc.description.abstract近十年來,液體介面的電操控已廣泛運用在微流體元件的應用上。然而,液體於元件內之動態運動行為無法從實驗中清楚解析。因此,我們開發一個考慮弱介電質模型的電流體力學理論與相場法之間耦合的數值模擬方法來求解液體介面受到外加電場影響後隨時間變形的課題。透過此弱介電質模型的假設,我們提出的數值模擬模型可以模擬無論以導電液體或介電液體為操控目標的微流體原件。
我們針對電濕潤顯示器畫素內導電液體與介電液體之介面的動態運動行為進行討論。我們所發展的數值模型成功模擬了畫素開啟時的反濕潤與電濕潤現象及畫素關閉時的流體攤平現象。考慮液體接觸角隨電壓的變化於模型中,電壓與開口率的模擬結果與相關的實驗測試相當吻合。此外,我們亦藉由數值模擬模型的參數分析探討了電濕潤顯示器在驅動過程中所發生的油墨分裂、油墨跳墨以及油墨平鋪不均等元件缺陷的現象。釐清元件缺陷的原因後,我們成功開發了一個高穩定的電濕潤顯示器。
此篇論文亦由宏觀與微觀的層面討論了介電液體與空氣間介面受到外加電場影響所產生的介電濕潤現象。我們藉由實驗與數值模型探討了液體表面的皺褶行為、電極形狀與液滴大小對液體等向流動之課題,以及液體在電壓釋放後之反濕潤現象。這些結果提供了許多與介電濕潤理論相關的資訊於介電濕潤光閘元件的開發上。
過去已提出的液體介面電操控的方式僅能製作出週期性之形狀(對稱波)或球狀結構(僅有兩個主曲率半徑)。在此研究中,我們開發了兩種能夠建構更複雜流體介面形狀的電操控方法。第一種電操控方式是藉由電容值感應的回饋控制使得每個控制電極上方之流體厚度能夠被準確掌控;而第二種電操控方式是透過電極產生多個週期性的輸出波形導致流體以傅立葉組合的形式建構出複雜的形狀。過去在電濕潤應用所使用的材料可以直接運用於此開發元件上。此外,因為流體在操控時的反應速度足夠慢(毫秒-微秒),使得傳統的電子控制元件(微秒-奈秒)足夠匹配。最後,由於此元件中的導電液體不會碰觸電極上方的固態表面,因此介電材料的特性退化議題可以被忽略。
zh_TW
dc.description.abstractElectrically based control of the geometry or transport of a fluid meniscus has been a technological trend used in microfluidic applications in the last decade. Aside from experiments, numerical models could provide an effective tool for testing the feasibility of device applications. Here, we present a numerical simulation technique to calculate the deformation of fluids at interfaces by coupling the electrohydrodynamic (EHD) theory considering the assumption of leaky dielectric model with the Phase Field Method (PFM). With the assumption, the proposed model could simulate the interaction of a fluid-fluid interface with an electric field, using conductive liquids as well as dielectric liquids.
The fluid dynamic behavior within a pixel of an electrowetting display (EWD) is studied. The complete switch processes, including the break-up and the electrowetting stages in the switch-on process (with voltage) and the oil spreading in the switch-off process (without voltage), are successfully simulated. By considering the factor of the change in the apparent contact angle at the contact line, the electro-optic performance obtained from the simulation is found to agree well with its corresponding experiment. In addition, the proposed modeling is used to parametrically predict the effect of interfacial (e.g., contact angle of grid) and geometric (e.g., oil thickness and pixel size) properties on the defects of an EWD, such as oil dewetting patterns, oil overflow, and oil non-recovery. With the help of the defect analysis, a highly stable EWD is both experimentally realized and numerically analyzed.
Dielectrowetting effects of surface wrinkling, droplet size, isotropic vs. anisotropic spreading, electrode geometry, and deterministic dewetting, are presented both experimentally and by the developed model. The dynamic behavior of the two phase system has been accurately characterized on both the macro and microscopic level. These results can be used to further optimize dielectrowetting optical shutter and to provide a deeper theoretical insight into the operating physics of dielectrowetting effect.
Existing techniques for electronic control of the interface between two immiscible fluids are typically limited to simple periodic geometries (symmetric waves) or spherical geometries (only two principle radii of curvature). Presented here, is a new technique with much more sophisticated electronic control of fluid meniscus geometry. Two distinct approaches are demonstrated: (1) application of voltages, electrical capacitance sensing of meniscus geometry, followed by further feedback control of the applied voltages based on the sensed electrical capacitance; (2) use of multiple periodic voltage waveforms and wave propagation across the meniscus to build up complex meniscus geometries by Fourier construction. The results can be achieved using conventional materials, and the fluids respond with speeds that are adequately slow (ms-µs) such that even conventional control electronics (µs-ns) are more than adequate. Furthermore, because the conducting fluid never dewets the oil film from the solid surface, dielectric degradation issues are likely eliminated.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:20:13Z (GMT). No. of bitstreams: 1
ntu-104-D99543013-1.pdf: 7743674 bytes, checksum: 7579d4e7eb175174d50e06ce86b5f142 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsAcknowledgement i
Abstract (Chinese) ii
Abstract (English) iv
Table of Contents vii
List of Figures x
List of Tables xviii
List of Symbols xixx
Chapter 1: Introduction 1
1.1. Background and preface 1
1.2. Motivation and Innovations 5
1.3. Thesis outline 9
Chapter 2: Scientific Background 12
2.1. Wetting 12
2.1.1. Young angle 12
2.1.2. Hysteresis 16
2.2. Electrowetting 18
2.2.1. Electrowetting theory 20
2.2.2. Electrowetting defects 29
2.2.3. Electrowetting applications 33
2.3. Dielectrowetting 42
2.3.1. Dielectrophoresis theory 42
2.3.2. Dielectrowetting theory 46
2.4. Spinodal dewetting theory 49
Chapter 3: Electrohydrodynamic Model for Two-Phase Flow Problems………. 52
3.1. Simulation of moving interface 52
3.2. Simulation of electric field 55
3.3. Simulation of flow field 56
3.4. Validation of electric field calculation 56
3.5. Coupling work 58
3.6. Study solver 60
Chapter 4: Experimental Study and 3D Electrohydrodynamic Simulation of Electrowetting-Based Pixels 61
4.1. Introduction 63
4.2. Numerical methodology 68
4.2.1. Governing equation 70
4.2.2. Boundary conditions 72
4.3. Results and discussion 74
4.3.1. Electro-optic performance 77
4.3.2. Operation processes 81
4.3.3. Effect of hydrophilicity of grid on optical performance………………89
4.3.4. Effect of oil thickness on oil non-recovery 93
4.3.5. Highly reliable EW display 98
Chapter 5: Experimental and Numerical Insights into Isotropic Spreading and Deterministic Dewtting of Dielectrowetted Films 102
5.1. Introduction 103
5.2. Fabrication 105
5.3. Numerical modeling 105
5.3.1. Moving interface 106
5.3.2. Electrohydrodynamic method 107
5.3.3. Boundary conditions 108
5.4. Results and discussion 108
5.4.1. Voltage-dependent contact angle 109
5.4.2. Surface wrinkling 110
5.4.3. Insights into isotropic spreading 112
5.4.4. Effect of dielectric thickness 115
5.4.5. Effect of electrode morphology 117
5.4.6. Predictive splitting process 119
Chapter 6: Sophisticated Oil Film Geometries through Incomplete Electrical Dewetting by Feedback Control and Fourier Construction 122
6.1. Introduction 124
6.2. Numerical modeling 127
6.2.1. Simulation of dynamic interface 127
6.2.2. Simulation of electric field 129
6.2.3. Simulation of flow field 129
6.2.4. Boundary conditions 130
6.3. Fundamentals and methods 130
6.3.1. Basic device structure and operation 130
6.3.2. Exploring the limit of oil film stability against dewetting 134
6.3.3. Fundamentals of the feedback method 139
6.4. Results and discussion 141
6.4.1. The feedback method 141
6.4.2. The wave methods (Fourier construction) 150
Chapter 7: Improved Optimization of Agile Fluid Film Device 155
7.1. Control decision delay time 156
7.2. Control algorithms 158
7.2.1. Control voltages 158
7.2.2. Control signals 163
7.3. Removal of a dielectric layer 165
7.4. Beam steering application 166
Chapter 8: Conclusion and Future Works 169
8.1. Conclusion 169
8.1.1. Electrowetting display 169
8.1.2. Dielectrowetting optical shutter 170
8.1.3. Sophisticated oil film geometry via feedback control and Fourier construction 171
8.2. Future works 172
8.2.1. Electrowetting display 173
8.2.2. Dielectrowetting optical shutter 174
8.2.3. Sophisticated oil film geometry via feedback control and Fourier construction 175
Reference 176
Appendix 187
Appendix A: White area fraction calculation 187
Appendix B: Optical shutter process sheet 189
Appendix C: Oil dewetting patterns in an electrowetting pixel 191
Appendix D: Calculation for the equivalent capacitance 193
Appendix E: Fourier series approximation 194
dc.language.isoen
dc.title液體介面之電操控:電濕潤、介電濕潤及反濕潤zh_TW
dc.titleElectrical Control of Liquids at Interfaces: Electrowetting, Dielectrowetting, and Dewettingen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree博士
dc.contributor.oralexamcommittee李雨,范士岡,薛英家,鄭惟元
dc.subject.keyword電流體力學理論,相場法,弱介電質模型,電濕潤顯示器,介電濕潤光閘元件,回饋控制,傅立葉組合,zh_TW
dc.subject.keywordelectrohydrodynamic theory,Phase Field Method,leaky dielectric model,electrowetting display,dielectrowetting optical shutter,feedback control,Fourier construction,en
dc.relation.page194
dc.rights.note有償授權
dc.date.accepted2015-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
7.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved