請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52604完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張崇毅(Chung-I Chang) | |
| dc.contributor.author | Ming-Yuan Su | en |
| dc.contributor.author | 蘇明媛 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:20:07Z | - |
| dc.date.available | 2015-09-17 | |
| dc.date.copyright | 2015-09-17 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-17 | |
| dc.identifier.citation | Andrei-Selmer, C., Knuppel, A., Satyanarayana, C., Heese, C., and Schu, P.V. (2001). A new class of mutants deficient in dodecamerization of aminopeptidase 1 and vacuolar transport. The Journal of biological chemistry 276, 11606-11614.
Apostolovic, B., Danial, M., and Klok, H.A. (2010). Coiled coils: attractive protein folding motifs for the fabrication of self-assembled, responsive and bioactive materials. Chem Soc Rev 39, 3541-3575. Araki, Y., Ku, W.C., Akioka, M., May, A.I., Hayashi, Y., Arisaka, F., Ishihama, Y., and Ohsumi, Y. (2013). Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity. The Journal of cell biology 203, 299-313. Baba, M., Osumi, M., Scott, S.V., Klionsky, D.J., and Ohsumi, Y. (1997). Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome. J Cell Biol 139, 1687-1695. Bailey, S. (1994). The Ccp4 Suite - Programs for Protein Crystallography. Acta Crystallogr D 50, 760-763. Bauckman, K.A., Owusu-Boaitey, N., and Mysorekar, I.U. (2015). Selective autophagy: xenophagy. Methods 75, 120-127. Behrends, C., Sowa, M.E., Gygi, S.P., and Harper, J.W. (2010). Network organization of the human autophagy system. Nature 466, 68-76. Birgisdottir, A.B., Lamark, T., and Johansen, T. (2013). The LIR motif - crucial for selective autophagy. Journal of cell science 126, 3237-3247. Chaikuad, A., Pilka, E.S., De Riso, A., von Delft, F., Kavanagh, K.L., Venien-Bryan, C., Oppermann, U., and Yue, W.W. (2012). Structure of human aspartyl aminopeptidase complexed with substrate analogue: insight into catalytic mechanism, substrate specificity and M18 peptidase family. BMC Struct Biol 12, 14. Cowtan, K. (2006). The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D 62, 1002-1011. Dikic, I., Johansen, T., and Kirkin, V. (2010). Selective autophagy in cancer development and therapy. Cancer Res 70, 3431-3434. Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132. Fujioka, Y., Suzuki, S.W., Yamamoto, H., Kondo-Kakuta, C., Kimura, Y., Hirano, H., Akada, R., Inagaki, F., Ohsumi, Y., and Noda, N.N. (2014). Structural basis of starvation-induced assembly of the autophagy initiation complex. Nature structural & molecular biology 21, 513-521. Fujita, N., Itoh, T., Omori, H., Fukuda, M., Noda, T., and Yoshimori, T. (2008). The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Molecular biology of the cell 19, 2092-2100. Gomes, L.C., and Scorrano, L. (2013). Mitochondrial morphology in mitophagy and macroautophagy. Biochimica et biophysica acta 1833, 205-212. Hamai, A., and Codogno, P. (2012). New targets for acetylation in autophagy. Science signaling 5, pe29. Hayes D., L.T., Philo J. (1995). Program Sednterp: Sedimentation Interpretation Program, Alliance Protein Laboratories, Thousand Oaks, CA. Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., Mizushima, N., Tanida, I., Kominami, E., Ohsumi, M., et al. (2000). A ubiquitin-like system mediates protein lipidation. Nature 408, 488-492. Ivanov, S., and Roy, C.R. (2009). NDP52: the missing link between ubiquitinated bacteria and autophagy. Nature immunology 10, 1137-1139. Jao, C.C., Ragusa, M.J., Stanley, R.E., and Hurley, J.H. (2013). A HORMA domain in Atg13 mediates PI 3-kinase recruitment in autophagy. Proceedings of the National Academy of Sciences of the United States of America 110, 5486-5491. Kadandale, P., and Kiger, A.A. (2010). Role of selective autophagy in cellular remodeling: 'self-eating' into shape. Autophagy 6, 1194-1195. Kamada, Y., Funakoshi, T., Shintani, T., Nagano, K., Ohsumi, M., and Ohsumi, Y. (2000). Tor-mediated induction of autophagy via an Apg1 protein kinase complex. The Journal of cell biology 150, 1507-1513. Kantardjieff, K.A., and Rupp, B. (2003). Matthews coefficient probabilities: Improved estimates for unit cell contents of proteins, DNA, and protein-nucleic acid complex crystals. Protein science : a publication of the Protein Society 12, 1865-1871. Karplus, P.A., and Diederichs, K. (2012). Linking crystallographic model and data quality. Science 336, 1030-1033. Khalfan, W.A., and Klionsky, D.J. (2002). Molecular machinery required for autophagy and the cytoplasm to vacuole targeting (Cvt) pathway in S. cerevisiae. Curr Opin Cell Biol 14, 468-475. Khaminets, A., Heinrich, T., Mari, M., Grumati, P., Huebner, A.K., Akutsu, M., Liebmann, L., Stolz, A., Nietzsche, S., Koch, N., et al. (2015). Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522, 354-358. Kihara, A., Noda, T., Ishihara, N., and Ohsumi, Y. (2001). Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. The Journal of cell biology 152, 519-530. Kim, J., Scott, S.V., Oda, M.N., and Klionsky, D.J. (1997). Transport of a large oligomeric protein by the cytoplasm to vacuole protein targeting pathway. The Journal of cell biology 137, 609-618. Kirkin, V., Lamark, T., Sou, Y.S., Bjorkoy, G., Nunn, J.L., Bruun, J.A., Shvets, E., McEwan, D.G., Clausen, T.H., Wild, P., et al. (2009a). A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Molecular cell 33, 505-516. Kirkin, V., McEwan, D.G., Novak, I., and Dikic, I. (2009b). A role for ubiquitin in selective autophagy. Molecular cell 34, 259-269. Klionsky, D.J. (2005). The molecular machinery of autophagy: unanswered questions. Journal of cell science 118, 7-18. Klionsky, D.J., Cueva, R., and Yaver, D.S. (1992). Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. J Cell Biol 119, 287-299. Klionsky, D.J., and Ohsumi, Y. (1999). Vacuolar import of proteins and organelles from the cytoplasm. Annual review of cell and developmental biology 15, 1-32. Lamark, T., and Johansen, T. (2012). Aggrephagy: selective disposal of protein aggregates by macroautophagy. International journal of cell biology 2012, 736905. Levine, B., and Kroemer, G. (2008). SnapShot: Macroautophagy. Cell 132, 162 e161-162 e163. Li, W.W., Li, J., and Bao, J.K. (2012). Microautophagy: lesser-known self-eating. Cellular and molecular life sciences : CMLS 69, 1125-1136. Liao, J.H., Ihara, K., Kuo, C.I., Huang, K.F., Wakatsuki, S., Wu, S.H., and Chang, C.I. (2013). Structures of an ATP-independent Lon-like protease and its complexes with covalent inhibitors. Acta crystallographica Section D, Biological crystallography 69, 1395-1402. Liu, R., Zhi, X., and Zhong, Q. (2015). ATG14 controls SNARE-mediated autophagosome fusion with a lysosome. Autophagy 11, 847-849. Loffler, H.G., and Rohm, K.H. (1979). Comparative studies on the dodecameric and hexameric forms of yeast aminopeptidase I. Zeitschrift fur Naturforschung Section C: Biosciences 34C, 381-386. Lunemann, J.D., Schmidt, J., Schmid, D., Barthel, K., Wrede, A., Dalakas, M.C., and Munz, C. (2007). Beta-amyloid is a substrate of autophagy in sporadic inclusion body myositis. Ann Neurol 61, 476-483. Mao, K., Chew, L.H., Inoue-Aono, Y., Cheong, H., Nair, U., Popelka, H., Yip, C.K., and Klionsky, D.J. (2013). Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation. Proceedings of the National Academy of Sciences of the United States of America 110, E2875-2884. Marino, G., and Lopez-Otin, C. (2004). Autophagy: molecular mechanisms, physiological functions and relevance in human pathology. Cellular and molecular life sciences : CMLS 61, 1439-1454. Martinez, E., Jimenez, M.A., Segui-Real, B., Vandekerckhove, J., and Sandoval, I.V. (1997). Folding of the presequence of yeast pAPI into an amphipathic helix determines transport of the protein from the cytosol to the vacuole. Journal of molecular biology 267, 1124-1138. Marx, R., Metz, G., and Rohn, K.H. (1977). The quaternary structure of yeast aminopeptidase I. 2. Geometric arrangement of subunits. Zeitschrift fur Naturforschung Section C: Biosciences 32, 938-943. Matthews, B.W. (1968). Solvent content of protein crystals. Journal of molecular biology 33, 491-497. Mccoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J Appl Crystallogr 40, 658-674. Meijer, W.H., van der Klei, I.J., Veenhuis, M., and Kiel, J.A. (2007). ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes. Autophagy 3, 106-116. Metz, G., Marx, R., and Rohm, K.H. (1977). The quaternary structure of yeast aminopeptidase I. 1. Molecular forms and subunit size. Zeitschrift fur Naturforschung Section C: Biosciences 32, 929-937. Metz, G., and Rohm, K.H. (1976). Yeast aminopeptidase I. Chemical composition and catalytic properties. Biochimica et biophysica acta 429, 933-949. Mijaljica, D., Nazarko, T.Y., Brumell, J.H., Huang, W.P., Komatsu, M., Prescott, M., Simonsen, A., Yamamoto, A., Zhang, H., Klionsky, D.J., et al. (2012). Receptor protein complexes are in control of autophagy. Autophagy 8, 1701-1705. Miyamoto, T., Asahina, Y., Miyazaki, S., Shimizu, H., Ohto, U., Noguchi, S., and Satow, Y. (2011). Structures of the SEp22 dodecamer, a Dps-like protein from Salmonella enterica subsp. enterica serovar Enteritidis. Acta Crystallogr Sect F Struct Biol Cryst Commun 67, 17-22. Mizushima, N., and Levine, B. (2010). Autophagy in mammalian development and differentiation. Nature cell biology 12, 823-830. Mizushima, N., Noda, T., Yoshimori, T., Tanaka, Y., Ishii, T., George, M.D., Klionsky, D.J., Ohsumi, M., and Ohsumi, Y. (1998). A protein conjugation system essential for autophagy. Nature 395, 395-398. Morales Quinones, M., Winston, J.T., and Stromhaug, P.E. (2012). Propeptide of aminopeptidase 1 protein mediates aggregation and vesicle formation in cytoplasm-to-vacuole targeting pathway. The Journal of biological chemistry 287, 10121-10133. Murshudov, G.N., Skubak, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Long, F., and Vagin, A.A. (2011). REFMAC5 for the refinement of macromolecular crystal structures. Acta crystallographica Section D, Biological crystallography 67, 355-367. Nice, D.C., Sato, T.K., Stromhaug, P.E., Emr, S.D., and Klionsky, D.J. (2002). Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy. The Journal of biological chemistry 277, 30198-30207. Nixon, R.A. (2013). The role of autophagy in neurodegenerative disease. Nature medicine 19, 983-997. Noda, N.N., Kobayashi, T., Adachi, W., Fujioka, Y., Ohsumi, Y., and Inagaki, F. (2012). Structure of the novel C-terminal domain of vacuolar protein sorting 30/autophagy-related protein 6 and its specific role in autophagy. The Journal of biological chemistry 287, 16256-16266. Noda, N.N., Kumeta, H., Nakatogawa, H., Satoo, K., Adachi, W., Ishii, J., Fujioka, Y., Ohsumi, Y., and Inagaki, F. (2008). Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes to cells : devoted to molecular & cellular mechanisms 13, 1211-1218. Noda, N.N., Ohsumi, Y., and Inagaki, F. (2010). Atg8-family interacting motif crucial for selective autophagy. FEBS letters 584, 1379-1385. Oda, M.N., Scott, S.V., Hefner-Gravink, A., Caffarelli, A.D., and Klionsky, D.J. (1996). Identification of a cytoplasm to vacuole targeting determinant in aminopeptidase I. The Journal of cell biology 132, 999-1010. Orenstein, S.J., and Cuervo, A.M. (2010). Chaperone-mediated autophagy: molecular mechanisms and physiological relevance. Seminars in cell & developmental biology 21, 719-726. Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Macromolecular Crystallography, Pt A 276, 307-326. Pankiv, S., Clausen, T.H., Lamark, T., Brech, A., Bruun, J.A., Outzen, H., Overvatn, A., Bjorkoy, G., and Johansen, T. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. The Journal of biological chemistry 282, 24131-24145. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25, 1605-1612. Puleston, D.J., and Simon, A.K. (2014). Autophagy in the immune system. Immunology 141, 1-8. Rawlings, N.D., and Barrett, A.J. (1999). MEROPS: the peptidase database. Nucleic acids research 27, 325-331. Ruck, A., Attonito, J., Garces, K.T., Nunez, L., Palmisano, N.J., Rubel, Z., Bai, Z., Nguyen, K.C., Sun, L., Grant, B.D., et al. (2011). The Atg6/Vps30/Beclin 1 ortholog BEC-1 mediates endocytic retrograde transport in addition to autophagy in C. elegans. Autophagy 7, 386-400. Sawa-Makarska, J., Abert, C., Romanov, J., Zens, B., Ibiricu, I., and Martens, S. (2014). Cargo binding to Atg19 unmasks additional Atg8 binding sites to mediate membrane-cargo apposition during selective autophagy. Nat Cell Biol 16, 425-433. Schuck, P. (2000). Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78, 1606-1619. Schuck, P. (2003). On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Anal Biochem 320, 104-124. Schweers, R.L., Zhang, J., Randall, M.S., Loyd, M.R., Li, W., Dorsey, F.C., Kundu, M., Opferman, J.T., Cleveland, J.L., Miller, J.L., et al. (2007). NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proceedings of the National Academy of Sciences of the United States of America 104, 19500-19505. Scott, S.V., Baba, M., Ohsumi, Y., and Klionsky, D.J. (1997). Aminopeptidase I is targeted to the vacuole by a nonclassical vesicular mechanism. J Cell Biol 138, 37-44. Scott, S.V., Guan, J., Hutchins, M.U., Kim, J., and Klionsky, D.J. (2001). Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway. Molecular cell 7, 1131-1141. Segui-Real, B., Martinez, M., and Sandoval, I.V. (1995). Yeast aminopeptidase I is post-translationally sorted from the cytosol to the vacuole by a mechanism mediated by its bipartite N-terminal extension. The EMBO journal 14, 5476-5484. Sivaraman, K.K., Oellig, C.A., Huynh, K., Atkinson, S.C., Poreba, M., Perugini, M.A., Trenholme, K.R., Gardiner, D.L., Salvesen, G., Drag, M., et al. (2012). X-ray crystal structure and specificity of the Plasmodium falciparum malaria aminopeptidase PfM18AAP. Journal of molecular biology 422, 495-507. Stein, N. (2008). CHAINSAW: a program for mutating pdb files used as templates in molecular replacement. J Appl Crystallogr 41, 641-643. Stolz, A., Ernst, A., and Dikic, I. (2014). Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16, 495-501. Su, M.Y., Kuo, C.I., Chang, C.F., and Chang, C.I. (2013). Three-dimensional structure of human NLRP10/PYNOD pyrin domain reveals a homotypic interaction site distinct from its mouse homologue. PloS one 8, e67843. Sugawara, K., Suzuki, N.N., Fujioka, Y., Mizushima, N., Ohsumi, Y., and Inagaki, F. (2004). The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes to cells : devoted to molecular & cellular mechanisms 9, 611-618. Suzuki, K., Kamada, Y., and Ohsumi, Y. (2002). Studies of cargo delivery to the vacuole mediated by autophagosomes in Saccharomyces cerevisiae. Dev Cell 3, 815-824. Suzuki, K., Kirisako, T., Kamada, Y., Mizushima, N., Noda, T., and Ohsumi, Y. (2001). The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20, 5971-5981. Suzuki, N.N., Yoshimoto, K., Fujioka, Y., Ohsumi, Y., and Inagaki, F. (2005). The crystal structure of plant ATG12 and its biological implication in autophagy. Autophagy 1, 119-126. Suzuki, S.W., Yamamoto, H., Oikawa, Y., Kondo-Kakuta, C., Kimura, Y., Hirano, H., and Ohsumi, Y. (2015). Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation. Proceedings of the National Academy of Sciences of the United States of America 112, 3350-3355. Tang, G., Peng, L., Baldwin, P.R., Mann, D.S., Jiang, W., Rees, I., and Ludtke, S.J. (2007). EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157, 38-46. Tarini, M., Cignoni, P., and Montani, C. (2006). Ambient occlusion and edge cueing to enhance real time molecular visualization. IEEE transactions on visualization and computer graphics 12, 1237-1244. Teter, S.A., Eggerton, K.P., Scott, S.V., Kim, J., Fischer, A.M., and Klionsky, D.J. (2001). Degradation of lipid vesicles in the yeast vacuole requires function of Cvt17, a putative lipase. The Journal of biological chemistry 276, 2083-2087. Vagin, A., and Teplyakov, A. (1997). MOLREP: an automated program for molecular replacement. J Appl Crystallogr 30, 1022-1025. Watanabe, Y., Noda, N.N., Kumeta, H., Suzuki, K., Ohsumi, Y., and Inagaki, F. (2010). Selective transport of alpha-mannosidase by autophagic pathways: structural basis for cargo recognition by Atg19 and Atg34. The Journal of biological chemistry 285, 30026-30033. Weiss, M.S. (2001). Global indicators of X-ray data quality. J Appl Crystallogr 34, 130-135. Wild, P., Farhan, H., McEwan, D.G., Wagner, S., Rogov, V.V., Brady, N.R., Richter, B., Korac, J., Waidmann, O., Choudhary, C., et al. (2011). Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228-233. Xie, Z., Nair, U., and Klionsky, D.J. (2008). Atg8 controls phagophore expansion during autophagosome formation. Molecular biology of the cell 19, 3290-3298. Yang, Z., Huang, J., Geng, J., Nair, U., and Klionsky, D.J. (2006). Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Molecular biology of the cell 17, 5094-5104. Yang, Z., and Klionsky, D.J. (2010). Eaten alive: a history of macroautophagy. Nat Cell Biol 12, 814-822. Yordy, B., Tal, M.C., Hayashi, K., Arojo, O., and Iwasaki, A. (2013). Autophagy and selective deployment of Atg proteins in antiviral defense. Int Immunol 25, 1-10. Yorimitsu, T., and Klionsky, D.J. (2005a). Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway. Mol Biol Cell 16, 1593-1605. Yorimitsu, T., and Klionsky, D.J. (2005b). Autophagy: molecular machinery for self-eating. Cell death and differentiation 12 Suppl 2, 1542-1552. Yoshihisa, T., and Anraku, Y. (1990). A novel pathway of import of alpha-mannosidase, a marker enzyme of vacuolar membrane, in Saccharomyces cerevisiae. The Journal of biological chemistry 265, 22418-22425. Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 40. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52604 | - |
| dc.description.abstract | 在酵母菌中,細胞質至液泡傳遞途徑(cytoplasm-to-vacuole targeting pathway;Cvt pathway)這生物合成運輸方法會利用細胞自噬機關把前驅物aminopeptidase I (precursor aminopeptidase I;prApe1)聚合物隔絕進Cvt囊泡進而運送到液泡;在那它會被蛋白酶水解去除掉氨基末端45個氨基酸而形成其成熟形態Ape1。prApe1被視為扮演著Cvt囊泡組成中鷹架的重要角色,它可以利用其氨基末端的45個胺基酸propeptide來促成更高階之聚合物的形成以及細胞自噬受器的辦認。在本篇論文中展示了解析度為2.5埃的Ape1 X-光繞射晶體結構,揭露它的十二元體結構是由二聚體和三聚體子單元組成而成的四面體外觀。Propeptide具有濃度依賴性的聚合現象而且會形成一個穩定的四聚體。利用結構根據的突變實驗證明了儘管有propeptide的存在,但破壞了單元間的接觸面會防止十二元體的形成和液泡運輸。此外,把propeptide融合到多個會形成四級結構的蛋白上再去檢查它們的液泡輸入,發現propeptide在這些鷹架蛋白上的三度空間分佈對囊泡形成是重要的。本篇論文提供了一個機械性的啟示來更進一步了解選擇性細胞自噬中的Cvt或細胞自噬囊泡生合成的機制。 | zh_TW |
| dc.description.abstract | In Saccharomyces cerevisiae, a constitutive biosynthetic transport pathway, termed the cytoplasm-to-vacuole targeting (Cvt) pathway, encapsulates precursor aminopeptidase I (prApe1) dodecamers in the form of a giant complex into a Cvt vesicle using the autophagic machinery, sorting it into the vacuole (the yeast lysosome) where it is proteolytically processed into its mature form, Ape1, by removal of an amino-terminal 45-amino acid propeptide. prApe1 is thought to serve as a scaffolding cargo vital for the assembly of the Cvt vesicle by presenting the propeptide to mediate higher-ordered complex construction and autophagic receptor recognition. This dissertation presents the molecular architecture of Ape1 at 2.5 Å resolution and reveals its dodecameric architecture consisting of dimeric and trimeric units, which associate to form a large tetrahedron. The propeptide of prApe1 exhibits concentration-dependent oligomerization and forms a stable tetramer. Structure-based mutagenesis reveals that disruption of the inter-subunit interface prevents dodecameric assembly and vacuolar delivery in vivo despite the presence of the propeptide. Furthermore, by examining the vacuolar import of propeptide-fused exogenous protein assemblies with different quaternary structures, the 3-dimensional spatial distribution of propeptides presented by a scaffolding cargo is found to be essential for the assembly of the Cvt vesicle for vacuolar delivery. This dissertation provides the first mechanistic insight for understanding the autophagosomal biogenesis in selective macroautophagy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:20:07Z (GMT). No. of bitstreams: 1 ntu-104-D01b46006-1.pdf: 4559069 bytes, checksum: 6ce1a1bc6e27c8c730c7835105bb4c95 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………………………….. I
Acknowledgements…………………………………………………………………... II 中文摘要……………………………………………………………………………. III Abstract………………………………………………………………........................ IV Table of Contents……………………………………………………………………. VI List of Abbreviations………………………………………………………………... IX List of Figures……………………………………………………………………….. XII List of Tables……………………………………………………………………….... XV Chapter 1 Introduction 1-1 Autophagy…………………………………………………….... 1 1-2 Selective autophagy……………………………………………. 2 1-3 The cytoplasm-to-vacuole targeting (Cvt) pathway…………… 4 1-4 Aminopeptidase I (ApeI)……………………………………….. 7 1-5 Molecular mechanism of autophagy and the Cvt pathway…….. 9 1-5-1 Induction………………………………………………… 10 1-5-2 Vesicle nucleation……………………………………….. 12 1-5-3 Vesicle elongation and completion……………………… 13 1-5-4 Vesicle docking and fusion……………………………… 14 1-5-5 Vesicle breakdown and degradation…………………….. 15 1-6 Motivation of research…………………………………………. 16 Chapter 2 Materials and Methods 2-1 Yeast strain and media………………………………………… 19 2-2 Plasmid construction…………………………………………..... 19 2-3 Expression and purification of proteins………………………… 21 2-4 Crystallization and structure determination of Ape1…………... 24 2-5 Electron Microscopy, image processing and 3-dimensional reconstruction……………………………………………………. 27 2-6 Yeast transformation and N-(3-triethylammoniumpropyl)-4-(6- (4-(diethyl amino) phenyl) hexatrienyl) pyridinium dibromide (FM 4-64) staining……………………………………………… 29 2-7 Analytical ultracentrifugation (AUC)…………………………... 29 2-8 Fluorescence polarization (FP) experiments………………….... 31 2-9 Peptidase activity assay……………………………………….... 32 2-10 Cross-linking of the propeptide……………………………….... 32 2-11 Dynamic light scattering (DLS)………………………………… 32 2-12 Stereographic projection plots………………………………….. 33 2-13 Ni-NTA affinity isolation assay………………………………… 34 2-14 Sequence alignment…………………………………………….. 34 Chapter 3 Results 3-1 Expression and purification of proteins………………………… 36 3-2 Crystallographic structure of Ape1……………………………... 37 3-3 Electron microscopy and three-dimensional reconstruction of prApe1…………………………………………………………... 39 3-4 Propeptides mediate tetramerization of fusion proteins………… 40 3-5 Tetrahedral shape is necessary for prApe1 transport into the vacuole…………………………………………………………… 44 3-6 Propeptide-fused exogenous protein assemblies are delivered into the vacuole………………………………………………..... 48 Chapter 4 Discussions 4-1 The dodecameric architecture of Ape1 is essential for activity…. 51 4-2 Tetramerization of the propeptides may drive assembly of the dodecamers………………………………………………………. 52 4-3 Isotropic 3-dimensional spatial distribution of the propeptides is crucial for Cvt vesicle formation………………………………... 54 References…………………………………………………………………………… 58 Figures……………………………………………………………………………….. 68 Tables………………………………………………………………………………… 113 Summary of key proteins in the Cvt pathway and autophagy mentioned in the dissertation…………………………………………………………………………… 120 Poster………………………………………………………………………………….. 122 Paper List……..………………………………………………………………………. 123 | |
| dc.language.iso | zh-TW | |
| dc.subject | 細胞自噬 | zh_TW |
| dc.subject | 液泡 | zh_TW |
| dc.subject | 細胞質至液泡傳遞途徑 | zh_TW |
| dc.subject | X-光繞射 | zh_TW |
| dc.subject | 酵母菌 | zh_TW |
| dc.subject | Ape1 | en |
| dc.subject | autophagy | en |
| dc.subject | cytoplasm-to-vacuole targeting pathway | en |
| dc.subject | dodecamer | en |
| dc.subject | X-ray | en |
| dc.title | 酵母菌aminopeptidase 1的結構分析及其對細胞自噬囊泡形成所扮演之角色 | zh_TW |
| dc.title | Analysis of the structural role of yeast aminopeptidase 1 in autophagic vesicle formation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳光超,黃偉邦,曾秀如 | |
| dc.subject.keyword | 細胞自噬,X-光繞射,細胞質至液泡傳遞途徑,酵母菌,液泡, | zh_TW |
| dc.subject.keyword | Ape1,autophagy,cytoplasm-to-vacuole targeting pathway,dodecamer,X-ray, | en |
| dc.relation.page | 123 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-17 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 4.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
