Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52583Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 許永真(Jane Yung-jen Hsu) | |
| dc.contributor.author | Po-Hao Chou | en |
| dc.contributor.author | 周柏豪 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:19:22Z | - |
| dc.date.available | 2018-08-20 | |
| dc.date.copyright | 2015-08-20 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-17 | |
| dc.identifier.citation | [1] S. Baccianella, A. Esuli, and F. Sebastiani. Sentiwordnet 3.0: An enhanced lexical
resource for sentiment analysis and opinion mining. In Proceedings of the Seventh Conference on International Language Resources and Evaluation, LREC10, Val- letta, Malta, May 2010. European Language Resources Association (ELRA). [2] D. M. Blei. Probabilistic topic models. Communications of the ACM, 55(4):77–84, 2012. [3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. The Journal of Machine Learning Research, 3:993–1022, March 2003. [4] M. Boia, C. Musat, and B. Faltings. Acquiring commonsense knowledge for sen- timent analysis through human computation. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, AAAI14, pages 901–907, 2014. [5] M. Bradley and P. J. Lang. Affective norms for english words (anew): Instruction manual and affective ratings. University of Florida: The Center for Research in Psychophysiology, 1999. [6] S. Brody and N. Elhadad. An unsupervised aspect-sentiment model for online re- views. In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, HLT10, Stroudsburg, PA, USA, 2010. Association for Computational Linguistics. [7] E. Cambria, C. Havasi, and A. Hussain. Senticnet 2: A semantic and affec- tive resource for opinion mining and sentiment analysis. In FLAIRS conference, FLAIRS12, pages 202–207, 2012. [8] E. Cambria, D. Olsher, and D. Rajagopal. Senticnet 3: A common and common- sense knowledge base for cognition-driven sentiment analysis. In Proceedings of AAAI, Quebec City, AAAI14, pages 1515–1521, July 2014. [9] E. Cambria, R. Speer, C. Havasi, and A. Hussain. Senticnet: A publicly available se- mantic resource for opinion mining. In AAAI fall symposium: commonsense knowl- edge, volume 10 of AAAI10, pages 14–18, Nov. 2010. [10] Z. Dong, Q. Dong, and C. Hao. Hownet and its computation of meaning. In Proceed- ings of the 23rd International Conference on Computational Linguistics: Demon- strations, COLING10, pages 53–56, Stroudsburg, PA, USA, 2010. Association for Computational Linguistics. [11] A. Esuli and F. Sebastiani. Sentiwordnet: A publicly available lexical resource for opinion mining. In In Proceedings of the 5th Conference on Language Resources and Evaluation, volume 6 of LREC06, pages 417–422, 2006. [12] A. Hassan and D. Radev. Identifying text polarity using random walks. In Proceed- ings of the 48th Annual Meeting of the Association for Computational Linguistics, ACL10, pages 395–403, Stroudsburg, PA, USA, 2010. Association for Computa- tional Linguistics. [13] C. Havasi, R. Speer, and J. Alonso. Conceptnet 3: a flexible, multilingual semantic network for common sense knowledge. In Recent Advances in Natural Language Processing, RANLP07, Borovets, Bulgaria, Sep. 2007. [14] L.-W. Ku and H. H. Chen. Mining opinions from the web: Beyond relevance re- trieval. Journal of the American Society for Information Science and Technology, 58(12):1838–1850, Oct. 2007. [15] Y.-l. Kuo, K.-y. Chiang, C.-w. Chan, J.-C. Lee, R. Wang, E. Shen, and J. Y.-j. Hsu. Community-based game design: Experiments on social games for commonsense data collection. In KDD-09 Workshop on Human Computation, HCOMP09, pages 15–22, New York, NY, USA, June 2009. ACM. [16] Y.-L. Kuo and J. Y.-j. Hsu. Goal-oriented knowledge collection. In AAAI Fall Sym- posium: Commonsense Knowledge, FSS10, November 2010. [17] P. J. Lang. Behavioral treatment and bio-behavioral assessment: Computer applica- tions. Technology in Mental Health Care Delivery Systems, pages 119–137, 1980. [18] H. Y. Lee, C. ePulze Sdn Bhd, C. Block, and H. Renganathan. Chinese sentiment analysis using maximum entropy. Sentiment Analysis where AI meets Psychology (SAAIP), pages 89–93, Nov. 2011. [19] C.-R. Li, C.-H. Yu, and H.-H. Chen. Predicting the semantic orientation of terms in e-hownet. In Proceedings of the 23rd Conference on Computational Linguistics and Speech Processing, ROCLING11, pages 151–165, Stroudsburg, PA, USA, 2011. Association for Computational Linguistics. [20] B. Lu, M. Ott, C. Cardie, and B. K. Tsou. Multi-aspect sentiment analysis with topic models. In Proceedings of the 2011 IEEE 11th International Conference on Data Mining Workshops, ICDMW11, Washington, DC, USA, 2011. IEEE Computer Society. [21] Y. Lu, M. Castellanos, U. Dayal, and C. Zhai. Automatic construction of a context- aware sentiment lexicon: An optimization approach. In Proceedings of the 20th International Conference on World Wide Web, WWW11, pages 347–356, New York, NY, USA, March 2011. ACM. [22] J. Mei, Y. Zhu, Y. Gao, and H. Yin. tong2yi4ci2ci2lin2. Shanghai Dictionary Press, 1982. [23] G. A. Miller. Wordnet: A lexical database for english. Communications of the ACM, 38(11):39–41, Nov. 1995. [24] S. M. Mohammad and P. D. Turney. Emotions evoked by common words and phrases: Using mechanical turk to create an emotion lexicon. In Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Gener- ation of Emotion in Text, CAAGET10, pages 26–34, Stroudsburg, PA, USA, 2010. Association for Computational Linguistics. [25] Y. Rao, J. Lei, W. Liu, Q. Li, and M. Chen. Building emotional dictionary for senti- ment analysis of online news. In World Wide Web 2014, WWW14, pages 723–742. Springer, July 2014. [26] P. Singh, T. Lin, E. T. Mueller, G. Lim, T. Perkins, and W. L. Zhu. Open mind common sense: Knowledge acquisition from the general public. In On the Move to Meaningful Internet Systems, 2002, pages 1223–1237, London, UK, UK, 2002. Springer-Verlag. [27] R. Speer and C. Havasi. Representing general relational knowledge in conceptnet 5. In Proceedings of the Eight International Conference on Language Resources and Evaluation, LREC12, Istanbul, Turkey, May 2012. European Language Resources Association (ELRA). [28] C. Strapparava and A. Valitutti. Wordnet-affect: an affective extension of word- net. In Proceedings of the 4th International Conference on Language Resources and Evaluation, IREC04, pages 1083–1086, 2004. [29] M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede. Lexicon-based methods for sentiment analysis. Comput. Linguist., 37(2):267–307, June 2011. [30] A. C.-R. Tsai, C.-E. Wu, R. T.-H. Tsai, and J. Y.-j. Hsu. Building a concept-level sen- timent dictionary based on commonsense knowledge. In IEEE Intelligent Systems, volume 28 of IEEE13, pages 22–30. IEEE, Feb. 2013. [31] S. Wen and X. Wan. Emotion classification in microblog texts using class sequential rules. In AAAI Conference on Artificial Intelligence 2014, AAAI14. AAAI Confer- ence on Artificial Intelligence, 2014. [32] C.-E. Wu and R. T.-H. Tsai. Using relation selection to improve value propagation in a conceptnet-based sentiment dictionary. Knowledge-Based Systems, 69:100–107, 2014. [33] H.-H. Wu, A. C.-R. Tsai, R. T.-H. Tsai, and J. Y.-j. Hsu. Sentiment value propa- gation for an integral sentiment dictionary based on commonsense knowledge. In Proceedings of the 2011 International Conference on Technologies and Applications of Artificial Intelligence, TAAI11, pages 75–81, 2011. [34] G. Xu, X. Meng, and H. Wang. Build chinese emotion lexicons using a graph-based algorithm and multiple resources. In Proceedings of the 23rd International Confer- ence on Computational Linguistics, COLING’10, pages 1209–1217, Stroudsburg, PA, USA, 2010. Association for Computational Linguistics. [35] H. Xu, K. Zhao, L. Qiu, and C. Hu. Expanding chinese sentiment dictionaries from large scale unlabeled corpus. In PACLIC 24 Proceedings, volume 24 of PACLIC10, pages 301–310. ACL, 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52583 | - |
| dc.description.abstract | 概念網是個把我們生活中的知識用更方便計算的方式表示的語意網
路,概念網特別的地方在於它上面的點代表的不是傳統詞彙,而是一 個更高階的語意概念,這些概念可能是由組合多個詞彙而產生的,例 如’ 吃午餐’ 或是’ 充飢’,也因此這些點被稱為’ 概念’,而兩個’ 概念’ 間會用有向邊來連接,每個有向邊會對應到一個關聯種類來表示這兩 個概念的語意關係,這些有像邊稱為’ 關係’。 情緒分析是為了辨識出文本隱含的情緒和意見,目前許多方法都會 利用詞或是片語的情緒資訊來幫助它們分析文本,但是在中文情緒分 析上,現有資源的詞彙涵蓋量還是有限。因為概念網上面有很多點且 具有高階的語意概念,後來一些方法也提出幫概念網上的概念預測情 緒,以此增加中文資源的涵蓋率。這些方法是對每個概念賦予一個情 緒,但是我們知道一個概念在不同情況下可能會有不同情緒,例如’ 尖 叫’ 和’ 突然’。本研究便是希望能抽取出中文概念網中隱藏的情境資訊 來幫助我們得出每個概念在不同情形下的情緒是如何。為了達到這個 目標,我們提出了一個主題感知的情緒擴散系統,系統中我們提出用 隱含狄利克雷分布來把中文概念網切成不同的主題層,以對各個主題 層分開傳遞情緒值的方式來預測每個概念在不同主題下的情緒值。我 們利用這些概念的主題感知情緒來幫助後續的文本極性分析,我們提 出觀察其他一起發生的概念來辨識主題,並根據主題來幫文本中出現 的概念選取合適的情緒值。本研究設計三個實驗來衡量主題感知預測 的效果,實驗結果顯示抽取主題對預測概念的情緒和預測測試文本的 極性都能帶來效果上的進步。 | zh_TW |
| dc.description.abstract | ConceptNet is a semantic network which stores general knowledge into
more computable representations. In ConceptNet, the notion of a node is ex- tended from purely lexical terms to include higher-order compound concepts, e.g., ’eat lunch’, ’satisfy hunger’, and these nodes are called concepts. There may be a directed edge connecting two concepts. Each directed edge is as- sociated with one of the predefined relation types to represent the semantic relation between two concepts it connects, e.g., ’CapableOf’, ’Causes’. These directed edges are called relations. Sentiment analysis aims to identify the attitudes or emotions behind texts. For most approaches, sentiment information of terms or phrases is an im- portant resource. However, in Chinese sentiment analysis, the coverage of available resources is still limited. To increase the coverage, some methods has been developed to predict sentiments for nodes in Chinese ConceptNet due to its large size and high semantic level nodes. Current approaches aim to assign one sentiment to each concept, but in fact a concept may have different sentiments on different contexts, such as ’ 尖叫’ and ’ 突然’. In this thesis, we aim to extract the hidden contextual information in Chinese ConceptNet and use it to estimate sentiments in different situations for each concept. To achieve this goal, we design a topic-aware sentiment propagation system. We propose using Latent Dirichlet Allocation to divide Chinese ConceptNet into different topic layers. On each topic layer we perform sentiment propaga- tion through some types of relations to predict sentiments on the topic for concepts. Our another goal is to use the generated topic-aware sentiments of concepts to improve the polarity classification for texts. We propose combin- ing other co-occurring concepts to identify topics and select proper sentiments for concepts in texts. This thesis conducts three experiments to investigate the effect of topic-aware sentiment prediction. The results show that extracting topic is helpful in both predicting sentiment values of concepts and predicting polarities of our test texts. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:19:22Z (GMT). No. of bitstreams: 1 ntu-104-R02922017-1.pdf: 1660423 bytes, checksum: c714b33c3db502144d8e3f0be200fe43 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 iii 中文摘要 v Abstract vii Contents ix List of Figures xi List of Tables xiii 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Literature Survey 7 2.1 Sentiment Dictionary Construction . . . . . . . . . . . . . . . . . . . . . 7 2.2 Context-aware Sentiment Analysis . . . . . . . . . . . . . . . . . . . . . 10 3 Topic-Aware Sentiment Value Generation 13 3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Topic Analysis on ConceptNet . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.1 Latent Dirichlet Allocation . . . . . . . . . . . . . . . . . . . . . 14 3.3.2 LDA on ConceptNet . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4 Sentiment Seeds Collection . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.5 Sentiment Value Propagation . . . . . . . . . . . . . . . . . . . . . . . . 21 3.5.1 Sentiment-Related Relation . . . . . . . . . . . . . . . . . . . . 21 3.5.2 Topic-Aware Propagation . . . . . . . . . . . . . . . . . . . . . 22 4 Topic Inference and Sentiment Value Selection 27 4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2 Topic Inference and Sentiment Value Selection . . . . . . . . . . . . . . 28 4.3 Topic-Aware Sentiment Classification for Sentences . . . . . . . . . . . . 28 5 Experiment 31 5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2 Effectiveness of Topic Separated Propagation . . . . . . . . . . . . . . . 31 5.2.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . 32 5.2.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 33 5.3 Polarity Classification on Dialogue Data . . . . . . . . . . . . . . . . . . 35 5.3.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . 35 5.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 38 5.4 Polarity Classification on Microblog . . . . . . . . . . . . . . . . . . . . 38 5.4.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . 39 5.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 40 6 Conclusion 43 6.1 Summary of Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Bibliography 45 | |
| dc.language.iso | zh-TW | |
| dc.subject | 情緒分析 | zh_TW |
| dc.subject | 情緒字典 | zh_TW |
| dc.subject | 數值傳遞 | zh_TW |
| dc.subject | 常識知識 | zh_TW |
| dc.subject | 主題模型 | zh_TW |
| dc.subject | Value Propagation | en |
| dc.subject | Sentiment Dictionary | en |
| dc.subject | Commonsense Knowledge | en |
| dc.subject | Topic Model | en |
| dc.subject | Sentiment Analysis | en |
| dc.title | 主題感知的中文概念網情緒預測 | zh_TW |
| dc.title | Topic-Aware Sentiment Prediction for Chinese ConceptNet | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳信希(HH Chen),蔡宗翰(Richard Tzong-Han Tsai),張嘉惠(Chia-Hui Chang),李育杰(Yuh-Jye Lee) | |
| dc.subject.keyword | 情緒分析,情緒字典,數值傳遞,常識知識,主題模型, | zh_TW |
| dc.subject.keyword | Sentiment Analysis,Sentiment Dictionary,Value Propagation,Commonsense Knowledge,Topic Model, | en |
| dc.relation.page | 49 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-17 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| Appears in Collections: | 資訊工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-104-1.pdf Restricted Access | 1.62 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
