請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52568完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王兆麟(Jaw-Lin Wang) | |
| dc.contributor.author | Li-Yu Lin | en |
| dc.contributor.author | 林俐妤 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:18:52Z | - |
| dc.date.available | 2015-08-20 | |
| dc.date.copyright | 2015-08-20 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-17 | |
| dc.identifier.citation | 1. Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it? Spine 2006;31:2151-61.
2. Raj PP. Intervertebral Disc: Anatomy‐Physiology‐Pathophysiology‐Treatment. Pain Practice 2008;8:18-44. 3. Adams MA, Lama P, Zehra U, et al. Why do some intervertebral discs degenerate, when others (in the same spine) do not? Clin Anat 2014. 4. Bergknut N, Smolders LA, Grinwis GC, et al. Intervertebral disc degeneration in the dog. Part 1: Anatomy and physiology of the intervertebral disc and characteristics of intervertebral disc degeneration. Veterinary journal 2013;195:282-91. 5. P. Prithvi Raj M, FIPP, ABIPP. Intervertebral Disc: Anatomy-Physiology- Pathophysiology-Treatment. Pain Practice 2008;8. 6. Inoue N, Espinoza Orias AA. Biomechanics of intervertebral disk degeneration. The Orthopedic clinics of North America 2011;42:487-99, vii. 7. Hadjipavlou A, Tzermiadianos M, Bogduk N, et al. The pathophysiology of disc degeneration a critical review. Journal of Bone & Joint Surgery, British Volume 2008;90:1261-70. 8. Ract I, Meadeb JM, Mercy G, et al. A review of the value of MRI signs in low back pain. Diagn Interv Imaging 2014. 9. Passante NP. Imaging of the Spine. American Journal of Roentgenology 2011;197:W1157-W. 10. Pfirrmann CW, Metzdorf A, Zanetti M, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 2001;26:1873-8. 11. Watanabe A, Benneker LM, Boesch C, et al. Classification of intervertebral disk degeneration with axial T2 mapping. American Journal of Roentgenology 2007;189:936-42. 12. Mwale F, Demers CN, Michalek AJ, et al. Evaluation of quantitative magnetic resonance imaging, biochemical and mechanical properties of trypsin-treated intervertebral discs under physiological compression loading. Journal of magnetic resonance imaging : JMRI 2008;27:563-73. 13. Sarma V.S. Akella RRR, 1 Alexander J. Gougoutas,1, Arijitt Borthakur EMS, 2 J. Bruce Kneeland,1, John S. Leigh aRR. Proteoglycan-Induced Changes in T1r-Relaxation of Articular Cartilage at 4T. Magnetic Resonance in Medicine 2001. 14. Li X, Ma CB, Link TM, et al. In vivo T 1ρ and T 2 mapping of articular cartilage in osteoarthritis of the knee using 3T MRI. Osteoarthritis and Cartilage 2007;15:789-97. 15. Perry J, Haughton V, Anderson P, et al. The value of T2 relaxation times to characterize lumbar intervertebral disks: preliminary results. American journal of neuroradiology 2006;27:337-42. 16. Stelzeneder D, Welsch GH, Kovács BK, et al. Quantitative T2 evaluation at 3.0 T compared to morphological grading of the lumbar intervertebral disc: a standardized evaluation approach in patients with low back pain. European journal of radiology 2012;81:324-30. 17. Marinelli NL, Haughton VM, Anderson PA. T2 relaxation times correlated with stage of lumbar intervertebral disk degeneration and patient age. AJNR. American journal of neuroradiology 2010;31:1278-82. 18. Trattnig S, Stelzeneder D, Goed S, et al. Lumbar intervertebral disc abnormalities: comparison of quantitative T2 mapping with conventional MR at 3.0 T. European radiology 2010;20:2715-22. 19. Ludescher B, Effelsberg J, Martirosian P, et al. T2‐and diffusion‐maps reveal diurnal changes of intervertebral disc composition: an in vivo MRI study at 1.5 Tesla. Journal of Magnetic Resonance Imaging 2008;28:252-7. 20. Chen C, Huang M, Han Z, et al. Quantitative T2 magnetic resonance imaging compared to morphological grading of the early cervical intervertebral disc degeneration: an evaluation approach in asymptomatic young adults. PLoS One 2014;9:e87856. 21. Niu G, Yang J, Wang R, et al. MR imaging assessment of lumbar intervertebral disk degeneration and age-related changes: apparent diffusion coefficient versus T2 quantitation. AJNR. American journal of neuroradiology 2011;32:1617-23. 22. Hoppe S, Quirbach S, Mamisch TC, et al. Axial T2* mapping in intervertebral discs: a new technique for assessment of intervertebral disc degeneration. European radiology 2012;22:2013-9. 23. Ellingson AM, Nagel TM, Polly DW, et al. Quantitative T2* (T2 star) relaxation times predict site specific proteoglycan content and residual mechanics of the intervertebral disc throughout degeneration. Journal of orthopaedic research : official publication of the Orthopaedic Research Society 2014;32:1083-9. 24. Ellingson AM, Mehta H, Polly DW, et al. Disc degeneration assessed by quantitative T2* (T2 star) correlated with functional lumbar mechanics. Spine 2013;38:E1533-40. 25. Johannessen W, Auerbach JD, Wheaton AJ, et al. Assessment of human disc degeneration and proteoglycan content using T1ρ-weighted magnetic resonance imaging. Spine 2006;31:1253. 26. Borthakur A, Maurer PM, Fenty M, et al. T1rho magnetic resonance imaging and discography pressure as novel biomarkers for disc degeneration and low back pain. Spine 2011;36:2190-6. 27. Antoniou J, Demers CN, Beaudoin G, et al. Apparent diffusion coefficient of intervertebral discs related to matrix composition and integrity. Magnetic resonance imaging 2004;22:963-72. 28. Zhang W, Ma X, Wang Y, et al. Assessment of apparent diffusion coefficient in lumbar intervertebral disc degeneration. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2014;23:1830-6. 29. Zhang Z, Chan Q, Anthony MP, et al. Age-related diffusion patterns in human lumbar intervertebral discs: a pilot study in asymptomatic subjects. Magnetic resonance imaging 2012;30:181-8. 30. Costi JJ, Stokes IA, Gardner-Morse MG, et al. Frequency-dependent behavior of the intervertebral disc in response to each of six degree of freedom dynamic loading: solid phase and fluid phase contributions. Spine 2008;33:1731-8. 31. McMillan D, Garbutt G, Adams M. Effect of sustained loading on the water content of intervertebral discs: implications for disc metabolism. Annals of the rheumatic diseases 1996;55:880-7. 32. Adams M, McMillan D, Green T, et al. Sustained loading generates stress concentrations in lumbar intervertebral discs. Spine 1996;21:434-8. 33. Mow V, Kuei S, Lai W, et al. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. Journal of biomechanical engineering 1980;102:73-84. 34. Soltz MA, Ateshian GA. Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. Journal of biomechanics 1998;31:927-34. 35. Cortes DH, Jacobs NT, DeLucca JF, et al. Elastic, permeability and swelling properties of human intervertebral disc tissues: A benchmark for tissue engineering. Journal of biomechanics 2014;47:2088-94. 36. Boxberger JI, Orlansky AS, Sen S, et al. Reduced nucleus pulposus glycosaminoglycan content alters intervertebral disc dynamic viscoelastic mechanics. Journal of biomechanics 2009;42:1941-6. 37. Menard KP. Dynamic mechanical analysis: a practical introductioned: CRC press, 2008. 38. Sen S, Jacobs NT, Boxberger JI, et al. Human Annulus Fibrosus Dynamic Tensile Modulus Increases with Degeneration. Mechanics of materials : an international journal 2012;44:93-8. 39. Nissi M, Rieppo J, Töyräs J, et al. Estimation of mechanical properties of articular cartilage with MRI–dGEMRIC, T 2 and T 1 imaging in different species with variable stages of maturation. Osteoarthritis and Cartilage 2007;15:1141-8. 40. Campana S, Charpail E, de Guise JA, et al. Relationships between viscoelastic properties of lumbar intervertebral disc and degeneration grade assessed by MRI. Journal of the mechanical behavior of biomedical materials 2011;4:593-9. 41. Ellingson AM, Nuckley DJ. Altered helical axis patterns of the lumbar spine indicate increased instability with disc degeneration. Journal of biomechanics 2015;48:361-9. 42. Antoniou J, Epure LM, Michalek AJ, et al. Analysis of quantitative magnetic resonance imaging and biomechanical parameters on human discs with different grades of degeneration. Journal of magnetic resonance imaging : JMRI 2013;38:1402-14. 43. Maquer G, Brandejsky V, Benneker LM, et al. Human intervertebral disc stiffness correlates better with the Otsu threshold computed from axial T2 map of its posterior annulus fibrosus than with clinical classifications. Medical engineering & physics 2014;36:219-25. 44. Kuo Y-W, Wang J-L. Rheology of intervertebral disc: an ex vivo study on the effect of loading history, loading magnitude, fatigue loading, and disc degeneration. Spine 2010;35:E743-E52. 45. Wilke HJ, Neef P, Caimi M, et al. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 1999;24:755-62. 46. Farndale RW, Sayers CA, Barrett AJ. A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connective tissue research 1982;9:247-8. 47. Yao H, Justiz M-A, Flagler D, et al. Effects of swelling pressure and hydraulic permeability on dynamic compressive behavior of lumbar annulus fibrosus. Annals of biomedical engineering 2002;30:1234-41. 48. Riches P, Dhillon N, Lotz J, et al. The internal mechanics of the intervertebral disc under cyclic loading. Journal of biomechanics 2002;35:1263-71. 49. Best BA, Guilak F, Setton LA, et al. Compressive mechanical properties of the human anulus fibrosus and their relationship to biochemical composition. Spine 1994;19:212-21. 50. Périé D, Korda D, Iatridis JC. Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability. Journal of biomechanics 2005;38:2164-71. 51. Argoubi M, Shirazi-Adl A. Poroelastic creep response analysis of a lumbar motion segment in compression. Journal of biomechanics 1996;29:1331-9. 52. Gu W, Mao X, Foster R, et al. The anisotropic hydraulic permeability of human lumbar anulus fibrosus: influence of age, degeneration, direction, and water content. Spine 1999;24:2449. 53. Johannessen W, Elliott DM. Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression. Spine 2005;30:E724-E9. 54. Perie D, Iatridis JC, Demers CN, et al. Assessment of compressive modulus, hydraulic permeability and matrix content of trypsin-treated nucleus pulposus using quantitative MRI. Journal of biomechanics 2006;39:1392-400. 55. Recuerda M, Périé D, Gilbert G, et al. Assessment of mechanical properties of isolated bovine intervertebral discs from multi-parametric magnetic resonance imaging. BMC musculoskeletal disorders 2012;13:195. 56. Rodriguez AG, Rodriguez-Soto AE, Burghardt AJ, et al. Morphology of the human vertebral endplate. Journal of orthopaedic research : official publication of the Orthopaedic Research Society 2012;30:280-7. 57. Zhou Z, Gao M, Wei F, et al. Shock absorbing function study on denucleated intervertebral disc with or without hydrogel injection through static and dynamic biomechanical tests in vitro. BioMed research international 2014;2014:461724. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52568 | - |
| dc.description.abstract | 目的:
探討豬與人體屍骨椎間盤軸向(Axial plane)量化核磁共振(T2弛豫時間)與椎間盤靜態及動態生物力學與生化性質的關係。 背景介紹: 椎間盤退化影響脊椎之生物力學功能,常導致各類型的神經壓迫,引發疼痛,影響患者生活品質,因此若能對椎間盤退化之力學性質提供一非侵入診斷及預測方法,對早期椎間盤退化給予適當預防措施及治療建議,將可減緩退化或減低相關臨床症狀發生。量化核磁共振技術有別於傳統T2影像,除了能作為退化分期之依據,也能根據椎間盤本身組織特性,提供量化分析方法。雖然文獻已證實生物軟組織之T2弛豫時間(T2值)會受到組織之生化含量及其結構鍵結方式影響,但對於椎間盤力學性質及量化核磁共振技術的關係,仍少有研究討論。 材料與方法: 本實驗分兩部分,第一部分先以55個豬隻椎間盤建立實驗方法,評估健康椎間盤之T2值與力學性質之關係;第二部分使用6副人體腰椎,共計24個椎間盤,評估不同退化程度椎間盤之T2值與力學性質之關係。試樣以3T核磁共振沿著椎間盤進行軸向及矢狀面掃描,軸向掃描利用不同的回音時間(TE),將所得影像擬合,利用感興趣區域(Region of Interest, ROI)的圈選得到組織各個區域之T2值。接著將椎間盤進行一小時靜態潛變測試,負載大小在豬與人體屍骨分別為0.8MPa及0.3MPa。經過一天的恢復後,再進行動態力學測試(頻率0.031~10Hz,應力範圍0.1-0.8MPa;頻率0.031~3.15Hz,應力範圍0.1-0.6MPa),並進行椎間盤的生化及微結構分析,生化測試包含水分及醣胺聚醣含量。 本實驗統計方法:豬與人體椎間盤及人體各個退化分期內椎間盤之力學性值差異皆採用學生t檢驗檢測;並採用Pearson相關係數分析,評估椎間盤組織T2值與整體椎間盤靜態、動態力學性質及其組織所對應之生化性質關係,統計皆以p<0.05表示達到顯著差異。 結果: 豬相較於人體椎間盤,有較低的聚合模數及液體滲透度,但有較高的儲存模數及損失模數。人體椎間盤退化等級越高,其液體滲透度增加,聚合模數降低,相位角有增加的現象。椎間盤潛變測試結果與組織T2值的相關性分析中可發現,豬隻椎間盤之液體滲透度與髓核T2值呈正相關,但人體椎間盤液體滲透度與髓核T2值呈負相關;而人體椎間盤聚合模數與椎間環T2值呈負相關。椎間盤動態力學測試結果與組織T2值的相關性分析中可發現,豬隻椎間盤與人體椎間盤相位角皆與椎間環的T2值呈正相關,人體椎間盤相位角同時也與髓核的T2值呈負相關。椎間盤組織生化性值及其所對應之T2值的相關性分析中可發現,豬隻前側椎間環T2值會與其醣胺聚醣及水分含量呈正相關;人體椎間盤髓核T2值會與醣胺聚醣含量呈正相關。 討論: 豬隻椎間盤力學性質及組織特性可類比年輕之健康人體椎間盤,由於年輕人體試樣取得實屬不易,因此本實驗使用豬隻椎間盤及人體椎間盤分別代表年輕及退化過程中椎間盤兩個族群。不同退化分期之力學差異,可能是因為退化造成之組織內微結構的破壞,使退化較嚴重之人體椎間盤有液體滲透度及相位角上升的現象;另外膠原纖維間產生之交聯,可能使退化椎間盤聚合模數有下升之趨勢。 量化T2值已被證實與水分、膠原蛋白組織結構方式及組織異相性相關,椎間盤力學性質受到組織內液體流通特性及黏彈性質所調控,因此健康椎間盤與退化椎間盤組織T2值與靜態及動態相關性分析的結果並不一致。豬隻健康椎間盤髓核與椎間環功能性分工完整,液體滲透度主要由中央髓核調控,髓核T2值較高表示內部水分含量較多,因此與液體滲透度呈正相關;人體髓核T2值下降表髓核水分及醣胺聚醣含量減少,加上膠原纖維增生,椎間盤保水能力差,使液體在內部流動能力增加,因此髓核T2值與液體滲透度負相關。而人體椎間環T2值上升表示交聯增加、水分減少、此退化跡象與椎間盤聚合模數下降有關。 豬與人體椎間盤之相位角皆會與其纖維環T2值呈正相關,纖維環T2值上升表示纖維環排列方式不規則,層與層之間區別性較弱,此結構特性可能會使椎間盤於外力作用下響應時間增長,因而造成相位角增加。 人體椎間盤髓核T2值與醣胺聚醣含量呈正相關,與水分含量則不具有相關性,此結果顯示組織T2值並非因組織內部水分含量影響,而是受到水分子間的交互作用所調控。 結論: 本研究建立豬與人體椎間盤組織T2值與整體靜態及動態力學性質及生化性質之關係,分別代表年輕及退化過程中的椎間盤兩個族群,雖然兩族群椎間盤組織T2值與整體力學相關性結果並不一致,但皆可發現具相關性存在,顯示以椎間盤組織T2值評估整體靜態及動態力學性質為一具潛力之分析方法。 | zh_TW |
| dc.description.abstract | Purpose:
To investigate the relationship between rheological properties, dynamic properties, biochemical properties, and T2 relaxation times (T2 values) of porcine and human cadaveric disc. Introduction: The degeneration of composition and structure of intervertebral disc often leads to the instability of spinal segment. The T2 mapping, a magnetic resonance imaging (MRI) quantitative technique, provides a non-invasive method to evaluate changes in the composition and structural integrity within the disc. A recent study reported that T2 mapping changes after diurnal loading, which indicates that the T2 mapping may also be affected by tissue’s structural change due to external loading. A quantitative analysis of relationship between T2 mapping and the static and dynamic properties of disc is less reported in literature. In this study, we hypothesized that T2 values correlated with the biomechanical properties of disc. Material and method: 55 porcine discs and 24 human discs were used in this experiment. The axial T2 weighted MRI of porcine and human discs were first scanned to quantify the morphology of nucleus pulposus (NP) and anulus fibrosus (AF), while the sagittal one were scanned to classify the degree of degeneration of human discs using Pfirrmann’s grading system. The sequence of the T2 mapping are; TR: 3650 ms; 12TE from 13.2 to 158.4ms (every 13.2ms). For the human discs, grade 5 degenerated discs were excluded for analysis. After the MR scanning, the biomechanical tests, including the creep test and dynamic mechanical analysis (DMA) test, and the biochemical content, including the water and glycosaminoglycan (GAG), of the disc were performed and analyzed. The T2 value and biomechanical properties between human and porcine discs were compared using Student’s t-test. The variation of T2 value and biomechanical properties of human discs among different degrees of degeneration were also compared using Student’s t-test. Correlations among T2 values, biomechanical properties and biochemical properties were evaluated using Pearson’s correlation. A p-value of <0.05 was considered to be statistically significant. Results: Comparison of porcine and human discs: The aggregate modulus and permeability of porcine discs are lower than the ones of human discs, while the storage modulus and loss modulus of porcine discs are higher than the one of human discs. Comparison of human discs at different degeneration: The permeability increased, but the aggregated modulus decreased as the human disc is degenerated. The phase angle of human disc increased with disc degeneration. Correlation between biomechanical properties and T2 values: For the creep test, the permeability of porcine discs positively correlated with NP T2 value, while the aggregate modulus of porcine discs is not correlated with any T2 value. The permeability of human discs negatively correlated with NP T2 value, while the aggregate modulus of human ones negatively correlated with AF T2 value. For the DMA test, the phase angle of porcine discs positively correlated with AF T2 value. The storage modulus and loss modulus of porcine disc negatively correlated with NP T2 value, but positively correlated with AF T2 value. The phase angle of human discs negatively correlated with NP T2 value, but positively correlated with the AF T2 value at lower frequencies. Correlation between biochemical properties and T2 values: The GAG and water content of AF in porcine discs is correlated with T2 value. The GAG content of NP in human discs is correlated with T2 value. Discussion: It is hard, if not possible, to find healthy human disc specimens. The biomechanical integrity and biomechanical content of porcine discs can be analogue to the one of healthy human discs. The results of two groups used in this study may reflect the consequence of healthy and degenerated discs in human. For the degenerated human discs, the increased permeability and phase angle of degenerated discs may be due to the micro-structural defect, while the decreased aggregated modulus may be due to the cross-linked collagen fibers. Quantitative T2 MRI was affected by the water content, orientation of collagen network and tissue anisotropy. The correlations of rheological and dynamic biomechanical properties respective to the T2 values are different between the healthy porcine and degenerated human disc due to the degenerative changes of tissue properties in poroelasticity and viscoelasity. For the creep test, the permeability positively correlated with the T2 value of NP in porcine disc. The higher T2 value usually implies higher water content, which may indicate that the higher interstitial fluid flows within the NP of porcine discs. In the degenerated human discs, the NP T2 values decreased but the permeability increased. The lower NP T2 value is reported to connect with the lower GAG content. The insufficient GAG content may hinder the water holding capacity of discs, hence increased the permeability of the human disc. For the DMA test, the phase angle is the most significant property that positively correlated with AF T2 value in porcine and human discs. The higher AF T2 value indicated the less organized fiber orientation and structural integrity, which may hinder the temporal response to the external loading, indicating the higher values of phase angle. In this study, we did not find the correlation between water content and T2 value, but find the correlation between GAG content and T2 value in human discs. It is speculated that T2 signal is affected by the capability of interaction with water molecule, but not the hydration level alone. Conclusion: The biomechanical properties and T2 values changed with the disc degeneration. The T2 values were shown to correlate with the rheological and dynamic mechanical properties of disc, indicating that the T2 imaging may be a potential clinical tool for the diagnosis and monitoring of degenerative disc disease. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:18:52Z (GMT). No. of bitstreams: 1 ntu-104-R02548009-1.pdf: 2630323 bytes, checksum: 9871ee0d1385dd68be292876d937cee1 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 中文摘要 ii
Abstract v 第一章 前言 1 1.1椎間盤構造與生化組成 1 1.1.1椎間盤構造 1 1.1.2椎間盤生化組成 2 1.2椎間盤退化 3 1.2.1椎間盤退化 3 1.2.2椎間盤退化臨床診斷 3 1.3核磁共振於椎間盤研究 4 1.3.1核磁共振影像基本成像原理 4 1.3.2核磁共振影像與退化分期 7 1.4量化核磁共振圖於椎間盤研究之應用 8 1.4.1 T2圖 9 1.4.2 T2star圖 9 1.4.3 T1rho圖 10 1.4.4擴散磁振造影技術 10 1.4.5磁共振延遲增強軟骨成像技術 11 1.5椎間盤力學性質與定量核磁共振研究 11 1.5.1椎間盤靜態力學性質分析 12 1.5.2椎間盤動態力學性質分析 12 1.5.3量化核磁共振運用於椎間盤力學性質研究 13 1.6研究動機與目的 14 第二章 材料與方法 15 2.1實驗流程 15 2.2核磁共振掃描 18 2.2.1核磁共振儀器 18 2.2.2造影參數設定 18 2.2.3圖像分析與觀察 19 2.3靜態潛變測試 20 2.3.1靜態潛變測試 20 2.3.2靜態潛變性質分析之數學模型 20 2.4動態力學測試 22 2.4.1動態材料測試機台 22 2.4.2動態力學性質分析的數學模型 22 2.5生化分析及結構分析 23 2.5.1水分含量分析 23 2.5.2醣胺聚醣含量分析 23 2.5.3掃描式電子顯微鏡 24 2.6統計分析 24 第三章 實驗結果 25 3.1豬胸椎椎間盤 25 3.1.1豬椎間盤幾何分析 25 3.1.2豬椎間盤量化T2值分析 26 3.1.3豬椎間盤T2值與靜態力學性質的關係 27 3.1.4豬椎間盤T2值與動態力學性質的關係 28 3.1.5豬椎間盤生化性質與力學性質的關係 32 3.2 人體屍骨腰椎椎間盤 33 3.2.1人體屍骨椎間盤幾何分析 33 3.2.2人體屍骨椎間盤組織量化T2值分析 34 3.2.3人體屍骨椎間盤T2值與靜態力學性質的關係 34 3.2.4人體屍骨椎間盤T2值與動態力學性質的關係 36 3.2.5人體屍骨椎間盤生化性質與組織T2值及力學性質的關係 41 3.3豬椎間盤與人體屍骨椎間盤比較 43 第四章 討論 47 4.1豬與人體屍骨椎間盤討論 47 4.2豬與人體椎間盤T2值與靜態力學的關係 48 4.3豬與人體椎間盤T2值與動態力學的關係 50 4.4 實驗限制 52 第五章 結論與未來展望 53 5.1 結論 53 5.2 未來展望 53 參考文獻 54 | |
| dc.language.iso | zh-TW | |
| dc.subject | 動態力學分析 | zh_TW |
| dc.subject | 潛變分析 | zh_TW |
| dc.subject | 量化核磁共振 | zh_TW |
| dc.subject | 椎間盤退化 | zh_TW |
| dc.subject | 椎間盤生物力學 | zh_TW |
| dc.subject | disc degeneration disease | en |
| dc.subject | dynamic mechanical analysis | en |
| dc.subject | biomechanical property of intervertebral disc | en |
| dc.title | 以量化核磁共振評估豬與人體椎間盤生物力學及生化性質 | zh_TW |
| dc.title | Analysis of Quantitative MRI in Predicting the Biomechanical and Biochemical Properties of Porcine and Cadaveric Intervertebral Disc | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 曾文毅(Wen Yi Tseng),徐善慧(Shan-Hui Hsu) | |
| dc.subject.keyword | 椎間盤退化,量化核磁共振,潛變分析,動態力學分析,椎間盤生物力學, | zh_TW |
| dc.subject.keyword | disc degeneration disease,dynamic mechanical analysis,biomechanical property of intervertebral disc, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
