Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52566
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor方偉宏(Woei-Horng Fang)
dc.contributor.authorTeng-Yung Hunagen
dc.contributor.author黃騰永zh_TW
dc.date.accessioned2021-06-15T16:18:48Z-
dc.date.available2017-09-25
dc.date.copyright2015-09-25
dc.date.issued2015
dc.date.submitted2015-08-17
dc.identifier.citationAdhikari, S., Toretsky, J. A., Yuan, L., & Roy, R. (2006). Magnesium, essential for
base excision repair enzymes, inhibits substrate binding of
N-methylpurine-DNA glycosylase. Journal of Biological Chemistry, 281(40),
29525-29532.
Alseth, I., Dalhus, B., & Bjørås, M. (2014). Inosine in DNA and RNA. Current
opinion in genetics & development, 26, 116-123.
Cheng, C. H., & Kuchta, R. D. (1993). DNA polymerase. epsilon.: Aphidicolin
inhibition and the relationship between polymerase and exonuclease activity.
Biochemistry, 32(33), 8568-8574.
Constantin, N., Dzantiev, L., Kadyrov, F. A., & Modrich, P. (2005). Human mismatch
repair reconstitution of a nick-directed bidirectional reaction. Journal of
Biological Chemistry, 280(48), 39752-39761.
Dalhus B., Arvai A.S., Rosnes I., Olsen O.E., Backe P.H., Alseth I., Gao H., Cao W.,
Tainer J.A., Bjoras M. (2009) Structures of endonuclease V with DNA reveal
initiation of deaminated adenine repair. Nat Struct Mol Biol 16:138-43.
Dedon, P. C., Barth, M., Chen, B., De Mott, M., Dendroulakis, V., Dong, M., & Zhou,
X. (2006). Diverse mechanisms of endogenous nucleobase deamination in
DNA and RNA. Advances in Molecular Toxicology, Elsevier, 25-63.
Dianov, G. L., Sleeth, K. M., Dianova, I. I., & Allinson, S. L. (2003). Repair of abasic
sites in DNA. Mutation Research/Fundamental and Molecular Mechanisms of
Mutagenesis, 531(1), 157-163.
Fang W., Wu J.Y., Su M.J. (1997) Methyl-directed repair of mismatched small
heterologous sequences in cell extracts from Escherichia coli. J Biol Chem
272:22714-20.
Fleck O, Nielsen O. DNA repair. J Cell Sci 2004;117:515–7.
Fortini, P., Parlanti, E., Sidorkina, O. M., Laval, J., & Dogliotti, E. (1999). The type
of DNA glycosylase determines the base excision repair pathway in
mammalian cells. Journal of Biological Chemistry, 274(21), 15230-15236.
Gros L., Saparbaev M.K., Laval J. (2002) Enzymology of the repair of free
radicals-induced DNA damage. Oncogene 21:8905-25.
Holmes, J., Clark, S., & Modrich, P. (1990). Strand-specific mismatch correction in
nuclear extracts of human and Drosophila melanogaster cell lines. Proceedings
of the National Academy of Sciences, 87(15), 5837-5841.
Hitchcock T.M., Gao H., Cao W. (2004) Cleavage of deoxyoxanosine-containing
oligodeoxyribonucleotides by bacterial endonuclease V. Nucleic Acids Res
32:4071-80.
Holmes, J., Clark, S., & Modrich, P. (1990). Strand-specific mismatch correction in
nuclear extracts of human and Drosophila melanogaster cell lines. Proceedings
of the National Academy of Sciences, 87(15), 5837-5841.
Hu W., Feng Z., Tang M.S. (2004) Nickel (II) enhances benzo[a]pyrene diol
epoxide-induced mutagenesis through inhibition of nucleotide excision repair
in human cells: a possible mechanism for nickel (II)-induced carcinogenesis.
Carcinogenesis 25:455-62.
Kadyrov, F. A., Dzantiev, L., Constantin, N., & Modrich, P. (2006). Endonucleolytic
function of MutLα in human mismatch repair. Cell, 126(2), 297-308.
Koi, M., Umar, A., Chauhan, D. P., Cherian, S. P., Carethers, J. M., Kunkei, T. A., &
Boland, C. R. (1994). Human chromosome 3 corrects mismatch repair
deficiency and microsatellite instability and reduces
N-methyl-N′-nitro-N-nitrosoguanidine tolerance in colon tumor cells with
homozygous hMLH1 mutation. Cancer Research, 54(16), 4308-4312.
Lahue R.S., Au K.G., Modrich P. (1989) DNA mismatch correction in a defined
system. Science 245:160-4.
Lee, C. Y. I., Delaney, J. C., Kartalou, M., Lingaraju, G. M., Maor-Shoshani, A.,
Essigmann, J. M., & Samson, L. D. (2009). Recognition and Processing of a
New Repertoire of DNA Substrates by Human 3-Methyladenine DNA
Glycosylase (AAG)+. Biochemistry, 48(9), 1850-1861.
Lindahl T., Wood R.D. (1999) Quality control by DNA repair. Science 286:1897-905.
Lu A.L., Clark S., Modrich P. (1983) Methyl-directed repair of DNA base-pair
mismatches in vitro. Proc Natl Acad Sci U S A 80:4639-43.
Memisoglu A., Samson L. (2000) Base excision repair in yeast and mammals. Mutat
Res 451:39-51.
Mi, R., Alford-Zappala, M., Kow, Y. W., Cunningham, R. P., & Cao, W. (2012).
Human endonuclease V as a repair enzyme for DNA deamination. Mutation
Research/Fundamental and Molecular Mechanisms of Mutagenesis, 735(1),
12-18.
Modrich, P. (2006). Mechanisms in eukaryotic mismatch repair. Journal of Biological
Chemistry, 281(41), 30305-30309.
Moe A., Ringvoll J., Nordstrand L.M., Eide L., Bjoras M., Seeberg E., Rognes T.,
Klungland A. (2003) Incision at hypoxanthine residues in DNA by a
mammalian homologue of the Escherichia coli antimutator enzyme
endonuclease V. Nucleic Acids Res 31:3893-900.
Morita, Y., Shibutani, T., Nakanishi, N., Nishikura, K., Iwai, S., & Kuraoka, I. (2013).
Human endonuclease V is a ribonuclease specific for inosine-containing RNA.
Nature communications, 4.
Ogawa, A., Murate, T., Suzuki, M., Nimura, Y., & Yoshida, S. (1998). Lithocholic
acid, a putative tumor promoter, inhibits mammalian DNA polymerase β.
Cancer Science, 89(11), 1154-1159.
Plotz, G., Piiper, A., Wormek, M., Zeuzem, S., & Raedle, J. (2006). Analysis of the
human MutLα· MutSα complex. Biochemical and biophysical research
communications, 340(3), 852-859.
Saparbaev, M., & Laval, J. (1994). Excision of hypoxanthine from DNA containing
dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA
glycosylases. Proceedings of the National Academy of Sciences, 91(13),
5873-5877.
Schanz, S., Castor, D., Fischer, F., & Jiricny, J. (2009). Interference of mismatch and
base excision repair during the processing of adjacent U/G mispairs may play
a key role in somatic hypermutation. Proceedings of the National Academy of
Sciences, 106(14), 5593-5598.
Scrutton, M. C., & Utter, M. F. (1968). The regulation of glycolysis and
gluconeogenesis in animal tissues. Annual review of biochemistry, 37(1),
249-302.
Stachelek, G. C., Dalal, S., Donigan, K. A., Hegan, D. C., Sweasy, J. B., & Glazer, P.
M. (2010). Potentiation of temozolomide cytotoxicity by inhibition of DNA
polymerase β is accentuated by BRCA2 mutation. Cancer research, 70(1),
409-417.
Sung, J.S. and Demple, B., (Review), FEBS Journal, 273, 1620-1629 (2006).
Tuteja, N., & Tuteja, R. (2004). Prokaryotic and eukaryotic DNA helicases. European
Journal of Biochemistry, 271(10), 1835-1848.
Walser, M. (1967). Magnesium metabolism. In Ergebnisse der physiologie
biologischen chemie und experimentellen pharmakologie (pp. 185-296).
Springer Berlin Heidelberg.
Watkins, N. E., & SantaLucia, J. (2005). Nearest-neighbor thermodynamics of
deoxyinosine pairs in DNA duplexes. Nucleic acids research, 33(19),
6258-6267.
Weiss B. (2008) Removal of deoxyinosine from the Escherichia coli chromosome as
studied by oligonucleotide transformation. DNA Repair (Amst) 7:205-12.
Weller, M., Haaga, M., & Laing, W. (1981). GTP, as well as ATP, can act as a
substrate for the intrinsic protein kinase activity of synaptic plasma
membranes. Molecular and cellular biochemistry, 40(2), 75-85.
Wright, G. E., Hübscher, U., Khan, N. N., Focher, F., & Verri, A. (1994). Inhibitor
analysis of calf thymus DNA polymerases α, δ and ϵ. FEBS letters, 341(1),
128-130.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52566-
dc.description.abstract生物體內細胞中的DNA 進行自發性的反應或是受到外源性的攻擊,導致特定的核酸損傷,例如:亞黃嘌呤(Hypoxanthine;Hx)為生物細胞的腺嘌呤(Adenine;A)發生自發性的脫胺作用、或是遭受到致烷基劑等影響而產生。而以Hx 為含氮鹼基在DNA 構成的核酸稱為deoxyinosine (dI)。因亞黃嘌呤在結構上與鳥嘌呤
(Guanine;G)相似,故在DNA 進行複製時傾向與胞嘧啶(Cytosine;C)配對,一旦出現C-I 的錯誤配對而未被修復,就可能發生A:T→G:C 的transition mutation,進而衍生出疾病。
過往研究已知在人類細胞中的dI 可被alkyladenine DNA glycosylase (AAG)經由鹼基切除修復(base excision repair; BER)去除。而大腸桿菌除了BER 之外,亦能藉由nfi 基因產物endonuclease V (endo V)所主導之alternative excision repair (AER)除去dI。近日文獻在哺乳動物及人類細胞中皆已發現endo V 的homolog,且由試管中實驗證實小鼠細胞之endo V 會如同大腸桿菌於dI 3’端第二個磷酸鍵進行切割,並形成缺刻。但目前在人類細胞中,不論是endo V 起始的後續修復反應之機制、抑或是DNA 中dI 損傷的修復情形皆尚未明瞭。實驗室前人在探討此機制時,設計使用人類細胞萃取液在試管內測試含有G-I, T-I, A-I 受質修復狀況的系統,而本論文將建構新的C-I 異雙股核酸配對受質,讓我們能更完整地了解各種dI 配對受質在人類細胞萃取液中的修復情形,並以不同的因子加入反應中,試著釐清可能參與其中的修復系統及機制;接著對前人所建構在人類細胞萃取液中dI 試管內修復系統進行各種不同條件分析,找尋最適合的反應或是更接近人體生理狀態的條件,最佳化此系統。
實驗結果發現,MMR proficient 的HeLaS3 人類細胞萃取液將C-I 受質修復程度,較MMR deficient (hMLH1 defective)的HCT116 人類細胞萃取液高。而C-I 受質在HeLaS3 及HCT116 人類細胞萃取液之反應需求分析中皆發現,若不加入鎂離子修復反應無法進行;缺乏dNTPs 修復效率會降低;缺乏ATP 或以ATP-γ-S 替代則會使修復效率降低,故推測將C-I 進行辨識及修復的蛋白是需要ATP 結合並且水解。在HeLaS3 細胞萃取液中加入DNA Pol β 抑制劑會使C-I 受質修復效率降低約60%;而加入Pol α、δ、ε 抑制劑則會降低約30%,而額外加入MutLα 至HCT116人類細胞萃取液後,發現G-I 受質被修復效率提升。結果說明除了BER 之外,MMR也可能在人類細胞中參與dI 修復,且不同dI 配對損傷可能會由不同系統修復。
本實驗也利用G-I 受質與HeLaS3 人類細胞萃取液,測試不同修復條件以最佳化實驗室所建立的試管內dI 修復系統。結果發現,G-I 受質修復在30 分鐘時修復效率已達測試最高時間的85%;針對ATP 濃度測試則發現高於2 mM 時會導致核酸修復狀態不穩定,而濃度太低也會導致修復效率不彰;而在鎂離子濃度測試時發現隨濃度上升,修復的效率下降;最後以GTP 代替ATP 則發現修復效率大幅降低。根據以上結果我們未來或能在調整人類細胞萃取液dI 試管內修復系統至更接近生理狀態的條件,讓我們能更有效率地探討人類細胞中dI 修復的機制。
zh_TW
dc.description.abstractDNA base deamination can occur spontaneously under physiological conditions.
Deamination of adenine would generate the highly mutagenic lesion, hypoxanthine(Hx) and the process
is enhanced by ROS released upon exposure of DNA to ionizing radiation, UV light, nitrous acid, or
heat. Hypoxanthine in DNA can pair with cytosine which results in A:T to G:C transition mutations
after DNA replication.
In human cells, alkyadenine-DNA glycosylase (AAG) was thought mainly responsible for the
recognition and excision of hypoxanthine. In Escherichia coli, deoxyinosine (hypoxanthine
deoxyribonucleotide) is removed through an alternative excision repair pathway initiated by
endonuclease V. Endo V homolog had been found in mouse and human cells, and biochemical experiment
showed that mouse endo V also initiates DNA repair by endonuclease cleavage at the second
phosphodieaster bond 3’ to the dI lesion. However, the correction of dI in mammalian cells appeared
to be more complex and was not fully understood. To find out what machenisms may involve in dI
repair in human cell, we designed dI in vitro repair system using human cell extract. In this
study, we applied C-I and G-I substrates to explore the repair pathway and optimize the dI in vitro
repair system in human cells.
Our results showed that C-I substrate could be repaired more efficiently in HeLaS3 than in HCT116.
We also tested the factor requirement for the repair in human cell extracts. Mg2+ is essential in
the repair of C-I, and repair levels decreased in cell extracts without dNTPs or ATP or replaced
ATP with ATP-γ-S. We concluded that ATP will be utilized and also hydrolyzed for repair process of
dI substrates. We assume that DNA Polβ involved not only in BER but also in human endonuclease
V-mediated excision repair, so
we performed the reaction in the presence of polβ inhibitor, lithicolic acid(LCA). We found that
repair levels of C-I substrate decreased about 60%. In the presence of polα、δ、
ε inhibitor aphidicolin (APH), repair levels of C-I decreased about 30% in HeLaS3 extract.
HCT116 extract showed lower repair levels of dI than that of HeLaS3 extract, we believed that MMR
system played some roles in dI repair system in human cell. We added purified MutLα in repair
reaction and found that the deficiency of G-I repair can be partially restored by MutL-α
complementation in HCT116 extract. Through these data, we concluded that there were multiple repair
systems involved in dI repair, and took charge in different dI pair lesions.
According to our previous study, G-I was the best substrate in HeLaS3 extract, threrfore we used
G-I as substrate to optimize in vitro repair assay. We found most of substrates could be repair in
30 minutes. The opitimal concentration for ATP is 1 mM. However ATP concentration higher than 2 mM
would cause G-I substrates unstable. When ATP was replaced by GTP, the repair level dramatically
dropped. With Mg2+ titration test we realized too much Mg2+ would inhibit G-I repair efficiency.
The opitimized dI in vitro assay will be very useful for future investigation of this
important DNA repair mechanism.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:18:48Z (GMT). No. of bitstreams: 1
ntu-104-R01424015-1.pdf: 2993891 bytes, checksum: b2065f1681541981eaaf45ca57b37fef (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents總目次
總目次 I
圖目次III
中文摘要1
英文摘要3
縮寫表5
前言8
材料與方法13
一、菌株13
二、人類細胞株 13
1. HeLaS3 細胞株 13
2. HCT116 細胞株 13
三、酵素 14
四、人類細胞萃取液之製備14
五、突變噬菌體M13mp18 mutant 之建構 15
六、M13mp18 系列雙股核酸之製備 16
七、M13mp18 系列單股核酸之製備 17
八、具亞黃嘌呤核酸鹼基之異雙股核酸之製備 18
1. G-I 異雙股核酸 18
2. C-I 異雙股核酸 20
九、異雙股核酸對測定用限制酵素敏感度分析 20
1. G-I 異雙股核酸 20
2. C-I 異雙股核酸 21
十、亞黃嘌呤異雙股環狀核酸在人類細胞萃取物中之修復反應 22
結果 25
一、異雙股核酸受質隊分析用限制酵素之敏感度分析 25
1. G-I 異雙股核酸 26
2. C-I 異雙股核酸 26
二、G-I 異雙股核酸於試管中以人類細胞萃取液修復反應及反應環境調整對修復效率影響之分析 27
1. G-I 受質反應時間與修復程度之關係 27
2. 不同濃度ATP 對G-I 受質修復程度之關係 28
3. 不同濃度Mg2+對G-I 受質修復程度之關係 28
4. 以GTP 取代ATP 對G-I 受質修復程度之關係 29
三、C-I 異雙股核酸於試管中以人類細胞萃取液修復反應分析 29
1. C-I 受質反應時間與修復程度之關係 29
2. C-I 受質於HeLaS3 人類細胞萃取液中之反應需求 30
3. C-I 受質於MMR deficient HCT116 人類細胞萃取液之反應需求 31
4. DNA polβ抑制劑對C-I 受質於HeLaS3 人類細胞萃取液中修復結果之影響 32
5. DNA polα、δ、ε 抑制劑對C-I 受質於HeLaS3 人類細胞萃取液中修復結果之影響 32
6. 額外加入MMR修復蛋白MutLα 對C-I 受質再HCT116人類細胞萃取液之修復影響 33
討論 35
參考文獻 63
dc.language.isozh-TW
dc.subject亞黃嘌呤修復zh_TW
dc.subject核酸配對錯誤修復zh_TW
dc.subject人類細胞萃取液zh_TW
dc.subject試管內測試zh_TW
dc.subject去氧核醣核酸修復功能缺陷zh_TW
dc.subject脫胺作用zh_TW
dc.subject核酸內切?第五型zh_TW
dc.subjectDNA repair deficiencyen
dc.subjectdeoxyinosine repairen
dc.subjectmismatch repairen
dc.subjecthuman cell extractsen
dc.subjectin vitro assayen
dc.subjectendonucleaseen
dc.title人類細胞亞黃嘌呤修復試管內測試最佳化zh_TW
dc.titleOptimization of Deoxyinosine in vitro repair
system in Human cell
en
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許濤(Todd Hsu),楊雅倩(Ya-Chien Yang),蔡芷季(Zhi-JI Cai)
dc.subject.keyword亞黃嘌呤修復,核酸配對錯誤修復,人類細胞萃取液,試管內測試,去氧核醣核酸修復功能缺陷,脫胺作用,核酸內切?第五型,zh_TW
dc.subject.keyworddeoxyinosine repair,mismatch repair,human cell extracts,in vitro assay,DNA repair deficiency,endonuclease,en
dc.relation.page66
dc.rights.note有償授權
dc.date.accepted2015-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved