請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52557完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴喜美(Hsi-Mei Lai) | |
| dc.contributor.author | Hong-Yu Yang | en |
| dc.contributor.author | 楊弘宇 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:18:30Z | - |
| dc.date.available | 2016-09-17 | |
| dc.date.copyright | 2015-09-17 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-17 | |
| dc.identifier.citation | 林佩吟。2010。國產穀豆作物機能物質之探討。國立台灣大學農業化學系博士論文。
林親錄、王婧、陳海軍。2008。γ-氨基丁酸的研究進展。現代食品科技。24,496-500。 吳秀蘭。2011。國產有色米加工處理對機能物質之影響。國立台灣大學農業化學系碩士論文。 食品檢驗法–大豆異黃酮之測定。2006。中華民國國家標準CNS15021 N6383。 台北,經濟部標準檢驗局。 楊勝遠、陸兆新、呂風霞、別小妹。2005。γ-氨基丁酸的生理功能和研究開發進展。食品科學。26,546-551。 翟瑋瑋。2008。黑豆發芽條件及其異黃酮提取物特性研究。食品工業科技。29,186-189。 AACC 2000. Approved Method of the American Association of Cereal Chemists. AACC Inc., MN. USA. Abdel-Rahman, E. S., El-Fishawy, F. A., El-Geddawy, M. A., Kurz, T. and El-Rify, M. N. 2007. The changes in the lipid composition of mung bean seeds as affected by processing methods. Int. J. Food Eng. 3(5), 1-10. Adlercreutz, H., Honjo, H., Higashi, A., Fotsis, T., Hämäläinen, E., Hasegawa, T. and Okada, H. 1991. Urinary excretion of lignans and isoflavonoid phytoestrogens in Japanese men and women consuming a traditional Japanese diet. Am. J. Clin. Nutr. 54, 1093-1100. Anjum, N. A., Umar, S., Iqbal, M. and Khan, N. A. 2011. Cadmium causes oxidative stress in mung bean by affecting the antioxidant enzyme system and ascorbate- glutathione cycle metabolism. Russian J. Plant. Physiol. 58, 92-99. Arjmandi, B. H. and Smith, B. J. 2002. Soy isoflavones’ osteoprotective role in postmenopausal women: mechanism of action. J. Nutr. Biochem. 13, 120-137. Arora, A., Valcic, S., Cornejo, S., Nair, M. G., Timmermann, B. N. and Liebler, D. C. 2000. Reactions of genistein with alkylperoxyl radicals. Chem. Res. Toxicol. 13, 638-645. Barnes, S., Kirk, M. and Coward, L. 1994. Isoflavones and their conjugates in soy foods: extraction conditions and analysis by HPLC-mass spectrometry. J. Agric. Food Chem. 42, 2466–2474. Bau, H. M., Villaume, C., Nicolas, J. P. and Méjean, L. 1997. Effect of germination on chemical composition, biochemical constituents and antinutritional factors of soya bean (Glycine max) seeds. J. Sci. Food Agr. 73, 1-9. Bazzano, L. A., He, J., Ogden, L. G., Loria, C., Vupputuri, S., Myers, L. and Whelton, P. K. 2001. Dietary potassium intake and risk of stroke in US men and women. Stroke. 32, 1473-1480. Bendich, A. 1997. Vitamin C Safety in Humans. In: Vitamin C in Health and Disease, Packer, L. and J. Fuchs (Eds.). Marcel Dekker Inc., New York, pp: 367-379. Berger, M., Rasolohery, C. A., Cazalis, R., and Daydé, J. 2008. Isoflavone accumulation kinetics in soybean seed cotyledons and hypocotyls: Distinct pathways and genetic controls. Crop Science 48, 700-708. Bowey, E., Adlercreutz, H. and Rowland, I. 2003. Metabolism of isoflavones and lignans by the gut microflora: a study in germ-free and human flora associated rats. Food Chem. Toxicol. 41, 631-636. Brouns, F. 2002. Soya isoflavones: a new and promising ingredient for the health foods sector. Food Res. Intl. 35, 187-193. Buettner, G.R. 1993. The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch, Biochem. Biophys. 300, 535-543. Carbonaro, M., Virgili, F. and Carnovale, E. 1996. Evidence for protein–tannin interaction in legumes: implications in the antioxidant properties of faba bean tannins. LWT-Food Sci. Technol. 29, 743-750. Carr, A. C., and Frei, B. 1999. Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Am. J. Clin. Nutr. 69, 1086-107. Chan, Y.-H., Lau, K.-K., Yiu, K.-H., Li, S.-W., Chan, H.-T., Fong, D. Y.-T., Tam, S., Lau, C.-P. and Tse, H.-F. 2008. Reduction of C-reactive protein with isoflavone supplement reverses endothelial dysfunction in patients with ischaemic stroke. Eur. Heart J. 29, 2800-2807. Chang, S. K. C. 2002. Isoflavones from soybeans and soy foods. In: Shi, J., Mazza, G. and Le Maguer, M. (Eds.) Functional foods: biochemical & processing aspects. Vol. 2. Boca Raton: CRC Press. p.39-69. Chiarello, M. D., Guerroue, J. L., Chagas, C. M. S., Franco, O. L., Bianchini, E. and João, M. 2006. Influence of heat treatment and grain germination on the isoflavone profile of soy milk. J. Food Biochem. 30, 234-247. Chien, J.T., Hsieh, H.C., Kao, T.H., and Chen B.-H. 2005. Kinetic model for studying the conversion and degradation of isoflavones during heating. Food Chem. 91, 425-434. Choung, M.-G., Baek, I.-Y., Kang, S.-T., Han, W.-Y., Shin, D.-C., Moon, H.-P. and Kang, K.-H. 2001. Isolation and determination of anthocyanins in seed coats of black soybean (Glycine max (L.) Merr). J. Agric. Food Chem. 49, 5848-5851. Chung, I. M. Yu, B. R. Park, I and Kim, S. H. 2014. Isoflavone Content and Profile Comparisons of Cooked Soybean−Rice Mixtures: Electric Rice Cooker versus Electric Pressure Rice Cooker. J. Agric. Food Chem. 62, 11862-11868. Coward, L., Smith, M., Kirk, M. and Barnes, S. 1998. Chemical modification of isoflavones in soyfoods during cooking and processing. Am. J. Clin. Nutr. 68, 1486S-1491S. Crouse, J. R. III., Byington, R. P., and Furberg, C. D. 1998. HMG-CoA reductase inhibitor therapy and stroke risk reduction: an analysis of clinical trials data. Davies, C. G. A., Netto, F., Glassenap, M., Gallaher, C. M., Labuza, T. P., and Gallaher, D. D. 1998. Indication of the Maillard Reaction during Storage of Protein Isolates. J. Agric. Food Chem. 46, 2485-2489. Day, A. J., DuPont, M. S., Ridley, S., Rhodes, M., Rhodes, M. J. C., Morgan, M. R. A. and Williamson, G. 1998. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β-glucosidase activity. FEBS Lett. 436, 71-75. Decroos, K., Eeckhaut, E., Possemiers, S. and Verstraete, W. 2006. Administration of equol-producing bacteria alters the equol production status in the simulator of the gastrointestinal microbial ecosystem (SHIME). J. Nutr. 136, 946-952. Diana, M., Quílez, J., and Rafecas. M. 2014. Gamma-aminobutyric acid as a bioactive compound in foods: a review. J. Funct. Foods. 10, 407-420. DiSilvestro, P. A., Walker, J. L., Morrison, A., Rose, P. G., Homesley, J. and Warshalf, D. 2006. Radiation therapy with concomitant paclitaxel and cisplatin chemotherapy in cervical carcinoma limited to the pelvis: A phase I/II study of the Gynecologic Oncology Group. Gynecol. Oncol. 103, 1038-1042. Dua, S. K., Jiang, H., Ai, Y., and Jane, J. L. 2014. Physicochemical properties and digestibility of common bean (Phaseolus vulgaris L.) starches. Carbohydr. Polym. 108, 200-205. Eichenberger, W. 1977. in Lipids and Lipid Polymers in Higher Plants (Tevini, M., and Lichtenthaler, H.K., eds.) pp. 169-182, Springer-Verlag, Berlin. Ellington, A. A., Berhow, M. A. and Singletary, K. W. 2005. Induction of macroautophagy in human colon cancer cells by soybean B-group triterpenoid saponins. Carcinogenesis. 26, 159-167. Englyst, H. N. and Cummings, J. H. 1987. Digestion of polysaccharides of potato in the small intestine of man. Am. J. Clin. Nutr. 45, 423-431. Englyst, H. N., Kingman, S. M., Cummings, J. H. 1992. Classification and Measurement of Nutritionally Important Starch Fractions. Eur. J. Clin. Nutr. 46, S33-S50. Erlander, M. C. and Tobin, A. J. 1991. The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem. Res. 76, 215-226. Esaki, H., Onozaki, H., Kawakishi, S. and Osawa, T. 1996. New antioxidant isolated from tempeh. J. Agric. Food Chem. 44, 696-700. Estomba, D., Ladio, A. and Lozada, M. 2006. Medicinal wild plant knowledge and gathering patterns in a mapuche community from North-western Patagonia. J. Ethnopharmacol. 103, 109-119. Faraja, A. Vasanthana, T., and Hoover, R. 2004. The effect of extrusion cooking on resistant starch formation in waxy and regular barley flours. Food Res. Int. 37, 517-525. Fery, R. L. 1990. The cowpea: production, utilization, and research in the United States. Hortic Rev. 12, 197-222. Frei, B., Kim, M. C. and Ames, B. N. 1990. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc. Natl. Acad. Sci. 87, 4879- 4883. Foti, P., Erba, D., Riso, P., Spadafranca, A., Criscuoli, F. and Testolin, G. 2005. Comparison between daidzein and genistein antioxidant activity in primary and cancer lymphocytes. Arch. Biochem. Biophys. 433, 421-427. Genovese, M. I., Hassimotto, N. M. A. And Lajolo, F. M. 2005. Isoflavone profile and antioxidant activity of Brazilian soybean varieties. Food Sci. Technol. Intl. 11, 205-211. Graham, T. 1991. Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates. Plant Physiol. 95, 594-603. Granfeldt, Y., Bjorck, I., Drews, A. and Tovar, J. 1992. An in vitro procedure based on chewing to predict metabolic response to starch in cereal and legume products. Eur. J. Clin. Nutr. 46, 649-660. Guo, X., Li, T., Tang, K. and Liu, R. H. 2012. Effect of germination on phytochemical profiles and antioxidant activity of mung bean sprouts (Vigna radiata). J. Agric. Food Chem. 60, 11050-11055. Gurfinkel, D. M. and Rao, A. V. 2003. Soyasaponins: the relationship between chemical structure and colon anticarcinogenic activity. Nutr. Cancer. 47, 24-33. Halliwell, B. 1996. Vitamin C: antioxidant or pro-oxidant in vivo? Free Rad. 25, 439-454. Han, K. H., Fukushima, M., Shimizu, K., Kojima, M., Ohba, K. and Tanaka, A. 2003. Resistant starches of beans reduce the serum cholesterol concentration in rats. J. Nutr. Sci. Vitaminol. (Tokyo). 49, 281-286. Hasjim, J., Ai, Y. F. and Jane, J. L. 2013. Novel Applications of Amylose-Lipid Complex as Resistant Starch Type 5. In: Resistant Starch: Sources, Applications and Health Benefits, John Wiley & Sons, Ltd, pp: 79-93. Hayakawa, I. and Breene, W. M. 1982. A study on the relationship between cooking properties of akzuki bean and storage condition. J. Fac. Agr. 27, 83-88 Hoeck, J. A., Fehr, W. R., Murphy, P. A., and Welke, G. A. 2000. Influence of genotype and environment on isoflavone contents of soybean. Crop Sci. 40, 48-51. Hoover, R. and Ratnayake, W. S. 2002. Starch characteristics of black bean, chick pea, lentil, navy bean and pinto bean cultivars grown in Canada. Food Chem. 54, 401-417. Howes, L. G., Howes, J. B. and Knight, D. C. 2006. Isoflavone therapy for menopausal flushes: A systematic review and meta-analysis. Maturitas. 55, 203-211. Hu, X. P., Xie, Y. Y., Jin, Z. Y., Xu, X. M., and Chen, H. Q. 2014. Effect of single-, dual-, and triple-retrogradation treatments on in vitro digestibility and structural characteristics of waxy wheat starch. Food Chem. 157(15), 373-379 Huang, H., Liang, H. and Kwok K. C. 2006. Effect of thermal processing on genistein, daidzein and glycitein content in soymilk. J. Sci. Food Agric. 86, 1110-1114. Huang, R. Y. and Chou, C. C. 2008. Heating affects the content and distribution profile of isoflavones in steamed black soybeans and black soybean koji. J. Agric. Food Chem. 56, 8484-8489. Huang, X., Cai, W., and Xu, B. 2014. Kinetic changes of nutrients and antioxidant capacities of germinated soybean (Glycine max L.) and mung bean (Vigna radiata L.) with germination time. Food Chem. 143, 268-276. Igwemmar, N.C., Kolawole, S.A., and Imran, I.A. Effect of heating on vitamin C content of some selected vegetables. 2013. Int. J. Sci.Technol. Res. 2, 209-212. Ishihara, K., Oyaizu, S., Fukuchi, Y., Mizunoya, W., Segawa, K., Takahashi, M., Mita, Y., Fukuya, Y., Fushiki, T., and Yasumoto, K. A. 2003. Soybean peptide isolate diet promotes postprandial carbohydrate oxidation and energy expenditure in type II diabetic mice. J. Nutr. 133, 752-757. Itoh, T. and Furuichi, Y. 2009. Lowering serum cholesterol level by feeding a 40% ethanol-eluted fraction from HP-20 resin treated with hot water extract of adzuki beans (Vigna angularis) to rats fed a high-fat cholesterol diet. Nutrition. 25, 318-321. Jackson, C. J. C., Dini, J. P., Lavandier, C., Rupasinghe, H. P. V., Faulkner, H., Poysa, V., Buzzell, D. and Degrandis, S. 2002. Effects of processing oh the content ad composition of isoflavones during manufacturing of soy beverage and tofu. Process Biochem. 37, 1117-1123. Jaffe, G. M. 1984. Vitamin C. In: Handbook of Vitamins, Machalinal, L. (Ed.). Mercell Dekker Inc., New York, pp: 199-244. Jayakody, L. and Hoover, R. 2008. Effect of annealing on the molecular structure and physicochemical properties of starches from different botanical origins ‚Äì A review. Carbohydr. Polym. 74, 691-703. Jiang, S., Cai, W., and Xu. B. Food Quality Improvement of Soy Milk Made from Short-Time Germinated Soybeans. 2013. Foods. 2, 198-212. Kanatt, S. R., Arjun, K. and Sharma, A. 2011. Antioxidant and antimicrobial activity of legume hulls. Food Res. Int. 44, 3182-3187. Kataria, A., Chauhan, B. and Punia, D. 1989. Antinutrients and protein digestibility (in vitro) of mungbean as affected by domestic processing and cooking. Food Chem. 32, 9-17. Kavas, A., Sedef, N. 1991. Nutritive value of germinated mung beans and lentils. J Consumer Stud. Home Econ. 15, 357-366. Kim, D. K., Chon, S. U., Lee, K. D., Kim, J. B., Rim, Y. S. 2008. Variation of flavonoids contents in plant parts of mungbean. Korean J Crop Sci/Hanguk Jakmul Hakhoe Chi. 53, 279-284. Kim, D. K., Jeong, S. C., Gorinstein, S. and Chon, S. U. 2012. Total polyphenols, antioxidant and antiproliferative activities of different extracts in mungbean seeds and sprouts. Plant Foods Hum. Nutr. 67, 71-75. Kim, W.-J., Lee, H.-Y., Won, M. H. and Yoo, S.-H. 2005. Germination effect of soybean on its contents of isoflavones and oligosaccharides. Food Sci. Biotechnol. 14, 498- 502. Kim, K. H., Tsao, R., Yang, R. and Cui, S. W. 2006. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 95, 466-473. Kinnersley, A. M. and Turano, F. J. 2000. Gamma aminobutyric acid (GABA) and plant responses to stress. Crc. Cr. Rev. Plant Sci. 19, 479-509. Kirchhoff, E. 2002. Online-publication of the german food composition table “souci-fachmann-kraut” on the internet. J. Food Comp. Anal. 15(4), 465-472. Klus, K., Borger-Papendorf, G. and Barz, W. 1993. Formation of 6,7,4’-trihydroxy- isoflavone (factor 2) from soybean seed isoflavones by bacteria isolated from tempe. Phytochem. 34, 979-981. Koes, R. E. and Quattrocchio, F. 1994. Mol JNM: The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays. 6(2), 123-132. Kojima, M., Ohnishi, M., Ito, S., and Fujino, Y. 1989. Characterization of acylmono-, mono-, di-, tri-and tetraglycosylsterol and saponin in adzuki bean (Vigna angularis) seeds. Lipid. 24(10), 849-853. Konwatchara, T., and Ahromrit, A. 2014. Effect of cooking on functional properties of germinated black glutinous rice (KKU-ULR012). Songklanakarin J. Sci. Technol. 36, 3, 283-290. Kudou, S., Fleury, Y. and Welti, D. 1991. Malonyl isoflavone glycosides in soybean seeds (Glycine Max merrill). Agric. Biol. Chem. 55, 2227-2233. Kutlan, D. and Monlar-Perl, I. 2001. Characteristics and stability of the OPA/ 3-mercaptopropionic acid and OPA/N-acetyl- L-cysteine derivatives of amino acids. Chromatographia. 53, S188-198. Lai, H. M. and Lin, P. Y. 2006. Bioactive compounds in legumes and their germinated products. J. Agric. Food Chem. 54, 3807-3814 Lai, H. M. and Lin, P. Y. 2010. Thermal effects on the conversion of isoflavones in soybean. In “Chemistry, Texture, and Flavor of Soy,” Keith R. Cadwallader and Sam K.C. Chang (Eds.) American Chemical Society, Washington DC, USA. Lee, S. W. and Lee , J. H. 2009. Effects of oven-drying, roasting, and explosive puffing process on isoflavone distributions in soybeans. Food Chem. 112, 316-320. Levine, M. 1986. New concepts in the biology and biochemisty of ascorbic acid. New England. J. Med. 314, 892-902. Li, H., Cao, D., Yi, J., Cao, J. and Jiang, W. 2012. Identification of the flavonoids in mungbean (Phaseolus radiatus L) soup and their antioxidant activities. Food Chem. 135(4), 2942-2946. Liao, W. C., Wang, C. Y., Shyuc, Y. T., Yu, R. C., and Ho, K. C. 2013. Influence of preprocessing methods and fermentation of adzuki beans on γ-aminobutyric acid (GABA) accumulation by lactic acid bacteria. J. Funct. Foods. 5, 1108-1115. Lii, C.-Y. and Chang, S.-M. 1981. Characterization of red bean starch and its noodle quality. J. Food Sci. 46, 78. Mahungu, S. M., Diaz-Mercado, S., Li, J., Schwenk, M., Singletary, K. and Faller, J. 1999. Stability of isoflavones during extrusion processing of corn/soy mixture. J. Agric. Food Chem. 47, 279-284. Mathooko, F. M., and Imungi, J. K. 1994. Vitamin C changes in three indigenous Kenyan leafy vegetables during traditional cooking. Ecol. Food Nutr. 32, 239-245. Matsuo, A., Sato, K., Park, E. U., Nakamura, Y. and Ohtsuki, K. 2012. Control of amylase and protease activities in a phytase preparation by ampholyte-free preparative isoelectric focusing for unrefined cereal-containing bread. J. Funct. Food. 4, 513–519. Matsuura, M., Obata, A. and Fukushima, D. 1989. Objectionable flavor of soy milk developed during the soaking of soybeans and its control. J. Food Sci. 54誒602-605. Matsuura, M. and Obata, A. 1993. β-glucosidases from soybeans hydrolyze Daidzin and genistin. J. Food Sci. 58, 144-147. Matsuyama, A., Yoshimura, K., Shimizu, C., Murano, Y., Takeuchi, H., and Ishimoto, M. 2009. Characterization of glutamate decarboxylase mediating γ-amino butyric acid increase in the early germination stage of soybean (Glycine max [L.] Merr). J. Biosci. Bioeng. 107, 5, 538-543. Min, L. 2001. Research advance in chemical composion and pharmacological action of mung bean. Shanghai J. Trad. Chin. Med. 5, 18. Morais, M. B., Feste, A., Miller, R. G. and Lifschitz, C. H.1996. Effect of resistant and digestible starch on intestinal absorption of calcium, iron, and zinc in infant pigs. Pediatr. Res. 39, 872–876. Morales-Medina, R., Muñío, M. M., Guadix, E. M., and Guadix A. 2014. Production of resistant starch by enzymatic debranching in legume flours. Carbohydr. Polym. 101, 1176-1183. Mubarak, A. 2005. Nutritional composition and antinutritional factors of mung bean seeds (phaseolus aureus) as affected by some home traditional processes. Food Chem. 89, 489-495. Mudd, J.B. 1980. in The Biochemistry of Plants (Stumpf, P.K., and Conn, E.E., eds.) Vol. 4, pp. 509-534, Academic Press, New York, NY. Munyaka, A. W., Makule, E. E., Oey, I., Van, L. A., and Hendrickx M. 2010. Thermal stability of L-ascorbic acid and ascorbic acid oxidase in broccoli (Brassica oleracea var. italica). J Food Sci. 75, 4, C336-400. Nakamura, Y., Yuki, K., Park S.-Y. and Ohya, T. 1989. Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiol. 30, 833-839. Nugent, A. P. 2005. Health properties of resistant starch. Nutr. Bull. 30, 27-54. Oatway, L., Vasanthan, T., Helm, J. H. 2001. Phytic acid. Food Rev. Int. 17, 419-431. Oburuoga, A.C. and Anyika, J.U. 2012. Nutrient and antinutrient composition of mungbean (Vigna radiata), acha (Digitaria exilis) and crayfish (Astacus fluviatilis) flours. Pak. J. Nutr. 11(9), 743-746. Oh, C. H. and Oh, S. H. 2004. Effect of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis. J. Med. Food. 7, 19-23. Oh, S. H., Soh, J. R. and Cha, Y. S. 2003. Germinated brown rice extract shows a nutraceutical effect in the recovery of chronic alcohol-related symptoms. J. Med. Food. 6, 115-121. Packer, L. 1997. Vitamin C and redox cycling antioxidants. In: Vitamin C in Health and Disease, Packer, L. and J. Fuchs (Eds.). Marcel Dekker Inc, New York, pp: 95-121. Park, Y., Brinton, L. A., Subar, A. F., Hollenbeck, A. and Schatzkin, A. 2009. Dietary fiber intake and risk of breast cancer in postmenopausal women: the National Institutes of Health-AARP Diet and Health Study. Am J Clin Nutr. 90(3), 664-71. Park, J. H., Jeong, H. J. and de Lumen, B. O. 2007. Invitro digestibility of the cancer-preventive soy peptides lunasin and BBI. J. Agric. Food Chem. 55, 10703- 10706. Paucar-Menacho, L. M., Berhow, M. A., Mandarino, J. M. G., de Mejia, E. G. and Chang, Y. K. 2010a. Optimisation of germination time and temperature on the concentration of bioactive compounds in Brazilian soybean cultivar BRS 133 using response surface methodology. Food Chem. 119, 636-642. Paucar-Menacho, L. M., Berhow, M. A., Mandarino, J. M. G., Chang, Y. K. and de Mejia, E. G. 2010b. Effect of time and temperature on bioactive compounds in germinated Brazilian soybean cultivar BRS 258. Food Res. Intl. 43, 1856-1865. Peterson, G. and Bames, S. 1991. Genistein inhibition of the growth of juman breast cancer cell: independence from estrogen receptors and the multi-drug resistance gene. Biochem. Biophys. Res. Commun. 179, 661-667. Phommalth, S., Jeong, Y.-S., Kim, Y.-H., Dhakal, K. H. and Hwang, Y.-H. 2008. Effects of light treatment on isoflavone content of germinated soybean seeds. J. Agric. Food Chem. 56,10123-10128. Prokudina, E., Havlíček, L., Al-Maharik, N., Lapčík, O., Strnad, M. and Gruz, J. 2012. Rapid UPLC–ESI–MS/MS method for the analysis of isoflavonoids and other phenylpropanoids. J. Food Comp. Anal. 26, 36-42. Randhir, R., Lin, Y.-T. and Shetty, K. 2004. Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochem. 39, 637-646. Ribeiro, M. L. L., Mandarino, J. M. G., Carrão-panizzi, M. C., Oliveira, M. C. N., Campo, C. B. H., Nepomuceno, A. L. and Ida, E. I. 2006. β-glucosidase activity and isoflavone content in germinated soybean radicles and cotyledons. J. Food Biochem. 30, 453-465. Sadowsky, M. J., Cregan, P. B., Gottfert, M., Sharma, A., Gerhold, D., Rodriguez-Quinones, F., Keyser, H. H., Hennecke, H. and Stacey, G. 1991. The Bradyrhizobium japonicum nolA gene and its involvement in the genotype-specific nodulation of soybeans. Proc. Natl. Acad. Sci. USA. 88, 637-641. Sajilata, M. G., Singhal, R. S. and Kulkarni, P.R. 2006. Resistant starch - A review. Compr. Rev. Food Sci. Food Saf. 5, 1-17. Samoto, M., Fukuda, Y., Takahashi, K., Tabuchi, K., Hiemori, M., Tuji, H., Ogawa, T. and Kawamura, Y. 1997. Substantially complete removal of three major allergenic soybean proteins (Gly m Bd 30K, Gly m Bd 28K, and the a-subunits of conglycinin) from soy protein by using a mutant soybean, Tohoku 124. Biosci. Biotechnol. Biochem. 61, 2148-2150. Sanchez-Moreno, C., Larrauri, J. A. and Saura-Calixto, F. 1999. A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric. 76, 270-276. Sawa, T., Nakao, M., Akaike, T., Ono, K. and Maeda, H. 1999. Alkylperoxyl radical-scavenging activity of various flavonoids and other phenolic compounds: implications for the anti-tumor-promoter effect of vegetables. J. Agric. Food Chem. 47, 397-402. Schwenke, K. D. 2001. Reflections about the functional potential of legume proteins: A Review. Mol. Nutr. Food Res. 45, 377-381. Setchell, K. D. and Cassidy, A. 1999. Dietary isoflavones: biological effects and relevance to human health. J. Nutr. 129, 758S-767S. Shi, M., Chen, Y., Yu, S., and Gao, Q. 2013. Preparation and properties of RS III from waxy maize starch with pullulanase. Food Hydrocolloid. 33, 19-25. Singh, H. P., Kaur, S., Batish, D. R. and Kohli, R. K. 2009. Caffeic acid inhibits in vitro rooting in mung bean [Vigna radiata (L.) wilczek] hypocotyls by inducing oxidative stress. Plant Growth Regul. 57, 21-30. Sosulski, F. W. and Dabrowski, K. J. 1984. Composition of free and hydrolyzable phenolic acids in the flours and hulls of ten legume species. J. Agric. Food Chem. 2, 131-133. Sparg, S. G., Light, M. E. and Staden, J. 2004. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 94, 219-243. Tang, D., Dong, Y., Ren, H., Li, L., and He, C. 2014. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chem. Cent. J. 8, 4, 1-9. Tiansawang, K., Luangpituksa, P., Varanyanond, W., and Hansawasdi. C. 2014. GABA (Gamma-aminobutyric acid) production of mung bean (Phaseolus aureus) during germination and cooking effect. Suranaree J. Sci. Technol. 21(4), 307-313. Tjahjadi, C., Lin, S. and Breene, W. M., 1988. Isolation and characterization of adzuki bean (Vigna angularis cv. Takara) proteins. J. Food Sci. 53, 1438-1443. Toda, T., Sakamoto, A., Takayanagi, T. and Yokotsuka, K. 2000. Changes in isoflavone compositions of soybean foods during cooking process. Food Sci. Technol. Res. 6, 314-319. Toda, T., Tamura, J. and Okuhira, T. 1997. Isoflavone content in commercial soybean foods. Foods and Food Ingredients Journal of Japan. 172,83-89. Topping, D. L., Storer, G. B., Calvert, G. D., Illman, R. J., Oakenfull, D. G. and Weller, R. A. 1980. Effect of dietary saponins on fecal bile acids and neutral sterols, plasma lipids, and lipoprotein turnover in the pig. Am. J. Clin. Nutr. 33, 783-786. Tsao, C. S. 1997. An overview of ascorbic acid chemistry and biochemistry. In: Vitamin C in Health and Disease, Packer, L. and J. Fuchs (Eds.). Marcel Dekker Inc, New York, pp: 25-58. Tsukamoto, C., Shimada, S., Igita, K., Kudou, S., Kokubun, M., and Okubo, K. 1995. Factors affecting isoflavone content in soybean seeds: Changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. J. Agric. Food Chem. 43, 1184-1192. Valdebouze, P., Bergeron, E., Gaborit, T. and Delort-laval, J. 1980. Content and distribution of trypsin inhibitors and haemagglutonıns in some hegume seeds. Can. J. Plant. Sci. 60, 695-701. Van Rhijn, R. and Vanderleyden, J. 1995. The Rhizobium-plant symbiosis. Microbiol. Rev. 59, 124-142. Vijayakumari, K., Pugalenthi, M. and Vadivel, V. 2007. Effect of soaking and hydrothermal processing methods on the levels of antinutrients and in vitro protein digestibility of Bauhinia purpurea L. seeds. Food Chem. 103, 968-975. Wang, M., Gillaspie, A., Morris, J., Pittman, R., Davis, J. and Pederson, G. 2008. Flavonoid content in different legume germplasm seeds quantified by HPLC. Plant Gen. Res. Charac. Util. 6, 62-69. Wang, H. J. and Murphy, P. A. 1994a. Isoflavone content in commercial soybean foods. J. Agric. Food Chem. 42, 1666-1673. Wang, H. J. and Murph, P. A. 1994b. Isoflavone Composition of American and Japanese Soybeans in Iowa: Effects of Variety, Crop Year, and Location. J. Agric. Food Chem. 42, 1674-1677. Wang, H. J. and Murphy, P. A. 1996. Mass balance study of isoflavones during soybean processing. J. Agric. Food Chem. 44, 2377-2383. Wati, R. K., Theppakorn, T., Benjakul, S., and Rawdkuen, S. 2010. Trypsin inhibitor from 3 legume seeds:fractionation and proteolytic inhibition study. J. Food Sci. 75(3), C223-228. Weber, P., Bendich, A. and Schalch, W. 1996. Vitamin C and human health-a review of recent data relevant to human requirements. Int. J. Vitam. Nutr. Res. 66, 19-30. Wells, W. W. and Jung, C. 1997. Regeneration of vitamin C. In: Vitamin C in Health and Disease, Packer, L. and J. Fuchs (Eds.). Marcel Dekker Inc, New York, pp: 109-21. Woodall, A. A. and Ames, B. N. 1997. Diet and Oxidative Damage to DNA: The Importance of Ascorbate as an Antioxidant. In: Vitamin C in Health and Disease, Packer, L. and J. Fuchs (Eds.). Marcel Dekker Inc, New York, pp: 193-203. Wu, S.-J., Wang, J.-S., Lin, C.-C. and Chang, C.-H. 2001. Evaluation of hepatoprotective activity of legumes. Phytomedicine. 8, 213-219. Xie, Y. Y., Hu, X. P., Jin, Z. Y., Xu, X. M., and Chen, H. Q. 2014a. Effect of temperature-cycled retrogradation on in vitro digestibility and structural characteristics of waxy potato starch. Int. J. Biol. Macromol. 67, 79-84 Xie, Y. Y., Hu, X. P., Jin, Z. Y., Xu, X. M., and Chen, H. Q. 2014b. Effect of repeated retrogradation on structural characteristics and in vitro digestibility of waxy potato starch. Food Chem. 163, 219-225. Xu, B. J. and Chang, S. K. 2007. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci. 72, S159-166. Xu, X., Wang, H. J., Murphy, P. A., Cook, L., and Hendrich, S. 1994. Daidzein is a more bioavailable soymilk isoflavone than is genistein in adult women. J. Nutr. 124, 825-832. Yadav, B. S., Sharma, A., and Yadav, R. B. 2009. Studies on effect of multiple heating/cooling cycles on the resistant starch formation in cereals, legumes and tubers. Int. J. Food Sci. Nutr. 60, 258-272. Yu, O., Shi, J., Hession, A. O., Maxwell, C. A., McGonigle, B. and Odell, J. T. 2003. Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochem. 63, 753-763. Yuan, J.-P., Liu, Y.-B., Peng, J., Wang, J.-H. and Liu, X. 2009. Changes of isoflavone profile in the hypocotyls and cotyledons of soybeans during dry heating and germination. J. Agric. Food Chem. 57, 9002-9010. Yuan, X. P., Wang, J. and Yao, H. 2005a. Feruloyl oligosaccharides stimulate the growth of Bifidobacterium bifidum. Anaerobe. 11, 225-229. Yuan, X., Wang, J. and Yao, H. 2005b. Antioxidant activity of feruloylated oligosaccharides from wheat bran. Food Chem. 90, 759-764. Yura, R. E., Bradley, S. G., Ramesh, G., Reeves, W. B. and Bond. J. S. 2009. Meprin A metalloproteases enhance renal damage and bladder inflammation after LPS challenge. Am J Physiol Renal Physiol. 296(1), F135-44 Zhang, Y., Song, T. T., Cunnick, J. E., Murphy, P. A. and Hendrich, S. 1999. Daidzein and genistein glucuronides in vitro are weakly estrogenic and activate human natural killer cells at nutritionally relevant concentrations. J. Nutr. 129, 399-405. Zhu, D., Hettiarachchy, N. S., Horax, R. and Chen, P. 2005. Isoflavone contents in germinated soybean seeds. Plant Food Hum. Nutr. 60, 147-151. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52557 | - |
| dc.description.abstract | 本研究針對國產的豆類,欲探討發芽及熟化的處理對其機能性成分以及澱粉消化性質的影響,藉此評估國產豆類品種用於保健食材的潛力。試驗結果發現,在9種國產豆類品種中,大豆以蛋白質所佔比例較高,而紅豆及綠豆以碳水化合物為主,且所有品種之膳食纖維皆約為20%。9種豆類品中中僅有6種品種可以發芽,且最多經過3天後發芽率便可達100%。具有色種皮的黑豆TN3及紅豆AKS8、AKS9的抗氧化特性最佳,且豆類在經由浸泡及發芽處理後,能顯著提升抗氧化特性,所有處理中,以GTN5發芽3天具有最佳的DPPH自由基清除率,這可能和其高維生素C含量有關。黃豆KS10及黑豆TN3之總大豆異黃酮及總配醣體含量皆以發芽3天最高;紅豆AKS8及AKS9在經過35°C、5小時浸泡過後,GABA含量便有很顯著的上升;綠豆GTN5及TS95-03M分別經過3及2天的發芽後可以得到最高的維生素C含量。大豆經過加熱處理後,異黃酮會有形式的轉變或者是降解的反應所進行,經乾熱處理有從malonylglucoside轉變成acetylglucoside及glucoside的趨勢;濕熱處理後,malonylglucoside雖也會大量降解,但僅glucoside顯著上升。黃豆KS10經由5小時浸泡後濕熱30分鐘後、黑豆TN3經由發芽3天後做210°C乾熱處理,可以保留最高的總大豆異黃酮及總配糖體含量。紅豆中的GABA耐熱穩定性高,經由濕熱處理並不會造成GABA含量顯著性的下降,但乾熱處理後紅豆的GABA則會下降至為處理前之20-30%。維生素C為熱敏感之物質,易受熱影響而破壞,但綠豆芽菜經過高溫短時間殺菁並凍乾後仍能維持60%之維生素C含量。成熟紅豆及綠豆之RS含量皆高達約50%以上且RDS均小於20%,以紅豆AKS8有最高的RS,綠豆GTN5有最低的RDS。乾熱處理後,RDS含量會有顯著的上升,且RS含量下降。在酵素處理中,若以SDS及RS為生產指標,則以40-60 ASPU/g之酵素劑量、12-24 hr水解且於4°C回凝24小時為最佳條件。 | zh_TW |
| dc.description.abstract | The objective of this study was to investigate the effects of germination and heating treatments on the bioactive compounds and starch digestibility in domestic grown legumes, and to assess the potential of the using for healthy food ingredients. In 9 domestic legume varieties, protein was the major component in soybeans, and carbohydrates in azuki beans and mung beans. All varieties composed about 20% dietary fiber. Only 6 of 9 domestic legume varieties could germinate, and all of the 6 varieties germinated completely in 3 days. The dark-coat seeds, black soybean TN3, and azuki bean AKS8 and AKS9 had the highest antioxidant properties. After soaking and germination, antioxidant properties of legumes could significantly improved. In all treatments, the 3-day’s germinated mung bean GTN5 had the best DPPH scavenging abilities, this could be related to the high vitamin C content in mung bean. Soybean KS10 and black soybean TN3 had the highest contents of total isoflavones and total aglycones after 3-day’s germination. After soaking, GABA contents in azuki bean AKS8 and AKS9 had significantly increased. Vitamin C contents in mung bean GTN5 and TS95-03M reached the highest after germinated 3 and 2 days, respectively. During heat process, isoflavones in soybeans might be converted to another form or degraded. The malonylglucosides decreased dramatically corresponding with the increases of glucosides and acetylglucosides after dry-heating treatments, but only increased of glucosides after moist-heating treatments. Soybean KS10 remained the highest contents of total isoflavones and aglycones after soaking and 30-min moist-heating treatment, while black soybean TN3 had the highest contents of total isoflavones and aglycones after 3-day’s germination and 210°C dry-heating treatment. GABA in azuki beans was thermal stable, and they wouldn’t decreased after moist-heating treatments. But in dry-heating treatments, GABA decreased to about 20-30% of the non-treated sample. Vitamin C was a heat-sensitive compound, and it would be decomposed by heat treatments. Applying the blanching treatment (100℃/10 sec) before freeze-drying, there was still 60% of vitamin C left compared to non-blanching samples. RS contents were higher than 50 % and RDS contents were lower than 20 % in all matured azuki beans and mung beans. Dry-heating raised the percentages of rapid digestible starch (RDS) in azuki and mung beans, while decreased the percentage of resistant starch (RS). For the purpose of production of SDS and RS, the best enzyme hydrolysis condition was 40-60 ASPU/g enzyme dosages, 12-24 hr hydrolyzation time, and 24 hr retrogradation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:18:30Z (GMT). No. of bitstreams: 1 ntu-104-R02623026-1.pdf: 2730074 bytes, checksum: 67021c0128d21de6c753988ecfa059c0 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 中文摘要........................................................................................................................ I
Abstract ......................................................................................................................... II 表目錄......................................................................................................................... IX 圖目錄......................................................................................................................... XI 第一章、前言................................................................................................................ 1 第二章、文獻整理........................................................................................................ 4 一、大豆中之機能性物質........................................................................................ 4 (一)大豆異黃酮................................................................................................ 4 1. 大豆異黃酮之代謝.................................................................................... 5 2. 大豆異黃酮之生理機能性........................................................................ 6 3. 大豆異黃酮經加工後的影響.................................................................... 7 (二)大豆蛋白質與胜肽.................................................................................... 9 (三)大豆中其他機能性成分.......................................................................... 10 (四)抗營養因子.............................................................................................. 11 二、紅豆中之機能性物質...................................................................................... 12 (一)γ-胺基丁酸(γ-aminobutyric acid, GABA) .............................................. 12 (二)紅豆皂素.................................................................................................. 13 (三)抗營養因子.............................................................................................. 14 三、綠豆中之機能性物質...................................................................................... 14 (一)維生素C .................................................................................................. 14 (二)多酚類化合物.......................................................................................... 16 (三)抗營養因子.............................................................................................. 17 (四)抗性澱粉.................................................................................................. 17 1. 抗解澱粉之分類......................................................................................... 17 2. 影響生成抗解澱粉之因素......................................................................... 18 3. 生理活性..................................................................................................... 19 4. 抗性澱粉的製備......................................................................................... 20 第三章、材料與方法.................................................................................................. 22 一、 材料.............................................................................................................. 22 二、 分析試劑...................................................................................................... 23 三、 樣品製備...................................................................................................... 23 (一)發芽試驗.................................................................................................. 23 1. 大豆............................................................................................................. 23 2. 紅豆............................................................................................................. 23 3. 綠豆............................................................................................................. 24 (二)熟化試驗.................................................................................................. 24 1. 乾熱熟化..................................................................................................... 24 2. 濕熱熟化..................................................................................................... 24 3. 發芽綠豆殺菁處理..................................................................................... 24 (三)抗性澱粉製備.......................................................................................... 25 四、 一般成分分析.............................................................................................. 25 (一)水分含量.................................................................................................. 25 (二)粗脂肪含量.............................................................................................. 25 (三)粗蛋白含量.............................................................................................. 25 (四)灰分含量.................................................................................................. 26 (五)膳食纖維含量.......................................................................................... 26 五、 抗氧化特性之分析...................................................................................... 26 (一)機能性成分萃取...................................................................................... 26 (二)總可溶性酚類化合物 (Total soluble phenolics, TSPCs) ...................... 26 (三)總類黃酮含量.......................................................................................... 27 (四)DPPH自由基清除率 .............................................................................. 27 六、 機能性成分之分析...................................................................................... 27 (一)大豆異黃酮之萃取與分析...................................................................... 27 (二)紅豆γ-氨基丁酸(GABA)含量 ............................................................... 28 (三)綠豆維生素C含量 ................................................................................. 28 七、 澱粉性質分析.............................................................................................. 29 (一) 視直鏈澱粉含量.................................................................................. 29 (二)體外澱粉消化性質.................................................................................. 29 (三)升糖指數測定.......................................................................................... 30 八、 統計分析...................................................................................................... 31 第四章、結果與討論.................................................................................................. 32 ㄧ、原料一般成分分析及發芽試驗...................................................................... 32 (一)一般成分分析.......................................................................................... 32 (二)發芽試驗.................................................................................................. 34 (三)小結.......................................................................................................... 38 二、發芽對抗氧化特性的影響.............................................................................. 39 (一)大豆.......................................................................................................... 39 (二)紅豆及綠豆.............................................................................................. 40 (三)小結.......................................................................................................... 42 三、發芽對特定機能性成分之影響...................................................................... 43 (一)大豆.......................................................................................................... 43 (二)紅豆.......................................................................................................... 46 (三)綠豆.......................................................................................................... 47 (四)小結.......................................................................................................... 49 四、熟化對特定機能性成分之影響...................................................................... 50 (一)大豆-大豆異黃酮 .................................................................................... 50 1. 黃豆............................................................................................................. 50 2. 黑豆............................................................................................................. 52 (二)紅豆-GABA ............................................................................................. 55 (三)綠豆-維生素C......................................................................................... 55 (四)小結.......................................................................................................... 56 五、澱粉性質分析.................................................................................................. 58 (一)紅豆及綠豆之生澱粉性質...................................................................... 58 (二)紅豆及綠豆經由乾熱處理後之澱粉性質.............................................. 58 1. 紅豆............................................................................................................. 58 2. 綠豆............................................................................................................. 59 (三)小結.......................................................................................................... 66 第五章、結論.............................................................................................................. 67 第六章、參考文獻...................................................................................................... 69 | |
| dc.language.iso | zh-TW | |
| dc.subject | 發芽豆 | zh_TW |
| dc.subject | 抗性澱粉 | zh_TW |
| dc.subject | 維生素C | zh_TW |
| dc.subject | GABA | zh_TW |
| dc.subject | 大豆異黃酮 | zh_TW |
| dc.subject | 抗氧化 | zh_TW |
| dc.subject | 熱處理 | zh_TW |
| dc.subject | heating treatment | en |
| dc.subject | resistant starch | en |
| dc.subject | Germinated legume | en |
| dc.subject | vitamin C | en |
| dc.subject | GABA | en |
| dc.subject | isoflavone | en |
| dc.subject | antioxidant properties | en |
| dc.title | 發芽及熟化處理對國產豆類機能性成分之影響 | zh_TW |
| dc.title | Effects of germination and heating treatments on the bioactive compounds in domestic grown legumes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 呂廷璋(Ting-Jang Lu),張永和(Yung-Ho Chang) | |
| dc.subject.keyword | 發芽豆,熱處理,抗氧化,大豆異黃酮,GABA,維生素C,抗性澱粉, | zh_TW |
| dc.subject.keyword | Germinated legume,heating treatment,antioxidant properties,isoflavone,GABA,vitamin C,resistant starch, | en |
| dc.relation.page | 80 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
