Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52543Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林清富(Ching-Fuh Lin) | |
| dc.contributor.author | Kuan-Yu Chen | en |
| dc.contributor.author | 陳冠妤 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:18:03Z | - |
| dc.date.available | 2020-08-20 | |
| dc.date.copyright | 2015-08-20 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-17 | |
| dc.identifier.citation | [1] T. A. Edison. “Electric lamp.” U.S. Patent 223898, Jan. 27, 1880. [2] H. J. Round, “A note on carborundum.” Electrical world, vol. 19, no. 309, 1907 [3] C. Gooch, Injection electroluminescent devices. London: J. Wiley, 1973. [4] S. Nakamura, S. Pearton and G. Fasol, The blue laser diode. Berlin: Springer, 2000. [5] 劉如熹, 白光發光二極體製作技術:由晶粒金屬化至封裝. 全華圖書, 2008. [6] L. Peters, 'Lighting market report predicts strong growth for LED lighting.' LEDs Magazine, vol. 3, pp. 1-32, 2011 [7] M. Wright, “LEDs headline at SALC, speakers predict significant efficiency gains.” LEDs MAGAZINE vol. 8, no. 19, 2011 [8] T. Baumgartner, et al. ‘Lighting the way: Perspectives on the global lighting market.’ McKinsey Company, p.22, 2012. [9] Hahn, B. High power LEDs for solid state lighting. Solid-State Device Research Conference: 2010 Proceedings of the European, Sevilla, Spain. IEEE 57–63 (2010). [10] Y. K. Cheng, and K. W. E. Cheng. ‘General Study for using LED to replace traditional lighting devices’, In: Power Electronics Systems and Applications, 2006. ICPESA'06. 2nd International Conference on. IEEE, pp. 173-177, 2006. [11] S. Pimputkar, J. Speck, S. DenBaars and S. Nakamura, 'Prospects for LED lighting', Nature Photonics, vol. 3, no. 4, pp. 180-182, 2009. [12] A. Setlur, 'Phosphors for LED-based solid-state lighting', The Electrochemical Society Interface, vol. 16, no. 32, pp.32-36, 2009. [13] H. Zhu, C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. Liu and X. Chen, 'Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes', Nat. Comms, vol. 5, 2014. [14] G. Brainard, B. Richardson, E. Hurlbut, S. Steinlechner, S. Matthews and R. Reiter, 'The Influence of Various Irradiances of Artificial Light, Twilight, and Moonlight on the Suppression of Pineal Melatonin Content in the Syrian Hamster', Journal of Pineal Research, vol. 1, no. 2, pp. 105-119, 1984. [15] C. Czeisler, T. Shanahan, E. Klerman, H. Martens, D. Brotman, J. Emens, T. Klein and J. Rizzo, 'Suppression of Melatonin Secretion in Some Blind Patients by Exposure to Bright Light', New England Journal of Medicine, vol. 332, no. 1, pp. 6-11, 1995. [16] S. Pauley, 'Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue', Medical Hypotheses, vol. 63, no. 4, pp. 588-596, 2004. [17] J. N. Ott, Health and light. New York: Pocket Books, 2000. [18] S. Ye, F. Xiao, Y. Pan, Y. Ma and Q. Zhang, 'Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties', Materials Science and Engineering: R: Reports, vol. 71, no. 1, pp. 1-34, 2010. [19] W. Yang, L. Luo, T. Chen and N. Wang, 'Luminescence and Energy Transfer of Eu- and Mn-Coactivated CaAl 2 Si 2 O 8 as a Potential Phosphor for White-Light UVLED', Chem. Mater., vol. 17, no. 15, pp. 3883-3888, 2005. [20] 郭子菱, and 呂紹旭. '白光 LED 技術發展演進近況.' 光連:光電產業與技術情報, vol. 72, pp. 34-37, 2007. [21] P. Smet, A. Parmentier and D. Poelman, 'Selecting Conversion Phosphors for White Light-Emitting Diodes', J. Electrochem. Soc., vol. 158, no. 6, p. R37, 2011. [22] J. Furman, B. Melot, S. Teat, A. Mikhailovsky and A. Cheetham, 'Towards enhanced ligand-centred photoluminescence in inorganic–organic frameworks for solid state lighting', Phys. Chem. Chem. Phys., vol. 13, no. 17, pp. 7622-7629, 2011. [23] 高志強, and 周啟星. '稀土礦露天開採過程的汙染及對資源和生態環境的影響.' 生態學雜誌, vol. 30, no.12, pp. 2915-2922, 2011. [24] C. Gammons, 'Geochemistry of the rare-earth elements and uranium in the acidic Berkeley Pit lake, Butte, Montana', Chemical Geology, vol. 198, no. 3-4, pp. 269-288, 2003. [25] Paramaguru, K. Rethinking Our Risky Reliance on Rare Earth Metals, TIME (20/12/2013) Date of access: 22/04/2015. Retrieved from http://science.time.com/2013/12/20/rare-earths-are-too-rare/ [26] Bradsher, K. China Tries to Clean Up Toxic Legacy of Its Rare Earth Riches, The New York Times (22/10/2013) Date of access: 22/04/2015. Retrieved from http://www.nytimes.com/2013/10/23/business/international/china-tries-to-clean-up-toxic-legacy-of-its-rare-earth-riches.html?_r=0 [27] Maughan, T. The dystopian lake filled by the world’s tech lust, BBC (22/10/2013) Date of access: 22/04/2015. Retrieved from http://www.bbc.com/future/story/20150402-the-worst-place-on-earth [28] J. Crock, F. Lichte and T. Wildeman, 'The group separation of the rare-earth elements and yttrium from geologic materials by cation-exchange chromatography', Chemical Geology, vol. 45, no. 1-2, pp. 149-163, 1984. [29] J. Preston, 'Solvent Extraction of The Trivalent Lanthanides and Yttrium by Some 2-Bromoalkanoic Acids', Solvent Extraction and Ion Exchange, vol. 12, no. 1, pp. 29-54, 1994. [30] J. Amaral and C. Morais, 'Thorium and uranium extraction from rare earth elements in monazite sulfuric acid liquor through solvent extraction', Minerals Engineering, vol. 23, no. 6, pp. 498-503, 2010. [31] F. Xie, T. Zhang, D. Dreisinger and F. Doyle, 'A critical review on solvent extraction of rare earths from aqueous solutions', Minerals Engineering, vol. 56, pp. 10-28, 2014. [32] S. Sapra, S. Mayilo, T. Klar, A. Rogach and J. Feldmann, 'Cover Picture: Bright White-Light Emission from Semiconductor Nanocrystals: by Chance and by Design', Adv. Mater., vol. 19, no. 4, p. NA-NA, 2007. [33] C. Shen and W. Tseng, 'One-Step Synthesis of White-Light-Emitting Quantum Dots at Low Temperature', Inorganic Chemistry, vol. 48, no. 18, pp. 8689-8694, 2009. [34] X. Fang, M. Roushan, R. Zhang, J. Peng, H. Zeng and J. Li, 'Tuning and Enhancing White Light Emission of II–VI Based Inorganic–Organic Hybrid Semiconductors as Single-Phased Phosphors', Chem. Mater., vol. 24, no. 10, pp. 1710-1717, 2012. [35] Z. Yang, J. Xu, P. Wang, X. Zhuang, A. Pan and L. Tong, 'On-Nanowire Spatial Band Gap Design for White Light Emission', Nano Letters, vol. 11, no. 11, pp. 5085-5089, 2011. [36] P. Shen, M. Lin and C. Lin, 'Environmentally Benign Technology for Efficient Warm-White Light Emission', Scientific Reports, vol. 4, 2014. [37] A. Panda, S. Acharya and S. Efrima, 'Ultranarrow ZnSe Nanorods and Nanowires: Structure, Spectroscopy, and One-Dimensional Properties', Adv. Mater., vol. 17, no. 20, pp. 2471-2474, 2005. [38] Y. Jiang, X. Meng, W. Yiu, J. Liu, J. Ding, C. Lee and S. Lee, 'Zinc Selenide Nanoribbons and Nanowires', J. Phys. Chem. B, vol. 108, no. 9, pp. 2784-2787, 2004. [39] S. Gul, J. Cooper, C. Corrado, B. Vollbrecht, F. Bridges, J. Guo and J. Zhang, 'Synthesis, Optical and Structural Properties, and Charge Carrier Dynamics of Cu-Doped ZnSe Nanocrystals', J. Phys. Chem. C, vol. 115, no. 43, pp. 20864-20875, 2011. [40] A. Weaver and D. Gamelin, 'Photoluminescence Brightening via Electrochemical Trap Passivation in ZnSe and Mn2+ -Doped ZnSe Quantum Dots', J. Am. Chem. Soc., vol. 134, no. 15, pp. 6819-6825, 2012. [41] N. Pradhan, D. Battaglia, Y. Liu and X. Peng, 'Efficient, Stable, Small, and Water-Soluble Doped ZnSe Nanocrystal Emitters as Non-Cadmium Biomedical Labels', Nano Letters, vol. 7, no. 2, pp. 312-317, 2007. [42] B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J. Hermier and B. Dubertret, 'Towards non-blinking colloidal quantum dots', Nat Mater, vol. 7, no. 8, pp. 659-664, 2008. [43] Medintz, Igor L., et al. 'Quantum dot bioconjugates for imaging, labelling and sensing.' Nature materials 4, 435-446 (2005). [44] C. Shen and W. Tseng, 'One-Step Synthesis of White-Light-Emitting Quantum Dots at Low Temperature', Inorganic Chemistry, vol. 48, no. 18, pp. 8689-8694, 2009. [45] X. Fang, M. Roushan, R. Zhang, J. Peng, H. Zeng and J. Li, 'Tuning and Enhancing White Light Emission of II–VI Based Inorganic–Organic Hybrid Semiconductors as Single-Phased Phosphors', Chem. Mater., vol. 24, no. 10, pp. 1710-1717, 2012. [46] Z. Yang, J. Xu, P. Wang, X. Zhuang, A. Pan and L. Tong, 'On-Nanowire Spatial Band Gap Design for White Light Emission', Nano Letters, vol. 11, no. 11, pp. 5085-5089, 2011. [47] S. Pauley, 'Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue', Medical Hypotheses, vol. 63, no. 4, pp. 588-596, 2004. [48] Ott, J. N., Health and light. New York: Pocket Books, 1983. [49] J. Vos, 'Colorimetric and photometric properties of a 2° fundamental observer', Color Research Application, vol. 3, no. 3, pp. 125-128, 1978. [50] 方容川,固體光譜學,中國科技大學出版社:合肥,2001 [51] N. Juranic, 'Nephelauxetic effect in paramagnetic shielding of transition metal nuclei in octahedral d6 complexes', J. Am. Chem. Soc., vol. 110, no. 25, pp. 8341-8343, 1988. [52] C. Ballhausen, Introduction to ligand field theory. New York: McGraw-Hill, 1962. [53] A. O'Neill and J. Allen, 'A new version of crystal field theory and its application to ZnSe: Co', Solid State Communications, vol. 46, no. 11, pp. 833-836, 1983. [54] H. Basch, 'Molecular Orbital Theory for Octahedral and Tetrahedral Metal Complexes', J. Chem. Phys., vol. 44, no. 1, p. 10, 1966. [55] 劉如熹、季喨勝,紫外光發光二極體用螢光粉介紹,全華圖書(2005) [56] Sjoerd Hoogland, “The Fuss About Quantum Dots.” Available from: http://www.photonics.com/Article.aspx?AID=31908 [cited 17 June 2015]. [57] L. Brus, 'Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state', J. Chem. Phys., vol. 80, no. 9, p. 4403, 1984. [58] S. Mochizuki and K. Umezawa, 'Optical absorption and photoluminescence of ZnSe microcrystals in a Pyrex glass matrix', Journal of Physics: Condensed Matter, vol. 8, no. 40, pp. 7509-7521, 1996. [59] R. Dalven, 'Calculation of effective masses in cubic CdS and CdSe', Physica Status Solidi (b), vol. 48, no. 1, pp. K23-K26, 1971. [60] C. Trallero-Giner, A. Debernardi, M. Cardona, E. Menéndez-Proupín and A. Ekimov, 'Optical vibrons in CdSe dots and dispersion relation of the bulk material', Physical Review B, vol. 57, no. 8, pp. 4664-4669, 1998. [61] A. Aboulaich, M. Geszke, L. Balan, J. Ghanbaja, G. Medjahdi and R. Schneider, 'Water-Based Route to Colloidal Mn-Doped ZnSe and Core/Shell ZnSe/ZnS Quantum Dots', Inorganic Chemistry, vol. 49, no. 23, pp. 10940-10948, 2010. [62] Jonathan C. A quantum paintbox. Chemistry World 2003: 1–8. Available from:http://www.rsc.org/chemistryworld/Issues/2003/September/paintbox.asp [cited 20 June 2015]. [63] 劉如熹,白光發光二極體製作技術-由晶粒金屬化至封裝,全華圖書 (2009) [64] A. Panda, S. Acharya and S. Efrima, 'Ultranarrow ZnSe Nanorods and Nanowires: Structure, Spectroscopy, and One-Dimensional Properties', Adv. Mater., vol. 17, no. 20, pp. 2471-2474, 2005. [65] Y. Jiang, X. Meng, W. Yiu, J. Liu, J. Ding, C. Lee and S. Lee, 'Zinc Selenide Nanoribbons and Nanowires', J. Phys. Chem. B, vol. 108, no. 9, pp. 2784-2787, 2004. [66] M. Haase, J. Qiu, J. DePuydt and H. Cheng, 'Blue-green laser diodes', Applied Physics Letters, vol. 59, no. 11, p. 1272, 1991. [67] H. Jeon, J. Ding, A. Nurmikko, W. Xie, D. Grillo, M. Kobayashi, R. Gunshor, G. Hua and N. Otsuka, 'Blue and green diode lasers in ZnSe-based quantum wells', Applied Physics Letters, vol. 60, no. 17, p. 2045, 1992. [68] S. Taniguchi, T. Hino, S. Itoh, K. Nakano, N. Nakayama, A. Ishibashi and M. Ikeda, '100 h II-VI blue-green laser diode', Electron. Lett., vol. 32, no. 6, p. 552, 1996. [69] N. Nakayama, S. Itoh, T. Ohata, K. Nakano, H. Okuyama, M. Ozawa, A. Ishibashi, M. Ikeda and Y. Mori, 'Room temperature continuous operation of blue-green laser diodes', Electron. Lett., vol. 29, no. 16, p. 1488, 1993. [70] R. Fiederling et al. 'Injection and detection of a spin-polarized current in a light-emitting diode.' Nature, vol. 402, no. 6763, pp. 787-790, 1999. [71] Ren, J., et al. 'ZnSe light‐emitting diodes.' Appl. Phys. Lett., vol. 57, no.18, pp. 1901-1903, 1990. [72] X. Hu, H. Han, L. Hua and Z. Sheng, 'Electrogenerated chemiluminescence of blue emitting ZnSe quantum dots and its biosensing for hydrogen peroxide', Biosensors and Bioelectronics, vol. 25, no. 7, pp. 1843-1846, 2010. [73] F. Zhang, E. Lees, F. Amin, P. RiveraGil, F. Yang, P. Mulvaney and W. Parak, 'Polymer-Coated Nanoparticles: A Universal Tool for Biolabelling Experiments', Small, vol. 7, no. 22, pp. 3113-3127, 2011. [74] D. Zhu, Y. Chen, L. Jiang, J. Geng, J. Zhang and J. Zhu, 'Manganese-Doped ZnSe Quantum Dots as a Probe for Time-Resolved Fluorescence Detection of 5-Fluorouracil', Anal. Chem., vol. 83, no. 23, pp. 9076-9081, 2011. [75] H. Chen, S. Wang, C. Lo and J. Chi, 'White-light emission from organics-capped ZnSe quantum dots and application in white-light-emitting diodes', Applied Physics Letters, vol. 86, no. 13, p. 131905, 2005. [76] M. Danek, K. Jensen, C. Murray and M. Bawendi, 'Synthesis of Luminescent Thin-Film CdSe/ZnSe Quantum Dot Composites Using CdSe Quantum Dots Passivated with an Overlayer of ZnSe', Chem. Mater., vol. 8, no. 1, pp. 173-180, 1996.. [77] S. Panda, S. Hickey, H. Demir and A. Eychmüller, 'Bright White-Light Emitting Manganese and Copper Co-Doped ZnSe Quantum Dots', Angew. Chem., vol. 123, no. 19, pp. 4524-4528, 2011. [78] N. Pradhan and X. Peng, 'Efficient and Color-Tunable Mn-Doped ZnSe Nanocrystal Emitters: Control of Optical Performance via Greener Synthetic Chemistry', J. Am. Chem. Soc., vol. 129, no. 11, pp. 3339-3347, 2007. [79] J. F. Suyver, S. F. Wuister, J. J. Kelly, A. Meijerink, “Luminescence of nanocrystalline ZnSe:Mn2+.” Phys. Chem. Chem. Phys., vol. 2, no. 23, pp5445-5448, 2000. [80] L. Brus, 'Electronic wave functions in semiconductor clusters: experiment and theory', J. Phys. Chem., vol. 90, no. 12, pp. 2555-2560, 1986. [81] S. Mochizuki and K. Umezawa, 'Optical absorption and photoluminescence of ZnSe microcrystals in a Pyrex glass matrix', Journal of Physics: Condensed Matter, vol. 8, no. 40, pp. 7509-7521, 1996. [82] T. Kippeny, L. Swafford and S. Rosenthal, 'Semiconductor Nanocrystals: A Powerful Visual Aid for Introducing the Particle in a Box', J. Chem. Educ., vol. 79, no. 9, p. 1094, 2002. [83] T. Norman, D. Magana, T. Wilson, C. Burns, J. Zhang, D. Cao and F. Bridges, 'Optical and Surface Structural Properties of Mn 2+ -Doped ZnSe Nanoparticles', J. Phys. Chem. B, vol. 107, no. 26, pp. 6309-6317, 2003. [84] N. Tran and F. Shi, 'Studies of Phosphor Concentration and Thickness for Phosphor-Based White Light-Emitting-Diodes', J. Lightwave Technol., vol. 26, no. 21, pp. 3556-3559, 2008. [85] Y. H. Peng, C. H. Yang, C. H. Lee, K. T. Chen and B. S. Tang, 'Sodium Citrate as a Dispersant and Chelating Agent for Synthesizing Cu-Ag Core-shell Particles: Using an Electroless Plating Method', Journal of Science and Engineering Technology, vol. 8, no. 2, pp. 1-9, 2012. [86] T. Sau and A. Rogach, Complex-shaped metal nanoparticles. Weinheim: Wiley-VCH, 2012. [87] D. Andrews, G. Scholes and G. Wiederrecht, Comprehensive nanoscience and technology. Amsterdam: Boston, 2010. [88] F. H. Verhoff, and B. Hugo, ‘Citric acid.’ Ullmann's Encyclopedia of Industrial Chemistry, 1986. [89] T. Sau and A. Rogach, Complex-shaped metal nanoparticles. Weinheim: Wiley-VCH, 2012. [90] N. R. Taskar, et al., 'Quantum-confined-atom-based nanophosphors for solid state lighting.' in Optical Science and Technology, SPIE's 48th Annual Meeting, 2004, pp. 133-141. [91] 李世偉, ‘白光LED螢光粉塗佈技術’ 第二屆LED封裝工藝與材料應用論壇, 2014 [92] N. T. Tran and F. G. Shi, 'Studies of Phosphor Concentration and Thickness for Phosphor-Based White Light-Emitting-Diodes', J. Lightwave Technol., vol. 26, no. 21, pp. 3556-3559, 2008. [93] N. Narendran, Y. Gu, J. Freyssinier-Nova and Y. Zhu, 'Extracting phosphor-scattered photons to improve white LED efficiency', physica status solidi (a), vol. 202, no. 6, pp. R60-R62, 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52543 | - |
| dc.description.abstract | 目前高效率白光LED多數是使用稀土型螢光材料來實現,然而稀土之開採對環境有相當嚴重的迫害。雖有量子點被提出當成可能之替代方案,但高效率量子點裡皆含有重金屬鎘,對環境也是有相當大的隱憂,且量子點強烈的量子侷限效應,使其激發波長多被限制在紫外光,難以與現行的高效率藍光LED整合。本研究中,我們成功研發出一種合成ZnSe:Mn奈米粒子的技術,能解決量子侷限效應的問題並達成環保的目的。 研究內容可分為三個部份,第一部份我們成功地製作出量子侷限效應極小之ZnSe:Mn奈米粒子,使其最佳吸收在445 nm以上的波段,能與商用藍光LED結合。並於第二部分分別從陽離子濃度、Mn離子含量、陰離子型界面活性劑、檸檬酸鈍化奈米粒子表面等方式提高材料之量子效率與發光亮度,目前最高之量子效率可達84.5 %。我們也於第三部分則探討潤洗溶劑之選擇、乾燥時間與真空度對奈米粒子之乾燥製程的影響,成功地乾燥成無氧化變質現象之粉體。最後將ZnSe:Mn奈米粒子與商用高效率之藍光LED整合並探討流明之量測,也提出藉由燈具設計、濃度與厚度之控制改善反向散射的情況提升發光效率。 本研究所提出的方式可成功製作能與商用藍光整合之ZnSe:Mn奈米粒子,能有效率地將藍光轉換成橘黃光且可利用低溫溶液製程合成,更重要的是此方式不再依賴高汙染之稀土元素或重金屬鎘,具有相當大的潛力成為新世代應用於白光LED之螢光材料。 | zh_TW |
| dc.description.abstract | Current available methods for WLEDs are mostly based on expensive rare-earth elements (REEs) doped phosphors, which would cause a tremendous harm to the environment. Although quantum dots (QDs) and nanocrystals (NCs) have been proposed as promising alternatives, these materials still have environmental concerns due to containing cadmium. Moreover, the strong quantum confinement effect in these nanoscale materials causes their efficient excitation wavelength to be limited in UV region, and this situation hinders these nanomaterials from integrating with commercial blue-LEDs. In this work, we develop a novel technique to synthesize environmental benign ZnSe:Mn nanoparticles with little quantum-confinement effect. The research can be separated into three parts. In the first part, we successfully synthesized ZnSe:Mn nanoparticles with little quantum-confined effect. The excitation wavelength of the nanoparticles is larger than 445 nm, which matches the commercial blue LEDs. In the second part, we aim to improve the efficiency of the nanoparticles. By optimizing the concentration of cations and Mn2+, and adding surfactant and citric acid, the quantum efficiency can reach 84.5%. In the third part, we focus on enhancing the drying process of the nanoparticles by changing rinse solvent, drying time, and drying pressure. Finally, we measure the luminous efficacy of the nanoparticles. Therefore, ZnSe:Mn nanoparticles featuring rare-earth-free and cadmium-free can sever as another promising candidate for luminescence conversion of white-LEDs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:18:03Z (GMT). No. of bitstreams: 1 ntu-104-R02941070-1.pdf: 5895312 bytes, checksum: f345ff1968b6e341a5681c2a4bd53ea5 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 # 誌謝 i 中文摘要 iii ABSTRACT iv 目次 v 圖目錄 ix 表目錄 xiii 第1章 緒論 1 1.1照明光源的發展史及趨勢 1 1.1.1 熱輻射發光 2 1.1.2 氣體放電發光 3 1.1.3 固態場效發光 3 1.2 白光LED原理 6 1.2.1 白光LED種類 6 1.2.2 多晶片型 7 1.2.3 單晶片型 7 1.3 白光LED螢光材料簡介 11 1.3.1 螢光粉之組成 11 1.3.2 稀土型陶瓷材料螢光粉之激發與放光原理 12 1.4 稀土型螢光材料對白光LED發展 15 1.5 研究動機 16 第2章 實驗原理 18 2.1 固態發光材料之發光原理與特性 18 2.2 電子雲膨脹效應(Nephelauxetic) 19 2.3 晶格場理論(Crystal Field Theory) 19 2.4 量子侷限效應(Quantum Confinement Effect) 20 2.5 濃度淬滅效應(Concentration Quenching) 22 2.6 光致發光(Photoluminescent, PL) 23 2.7 量子產率(Quantum Yield) 24 第3章 可利用藍光激發之半導體螢光材料開發 25 3.1 研究動機 25 3.2 實驗原理簡介與材料特性介紹 26 3.2.1 ZnSe:Mn奈米粒子之材料特性 26 3.2.2 金屬氫氧化物對成長ZnSe:Mn奈米晶體之影響 27 3.3 實驗步驟 27 3.4 實驗結果與討論 28 3.4.1 鹼金屬氫氧化物對ZnSe:Mn奈米粒子結晶性與粒徑之影響 28 3.4.2 鹼金屬氫氧化物對ZnSe:Mn奈米粒子光學特性之影響 31 3.5 結論 42 第4章 提升ZnSe:Mn奈米材料之放光亮度 43 4.1 研究動機 44 4.2 不同陽離子濃度之ZnSe:Mn奈米粒子對亮度之影響 44 4.2.1 實驗原理與設計 44 4.2.2 實驗步驟 44 4.2.3 實驗結果與討論 46 4.3 不同Mn2+離子濃度成長之ZnSe:Mn奈米粒子對放光亮度之影響 49 4.3.1 實驗原理與設計 49 4.3.2 實驗步驟 50 4.3.3 實驗結果與討論 51 4.4 添加陰離子型界面活性劑之ZnSe:Mn奈米粒子合成 53 4.4.1 實驗原理與設計 53 4.4.2 實驗步驟 54 4.4.3 實驗結果與討論 55 4.5 金屬螯合劑對材料放光強度之影響 57 4.5.1 實驗原理與設計 57 4.5.2 實驗步驟 58 4.5.3 實驗結果與討論 59 4.6 結論 61 第5章 半導體奈米材料之乾燥製程與量測 62 5.1 研究動機 62 5.2 乾燥製程 63 5.2.1 利用去離子水當潤洗溶劑之乾燥製程 63 5.2.2 利用甲醇當潤洗溶劑之乾燥製程 66 5.2.3 利用異戊烷當潤洗溶劑之乾燥製程 69 5.3 結合藍光LED之發光效率量測 73 5.3.1 原理 73 5.3.2 實驗步驟 76 5.3.3 結果與討論 77 5.4 結論 82 第6章 結論與未來展望 84 6.1 結論 84 6.2 未來展望 85 參考文獻 87 | |
| dc.language.iso | zh-TW | |
| dc.subject | 量子侷限效應 | zh_TW |
| dc.subject | 螢光材料 | zh_TW |
| dc.subject | 無稀土 | zh_TW |
| dc.subject | 藍光激發 | zh_TW |
| dc.subject | 環保 | zh_TW |
| dc.subject | Quantum confinement effect | en |
| dc.subject | luminescent material | en |
| dc.subject | non-rare earth | en |
| dc.subject | blue excitable | en |
| dc.subject | environmental friendly | en |
| dc.title | 應用於白光LED之高量子產率無稀土螢光材料 | zh_TW |
| dc.title | Non Rare-earth Luminescent Material with High Quantum Yield for White LEDs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林晃巖(Hoang-Yan Lin),黃鼎偉(Ding-Wei Huang),蘇國棟(Guo-Dung Su) | |
| dc.subject.keyword | 量子侷限效應,螢光材料,無稀土,藍光激發,環保, | zh_TW |
| dc.subject.keyword | Quantum confinement effect,luminescent material,non-rare earth,blue excitable,environmental friendly, | en |
| dc.relation.page | 96 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-17 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| Appears in Collections: | 光電工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-104-1.pdf Restricted Access | 5.76 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
