Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52540
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳玉如(Yu-Ru Chen)
dc.contributor.authorYi-Ru Linen
dc.contributor.author林怡茹zh_TW
dc.date.accessioned2021-06-15T16:17:57Z-
dc.date.available2018-08-28
dc.date.copyright2015-08-28
dc.date.issued2015
dc.date.submitted2015-08-17
dc.identifier.citationReference
1. Alper, J. (2003) Glycobiology. Turning sweet on cancer. Science 301, 159-160.
2. Seelenmeyer, C., Wegehingel, S., Lechner, J., and Nickel, W. (2003) The cancer antigen CA125 represents a novel counter receptor for galectin-1. J Cell Sci 116, 1305-1318.
3. He, J., and Baum, L. G. (2004) Presentation of galectin-1 by extracellular matrix triggers T cell death. The Journal of biological chemistry 279, 4705-4712.
4. Moriwaki, K., and Miyoshi, E. (2010) Fucosylation and gastrointestinal cancer. World J Hepatol 2, 151-161.
5. Shinkawa, T., Nakamura, K., Yamane, N., Shoji-Hosaka, E., Kanda, Y., Sakurada, M., Uchida, K., Anazawa, H., Satoh, M., Yamasaki, M., Hanai, N., and Shitara, K. (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. The Journal of biological chemistry 278, 3466-3473.
6. Moriwaki, K., Noda, K., Furukawa, Y., Ohshima, K., Uchiyama, A., Nakagawa, T., Taniguchi, N., Daigo, Y., Nakamura, Y., Hayashi, N., and Miyoshi, E. (2009) Deficiency of GMDS leads to escape from NK cell-mediated tumor surveillance through modulation of TRAIL signaling. Gastroenterology 137, 188-198, 198 e181-182.
7. Sullivan, F. X., Kumar, R., Kriz, R., Stahl, M., Xu, G. Y., Rouse, J., Chang, X. J., Boodhoo, A., Potvin, B., and Cumming, D. A. (1998) Molecular cloning of human GDP-mannose 4,6-dehydratase and reconstitution of GDP-fucose biosynthesis in vitro. J Biol Chem 273, 8193-8202.
8. Wang, X., Gu, J., Ihara, H., Miyoshi, E., Honke, K., and Taniguchi, N. (2006) Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling. J Biol Chem 281, 2572-2577.
9. Ma, B., Simala-Grant, J. L., and Taylor, D. E. (2006) Fucosylation in prokaryotes and eukaryotes. Glycobiology 16, 158R-184R.
10. Miyoshi, E., Moriwaki, K., Terao, N., Tan, C. C., Terao, M., Nakagawa, T., Matsumoto, H., Shinzaki, S., and Kamada, Y. (2012) Fucosylation is a promising target for cancer diagnosis and therapy. Biomolecules 2, 34-45.
11. Diehl, G. E., Yue, H. H., Hsieh, K., Kuang, A. A., Ho, M., Morici, L. A., Lenz, L. L., Cado, D., Riley, L. W., and Winoto, A. (2004) TRAIL-R as a negative regulator of innate immune cell responses. Immunity 21, 877-889.
12. Uozumi, N., Yanagidani, S., Miyoshi, E., Ihara, Y., Sakuma, T., Gao, C. X., Teshima, T., Fujii, S., Shiba, T., and Taniguchi, N. (1996) Purification and cDNA cloning of porcine brain GDP-L-Fuc:N-acetyl-beta-D-glucosaminide alpha1-->6fucosyltransferase. The Journal of biological chemistry 271, 27810-27817.
13. Dalpathado, D. S., and Desaire, H. (2008) Glycopeptide analysis by mass spectrometry. Analyst 133, 731-738.
14. Kyselova, Z., Mechref, Y., Kang, P., Goetz, J. A., Dobrolecki, L. E., Sledge, G. W., Schnaper, L., Hickey, R. J., Malkas, L. H., and Novotny, M. V. (2008) Breast cancer diagnosis and prognosis through quantitative measurements of serum glycan profiles. Clinical chemistry 54, 1166-1175.
15. Block, T. M., Comunale, M. A., Lowman, M., Steel, L. F., Romano, P. R., Fimmel, C., Tennant, B. C., London, W. T., Evans, A. A., Blumberg, B. S., Dwek, R. A., Mattu, T. S., and Mehta, A. S. (2005) Use of targeted glycoproteomics to identify serum glycoproteins that correlate with liver cancer in woodchucks and humans. Proceedings of the National Academy of Sciences of the United States of America 102, 779-784.
16. Thompson, S., Dargan, E., and Turner, G. A. (1992) Increased fucosylation and other carbohydrate changes in haptoglobin in ovarian cancer. Cancer letters 66, 43-48.
17. Okuyama, N., Ide, Y., Nakano, M., Nakagawa, T., Yamanaka, K., Moriwaki, K., Murata, K., Ohigashi, H., Yokoyama, S., Eguchi, H., Ishikawa, O., Ito, T., Kato, M., Kasahara, A., Kawano, S., Gu, J., Taniguchi, N., and Miyoshi, E. (2006) Fucosylated haptoglobin is a novel marker for pancreatic cancer: a detailed analysis of the oligosaccharide structure and a possible mechanism for fucosylation. International journal of cancer. Journal international du cancer 118, 2803-2808.
18. Miyoshi, E., Moriwaki, K., and Nakagawa, T. (2008) Biological function of fucosylation in cancer biology. Journal of biochemistry 143, 725-729.
19. Shimizu, K., Katoh, H., Yamashita, F., Tanaka, M., Tanikawa, K., Taketa, K., Satomura, S., and Matsuura, S. (1996) Comparison of carbohydrate structures of serum alpha-fetoprotein by sequential glycosidase digestion and lectin affinity electrophoresis. Clin Chim Acta 254, 23-40.
20. Farinati, F., Marino, D., De Giorgio, M., Baldan, A., Cantarini, M., Cursaro, C., Rapaccini, G., Del Poggio, P., Di Nolfo, M. A., Benvegnu, L., Zoli, M., Borzio, F., Bernardi, M., and Trevisani, F. (2006) Diagnostic and prognostic role of alpha-fetoprotein in hepatocellular carcinoma: both or neither? The American journal of gastroenterology 101, 524-532.
21. Fung, S. K., and Lok, A. S. (2005) Management of patients with hepatitis B virus-induced cirrhosis. Journal of hepatology 42 Suppl, S54-64.
22. Marrero, J. A., Romano, P. R., Nikolaeva, O., Steel, L., Mehta, A., Fimmel, C. J., Comunale, M. A., D'Amelio, A., Lok, A. S., and Block, T. M. (2005) GP73, a resident Golgi glycoprotein, is a novel serum marker for hepatocellular carcinoma. Journal of hepatology 43, 1007-1012.
23. Farrah, T., Deutsch, E. W., Omenn, G. S., Campbell, D. S., Sun, Z., Bletz, J. A., Mallick, P., Katz, J. E., Malmstrom, J., Ossola, R., Watts, J. D., Lin, B., Zhang, H., Moritz, R. L., and Aebersold, R. (2011) A high-confidence human plasma proteome reference set with estimated concentrations in PeptideAtlas. Molecular & cellular proteomics : MCP 10, M110 006353.
24. Ma, C., Zhang, Q., Qu, J., Zhao, X., Li, X., Liu, Y., and Wang, P. G. (2015) A precise approach in large scale core-fucosylated glycoprotein identification with low- and high-normalized collision energy. Journal of proteomics 114, 61-70.
25. Rush, R. S., Derby, P. L., Strickland, T. W., and Rohde, M. F. (1993) Peptide mapping and evaluation of glycopeptide microheterogeneity derived from endoproteinase digestion of erythropoietin by affinity high-performance capillary electrophoresis. Analytical chemistry 65, 1834-1842.
26. Comunale, M. A., Wang, M., Hafner, J., Krakover, J., Rodemich, L., Kopenhaver, B., Long, R. E., Junaidi, O., Bisceglie, A. M., Block, T. M., and Mehta, A. S. (2009) Identification and development of fucosylated glycoproteins as biomarkers of primary hepatocellular carcinoma. J Proteome Res 8, 595-602.
27. Charlwood, J., Langridge, J., and Camilleri, P. (1999) Structural characterisation of N-linked glycan mixtures by precursor ion scanning and tandem mass spectrometric analysis. Rapid communications in mass spectrometry : RCM 13, 1522-1530.
28. Lis, H., and Sharon, N. (1998) Lectins: Carbohydrate-Specific Proteins That Mediate Cellular Recognition. Chem Rev 98, 637-674.
29. Sharon, N. (1993) Lectin-carbohydrate complexes of plants and animals: an atomic view. Trends Biochem Sci 18, 221-226.
30. Matsumura, K., Higashida, K., Ishida, H., Hata, Y., Yamamoto, K., Shigeta, M., Mizuno-Horikawa, Y., Wang, X., Miyoshi, E., Gu, J., and Taniguchi, N. (2007) Carbohydrate binding specificity of a fucose-specific lectin from Aspergillus oryzae: a novel probe for core fucose. J Biol Chem 282, 15700-15708.
31. Matsumura, K., Higashida, K., Hata, Y., Kominami, J., Nakamura-Tsuruta, S., and Hirabayashi, J. (2009) Comparative analysis of oligosaccharide specificities of fucose-specific lectins from Aspergillus oryzae and Aleuria aurantia using frontal affinity chromatography. Analytical biochemistry 386, 217-221.
32. Tateno, H., Nakamura-Tsuruta, S., and Hirabayashi, J. (2009) Comparative analysis of core-fucose-binding lectins from Lens culinaris and Pisum sativum using frontal affinity chromatography. Glycobiology 19, 527-536.
33. Angeloni, S., Ridet, J. L., Kusy, N., Gao, H., Crevoisier, F., Guinchard, S., Kochhar, S., Sigrist, H., and Sprenger, N. (2005) Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology 15, 31-41.
34. Kuno, A., Ikehara, Y., Tanaka, Y., Angata, T., Unno, S., Sogabe, M., Ozaki, H., Ito, K., Hirabayashi, J., Mizokami, M., and Narimatsu, H. (2011) Multilectin assay for detecting fibrosis-specific glyco-alteration by means of lectin microarray. Clinical chemistry 57, 48-56.
35. Matsuda, A., Kuno, A., Kawamoto, T., Matsuzaki, H., Irimura, T., Ikehara, Y., Zen, Y., Nakanuma, Y., Yamamoto, M., Ohkohchi, N., Shoda, J., Hirabayashi, J., and Narimatsu, H. (2010) Wisteria floribunda agglutinin-positive mucin 1 is a sensitive biliary marker for human cholangiocarcinoma. Hepatology 52, 174-182.
36. Hirabayashi, J., Yamada, M., Kuno, A., and Tateno, H. (2013) Lectin microarrays: concept, principle and applications. Chem Soc Rev 42, 4443-4458.
37. Kawasaki, N., Ohta, M., Hyuga, S., Hyuga, M., and Hayakawa, T. (2000) Application of liquid chromatography/mass spectrometry and liquid chromatography with tandem mass spectrometry to the analysis of the site-specific carbohydrate heterogeneity in erythropoietin. Anal Biochem 285, 82-91.
38. Zhao, Y., Jia, W., Wang, J., Ying, W., Zhang, Y., and Qian, X. (2011) Fragmentation and site-specific quantification of core fucosylated glycoprotein by multiple reaction monitoring-mass spectrometry. Analytical chemistry 83, 8802-8809.
39. Jia, W., Lu, Z., Fu, Y., Wang, H. P., Wang, L. H., Chi, H., Yuan, Z. F., Zheng, Z. B., Song, L. N., Han, H. H., Liang, Y. M., Wang, J. L., Cai, Y., Zhang, Y. K., Deng, Y. L., Ying, W. T., He, S. M., and Qian, X. H. (2009) A strategy for precise and large scale identification of core fucosylated glycoproteins. Molecular & cellular proteomics : MCP 8, 913-923.
40. Calvano, C. D., Zambonin, C. G., and Jensen, O. N. (2008) Assessment of lectin and HILIC based enrichment protocols for characterization of serum glycoproteins by mass spectrometry. Journal of proteomics 71, 304-317.
41. Swadzba, M. E., Hauck, S. M., Naim, H. Y., Amann, B., and Deeg, C. A. (2012) Retinal glycoprotein enrichment by concanavalin a enabled identification of novel membrane autoantigen synaptotagmin-1 in equine recurrent uveitis. PloS one 7, e50929.
42. Tang, J., Liu, Y., Yin, P., Yao, G., Yan, G., Deng, C., and Zhang, X. (2010) Concanavalin A-immobilized magnetic nanoparticles for selective enrichment of glycoproteins and application to glycoproteomics in hepatocelluar carcinoma cell line. Proteomics 10, 2000-2014.
43. Hashii, N., Kawasaki, N., Itoh, S., Nakajima, Y., Harazono, A., Kawanishi, T., and Yamaguchi, T. (2009) Identification of glycoproteins carrying a target glycan-motif by liquid chromatography/multiple-stage mass spectrometry: identification of Lewis x-conjugated glycoproteins in mouse kidney. J Proteome Res 8, 3415-3429.
44. Drake, P. M., Schilling, B., Niles, R. K., Braten, M., Johansen, E., Liu, H., Lerch, M., Sorensen, D. J., Li, B., Allen, S., Hall, S. C., Witkowska, H. E., Regnier, F. E., Gibson, B. W., and Fisher, S. J. (2011) A lectin affinity workflow targeting glycosite-specific, cancer-related carbohydrate structures in trypsin-digested human plasma. Anal Biochem 408, 71-85.
45. Yamashita, K., Kochibe, N., Ohkura, T., Ueda, I., and Kobata, A. (1985) Fractionation of L-fucose-containing oligosaccharides on immobilized Aleuria aurantia lectin. The Journal of biological chemistry 260, 4688-4693.
46. Drake, R. R., Schwegler, E. E., Malik, G., Diaz, J., Block, T., Mehta, A., and Semmes, O. J. (2006) Lectin capture strategies combined with mass spectrometry for the discovery of serum glycoprotein biomarkers. Molecular & cellular proteomics : MCP 5, 1957-1967.
47. Li, D., Mallory, T., and Satomura, S. (2001) AFP-L3: a new generation of tumor marker for hepatocellular carcinoma. Clinica chimica acta; international journal of clinical chemistry 313, 15-19.
48. Puangpila, C., and El Rassi, Z. (2015) Capturing and identification of differentially expressed fucome by a gel free and label free approach. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences 989, 112-121.
49. Imberty, A., Mitchell, E. P., and Wimmerova, M. (2005) Structural basis of high-affinity glycan recognition by bacterial and fungal lectins. Current opinion in structural biology 15, 525-534.
50. Buszewski, B., and Noga, S. (2012) Hydrophilic interaction liquid chromatography (HILIC)--a powerful separation technique. Anal Bioanal Chem 402, 231-247.
51. Hagglund, P., Matthiesen, R., Elortza, F., Hojrup, P., Roepstorff, P., Jensen, O. N., and Bunkenborg, J. (2007) An enzymatic deglycosylation scheme enabling identification of core fucosylated N-glycans and O-glycosylation site mapping of human plasma proteins. Journal of proteome research 6, 3021-3031.
52. Cao, Q., Zhao, X., Zhao, Q., Lv, X., Ma, C., Li, X., Zhao, Y., Peng, B., Ying, W., and Qian, X. (2014) Strategy integrating stepped fragmentation and glycan diagnostic ion-based spectrum refinement for the identification of core fucosylated glycoproteome using mass spectrometry. Analytical chemistry 86, 6804-6811.
53. Ke-Shiuan Lynn, C.-C. C., T. Mamie Lih, Cheng-Wei Cheng,, Wan-Chih Su, Chun-Hao Chang,, Chia-Ying Cheng,, Wen-Lian Hsu, Yu-Ju Chen, and Ting-Yi Sung MAGIC: An Automated N‑Linked Glycoprotein Identification ToolUsing a Y1-Ion Pattern Matching Algorithm and in Silico MS2 Approach. Anal. Chem. 87, 2466-2473.
54. Wu, H. T., Hsu, C. C., Tsai, C. F., Lin, P. C., Lin, C. C., and Chen, Y. J. (2011) Nanoprobe-based immobilized metal affinity chromatography for sensitive and complementary enrichment of multiply phosphorylated peptides. Proteomics 11, 2639-2653.
55. Kinjo, M., Nishimura, G., Koyama, T., Mets, and Rigler, R. (1998) Single-molecule analysis of restriction DNA fragments using fluorescence correlation spectroscopy. Analytical biochemistry 260, 166-172.
56. Lynn, K. S., Chen, C. C., Lih, T. M., Cheng, C. W., Su, W. C., Chang, C. H., Cheng, C. Y., Hsu, W. L., Chen, Y. J., and Sung, T. Y. (2015) MAGIC: an automated N-linked glycoprotein identification tool using a Y1-ion pattern matching algorithm and in silico MS(2) approach. Analytical chemistry 87, 2466-2473.
57. Becker, D. J., and Lowe, J. B. (2003) Fucose: biosynthesis and biological function in mammals. Glycobiology 13, 41R-53R.
58. Isacke, C. M., and Yarwood, H. (2002) The hyaluronan receptor, CD44. The international journal of biochemistry & cell biology 34, 718-721.
59. Sillanpaa, S., Anttila, M. A., Voutilainen, K., Tammi, R. H., Tammi, M. I., Saarikoski, S. V., and Kosma, V. M. (2003) CD44 expression indicates favorable prognosis in epithelial ovarian cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 9, 5318-5324.
60. Tzankov, A., Pehrs, A. C., Zimpfer, A., Ascani, S., Lugli, A., Pileri, S., and Dirnhofer, S. (2003) Prognostic significance of CD44 expression in diffuse large B cell lymphoma of activated and germinal centre B cell-like types: a tissue microarray analysis of 90 cases. Journal of clinical pathology 56, 747-752.
61. Dimitroff, C. J., Lee, J. Y., Fuhlbrigge, R. C., and Sackstein, R. (2000) A distinct glycoform of CD44 is an L-selectin ligand on human hematopoietic cells. Proceedings of the National Academy of Sciences of the United States of America 97, 13841-13846.
62. Chen, R., Wang, F., Tan, Y., Sun, Z., Song, C., Ye, M., Wang, H., and Zou, H. (2012) Development of a combined chemical and enzymatic approach for the mass spectrometric identification and quantification of aberrant N-glycosylation. Journal of proteomics 75, 1666-1674.
63. Hardy, R. R., Carmack, C. E., Shinton, S. A., Kemp, J. D., and Hayakawa, K. (1991) Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. The Journal of experimental medicine 173, 1213-1225.
64. Cambier, J. C., Pleiman, C. M., and Clark, M. R. (1994) Signal transduction by the B cell antigen receptor and its coreceptors. Annual review of immunology 12, 457-486.
65. DeFranco, A. L. (1993) Structure and function of the B cell antigen receptor. Annual review of cell biology 9, 377-410.
66. Reth, M. (1992) Antigen receptors on B lymphocytes. Annual review of immunology 10, 97-121.
67. Koyama, M., Ishihara, K., Karasuyama, H., Cordell, J. L., Iwamoto, A., and Nakamura, T. (1997) CD79 alpha/CD79 beta heterodimers are expressed on pro-B cell surfaces without associated mu heavy chain. International immunology 9, 1767-1772.
68. Lund, F. E., Yu, N., Kim, K. M., Reth, M., and Howard, M. C. (1996) Signaling through CD38 augments B cell antigen receptor (BCR) responses and is dependent on BCR expression. Journal of immunology 157, 1455-1467.
69. Sconocchia, G., Titus, J. A., Mazzoni, A., Visintin, A., Pericle, F., Hicks, S. W., Malavasi, F., and Segal, D. M. (1999) CD38 triggers cytotoxic responses in activated human natural killer cells. Blood 94, 3864-3871.
70. Kumagai, M., Coustan-Smith, E., Murray, D. J., Silvennoinen, O., Murti, K. G., Evans, W. E., Malavasi, F., and Campana, D. (1995) Ligation of CD38 suppresses human B lymphopoiesis. The Journal of experimental medicine 181, 1101-1110.
71. Deaglio, S., Mehta, K., and Malavasi, F. (2001) Human CD38: a (r)evolutionary story of enzymes and receptors. Leukemia research 25, 1-12.
72. Yoshihama, N., Yamaguchi, K., Chigita, S., Mine, M., Abe, M., Ishii, K., Kobayashi, Y., Akimoto, N., Mori, Y., and Sugiura, T. (2015) A Novel Function of CD82/KAI1 in Sialyl Lewis Antigen-Mediated Adhesion of Cancer Cells: Evidence for an Anti-Metastasis Effect by Down-Regulation of Sialyl Lewis Antigens. PloS one 10, e0124743.
73. Dong, J. T., Suzuki, H., Pin, S. S., Bova, G. S., Schalken, J. A., Isaacs, W. B., Barrett, J. C., and Isaacs, J. T. (1996) Down-regulation of the KAI1 metastasis suppressor gene during the progression of human prostatic cancer infrequently involves gene mutation or allelic loss. Cancer research 56, 4387-4390.
74. Guo, X. Z., Friess, H., Di Mola, F. F., Heinicke, J. M., Abou-Shady, M., Graber, H. U., Baer, H. U., Zimmermann, A., Korc, M., and Buchler, M. W. (1998) KAI1, a new metastasis suppressor gene, is reduced in metastatic hepatocellular carcinoma. Hepatology 28, 1481-1488.
75. Straumann, N., Wind, A., Leuenberger, T., and Wallimann, T. (2006) Effects of N-linked glycosylation on the creatine transporter. The Biochemical journal 393, 459-469.
76. Kladney, R. D., Bulla, G. A., Guo, L., Mason, A. L., Tollefson, A. E., Simon, D. J., Koutoubi, Z., and Fimmel, C. J. (2000) GP73, a novel Golgi-localized protein upregulated by viral infection. Gene 249, 53-65.
77. Varambally, S., Laxman, B., Mehra, R., Cao, Q., Dhanasekaran, S. M., Tomlins, S. A., Granger, J., Vellaichamy, A., Sreekumar, A., Yu, J., Gu, W., Shen, R., Ghosh, D., Wright, L. M., Kladney, R. D., Kuefer, R., Rubin, M. A., Fimmel, C. J., and Chinnaiyan, A. M. (2008) Golgi protein GOLM1 is a tissue and urine biomarker of prostate cancer. Neoplasia 10, 1285-1294.
78. Prazma, C. M., Yazawa, N., Fujimoto, Y., Fujimoto, M., and Tedder, T. F. (2007) CD83 expression is a sensitive marker of activation required for B cell and CD4+ T cell longevity in vivo. Journal of immunology 179, 4550-4562.
79. Chen, S., Akbar, S. M., Tanimoto, K., Ninomiya, T., Iuchi, H., Michitaka, K., Horiike, N., and Onji, M. (2000) Absence of CD83-positive mature and activated dendritic cells at cancer nodules from patients with hepatocellular carcinoma: relevance to hepatocarcinogenesis. Cancer letters 148, 49-57.
 
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52540-
dc.description.abstract中文摘要
岩藻醣基化(fucosylation)是岩藻醣以共價鍵結在其它單醣上的修飾,主要修飾在末端的單醣上稱為末端岩藻醣基化,或是最內側的乙醯葡萄糖胺(N-acetylglucosamine),稱為核心岩藻醣基化。氮基醣鏈上不正常的岩藻醣基化常被應用於為許多癌症潛在的生物標記,例如像是前列腺癌、乳癌、肝癌、卵巢癌和胰臟癌等。一般來說,岩藻醣基化醣蛋白的鑑定主要可透過使用凝集素親和分析(lectin-affinity chromatography)結合質譜技術(mass spectrometry)來分析,但由於高度醣基異質性(heterogeneity)以及醣基化胜肽於質譜中的訊號易被未修飾胜肽抑制,使得岩藻醣基化醣蛋白在複雜樣品中難以被鑑定。
在本篇論文中,我們利用磁性奈米粒子容易被磁鐵分離和粒子上可以修飾的優點,提出以橙黃網胞盤菌凝集素(Aleuria aurantia lectin)鍵結於磁性奈米粒子(magnetic nanoparticle)的奈米探針技術作為岩藻醣基化醣胜肽純化方法,並且結合質譜技術為分析方法來鑑定醣胜肽。以山葵過氧化酶(horseradish peroxidase)作為岩藻醣基化醣蛋白的標準品,我們針對凝集素種類、磁性奈米粒子總量和溶液的極性和酸度等反應條件進行測試與優化岩藻醣基化醣胜肽純化方法。在優化條件下,以含20%乙醇的磷酸鹽緩衝液做為溶液,橙黃網胞盤菌凝集素修飾磁性奈米粒子(AAL@MNP)從山葵過氧化酶中純化11條岩藻醣基化醣胜肽,共含有已知的9個醣基化位置。於4種標準蛋白(山葵過氧化酶、胎球蛋白、核糖核酸酶和肌紅蛋白)的胜肽混合物中,山葵過氧化酶的岩藻醣基化醣胜肽也可被橙黃網胞盤菌凝集素修飾磁性奈米粒子純化,呈現出此奈米粒子對於山葵過氧化酶的岩藻醣基化醣胜肽的純化具有專一性(25%)。為了進一步了解瀰漫性大B細胞淋巴瘤(DLBCL)中醣蛋白質體學的性質,我們之後應用發展的方法純化並且鑑定瀰漫性大B細胞淋巴瘤其中的HBL-1 cell中蛋白質的岩藻醣基化。以氮基醣水解酶F(PNGase F)移除氮基醣鏈後,在HBL1細胞中分別以高密度和低密度的AAL@MNP純化,以Orbitrap Velos質譜鑑定到456條和433條去氮基醣鏈醣胜肽,分別來自於230個和229個HBL1細胞中的醣蛋白,而在完整氮基醣鏈醣胜肽,以MAGIC可以解出AAL@MNP純化後,9條醣胜肽中有8條為岩藻醣基化醣胜肽。其中包含了一些已知的岩藻醣基化醣蛋白,如CD44, IGHM, 和 GOLM1也可在此研究中鑑定出。我們也成功地利用此功能性奈米粒子純化並解析出分布在細胞表面的CD44帶有α1,2-岩藻醣鍵結之完整醣型,與存在B淋巴球表面受器的IGHM具有核心岩藻醣基化之結構。在分析完整的醣基化胜肽之醣結構結果中,利用oxinum ions鑑定到所有的醣胜肽圖譜中,HILIC有2743 張藻醣基化醣胜肽圖譜(專一性86.0%), AAL@MNP_LD 則有1419張 (84.0%), AAL@MNP_HD有1647張 (87.0%) 和LCA@MNP 有2616 張(74.9%),表示利用岩藻醣專一凝集素結合奈米粒子技術對於岩藻醣基化醣胜肽的純化具有選擇性和專一性。綜合上面所述,橙黃網胞盤菌凝集素修飾磁性奈米粒子結合質譜技術提供一具有高度選擇性且專一性岩藻醣基化醣胜肽純化技術,並提升有效鑑定完整岩藻醣基化醣型與其修飾位置之分析,並且可應用於偵測癌症的潛在生物標記。
zh_TW
dc.description.abstractAbstract
Fucosylation, covalent attachment of a fucose to other monosaccharides, is most commonly found to occur at the reducing terminal end (terminal fucosylation) or at the inner core N-acetylglucosamine (GlcNAc) (core fucosylation). Altered fucosylation of N-linked glycans has been implicated and used as potential biomarkers in various cancers such as prostate, breast, liver, ovarian and pancreatic cancers. Analysis of fucosylated glycoproteins is usually accomplished by utilizing lectin-affinity chromatography combined with mass spectrometry (MS) identification. Due to high heterogeneity and signal suppression of the glycopeptides on MS analysis, analysis of fucosylated glycoproteins in complex samples remains challenges.
By taking advantage of the easy magnetic separation and flexible surface modification of the magnetic nanoparticle (MNPs), in this study, we proposed an integrated nanoprobe-based strategy using a fucose-specific Aleuria aurantia lectin immobilized magnetic nanoparticle (AAL@MNPs) for affinity enrichment of fucosylated glycopeptides (FPs) followed by MS analysis for glycopeptide (GPs) identification. Using horseradish peroxidase (HRP) as a fucosylated standard glycoprotein, we optimized the incubation conditions, including lectin type, MNPs amount, polarity and acidity of incubation buffer, for enrichment of fucosylated glycopeptides. Among the known 9 sites, total 11 FPs of 11 GP from HRP were enriched by AAL@MNPs with the optimal condition in 20% ACN with PBS (v/v). On the peptide mixture from 4 proteins (Horseradish peroxidase, Fetuin, Ribonuclease B, Myoglobin), AAL@MNP showed specificity (fucosylated peptides/the number of total glyco scan)(25%) on the enrichment of fucosylated glycopeptides on HRP. To understand the characteristics of fucosylation pattern in diffuse large B-cell lymphoma (DLBCL), we further applied the developed method for site-specific identification of fucosylated glycoproteome on activated B-cell-like DLBCL – and HBL-1 cells. With PNGase F deglycosylation, 456 and 433 de-N-glycopeptides corresponding to 230 and 229 glycoproteins in HBL1 cells were respectively enriched by high and low lectin density of AAL@MNP and identified by Orbitrap Velos MS. In intact glycopeptide part, our recently developed MAGIC was used to determine the glycan structure and peptide sequence; total 8 FPs from 9 glycoproteins were identified. The result identified some known fucosylated targets, such as IGHM, GOLM1 and CD44; CD44 has been reported to be a α1,2-fucose antigen-containing protein on cell surface and involved in the development, adhesion and metastasis of tumor cells. In the analysis of intact glycopeptides, we use the presence of oxinum ion to calculate the number of spectra for glycopeptide and fucosylated glycopeptide. About 2743 (specificity: fucosylated glycopeptide spectra/glycopeptide spectra=86.0%), 1419 (84.0%), 1647 (87.0%) and 2616 (74.9%) fucosylated glycopeptide spectra were identified from enrichment of HILIC, AAL@MNP_LD, AAL@MNP_HD, and LCA@MNP, respectively. It indicated that our AAL@MNP strategy presented selectivity and specificity for fucosylated glycopeptides. In summary, the AAL@MNP-based mass spectrometry method demonstrated fucose-specific enrichment identification of fucosylated glycoproteome, facilitating the applications on the discovery of new potential diagnostic and therapeutic markers.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:17:57Z (GMT). No. of bitstreams: 1
ntu-104-R02223155-1.pdf: 2860399 bytes, checksum: 2be40cb8cff2bea01cd177cfef080c16 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsTABLE OF CONTENTS
Chapter1 Introduction 1
1.1 Significance of protein fucosylation 1
1.2 Challenges in analysis of fucosylated glycoproteins 3
1.3 Detection strategies for fucosylated glycoproteins 4
1.3.1 Fucosylation detection by lectin microarray 5
1.3.2 Mass spectrometry (MS)-based strategies for fucosylated glycoproteins 6
1.4 Enrichment strategies for fucosylated glycoprotein 8
1.5 Objective 10
Chapter2. Experimental Section 13
2.1 Materials 13
2.2 Synthesis of magnetic nanoparticles 14
2.3 Protein and peptide quantitative assays 14
2.3.1 Coomassie (Bradford) Protein Assay Kit 14
2.3.2 BCATM Protein Assay Kit 15
2.4 Sample preparation 16
2.4.1 Standard Proteins 16
2.4.2 Cell line proteins 16
2.5 Protein digestion 16
2.5.1 In-solution digestion 16
2.5.2 In solution digestion for cell lysate 17
2.6 Fucosylated glycopeptide enrichment on peptide level 18
2.6.1 Single v.s. Multi-Lectin@MNP 18
2.6.2 Optimization parameters of AAL@MNP enrichment 18
2.7 Fucosylated glycoprotein enrichment on protein level 20
2.8 C18 ZipTip Pipette Tips Desalting and Concentration of Proteins/peptides 21
2.9 Instrument 22
2.9.1 MALDI-TOF Mass Spectrometry 22
2.9.2 LC-MS/MS Mass Spectrometry 22
2.10 Protein Identification 24
Chapter3. Results and Discussion 26
3.1 Optimization of Protocols for Enrichment of Fucosylated glycopeptides at Peptide level 26
3.1.1 Comparison of enrichment efficiency and specificity for fucosylated glycopeptides by different lectin@MNPs 26
3.1.2 Optimization of the ratio of AAL@MNP and sample 27
3.1.3 Optimization of different volume of incubation buffer 28
3.1.4 Optimization of acidity of incubation buffer 29
3.1.5 Optimization of solvent polarity of incubation buffer 30
3.1.6 Evaluation of metal ion in incubation buffer 30
3.2 Comparison of enrichment specificity between peptide-level enrichment and protein-level enrichment 31
3.3 Fucosylated glycoproteomic analysis of B lymphoma cell, HBL1, by AAL@MNP strategy 35
Chapter4 Conclusionference 44
Reference 46

 
LIST OF FIGURES
Figure 1. Workflow for enrichment of standard glycoproteins by lectin@MNP approaches.. 57
Figure 2. Workflow of fabrication of AAL@MNPs. 58
Figure 3. Workflow of glycopeptide enrichment approaches. 59
Figure 4. MALDI-TOF MS spectra present enriched glycopeptides from HRP by different Lectin@MNP approaches 60
Figure 5. Capacity effect of different amount of AAL@MNP 61
Figure 6. Volume effect of incubation buffer for AAL@MNP enrichment 62
Figure 7. Acidity effect of adjusted incubation buffer for AAL@MNP enrichment 63
Figure 8. Optimization of different polarity for incubation buffer of AAL@MNP 64
Figure 9. Efficiency Effect of incubation buffer with different metal ion for AAL@MNP enrichment 65
Figure 10. MS/MS spectra of identified fucosylated glycopeptide from HRP by AAL@MNP enrichment. 66
Figure 11. Identification of glycoproteomic result in HBL1 cell line by HILIC, AAL@MNP, and LCA@MNP enrichment.. 67
Figure 12. MS/MS spectra illustrated intact fucosylated glycopeptides of CD44 and IGHM in HBL1 cell 68
LIST OF TABLES
Table 1. Detail information for characteristics of standard glycoproteins and non-glycoproteins 69
Table 2. Information of intact fucosylated glycopeptides of HRP.. 71
Table 3. Detail information of identified fucosylated glycopeptides from HRP enriched by multi-lectin@MNP approaches and analyzed by MALDI-TOF and HDMS Q-TOF MS 72
Table 4. Detail information of identified fucosylated glycopeptides from HRP enriched by multi-lectin@MNP approaches in MS1 and MS2 mode of LC-MS/MS. 73
Table 5. Statistics for number and ratio of fucosylated oxonium ions in MS/MS spectra of intact glycoproteome from HBL1 cells enriched by different lectin strategies and analyzed by Orbitrap Velos MS. 74
Table 6. Complete list of identified glycoproteins in HBL1 cell enriched by HILIC stage tip, AAL@MNP, and LCA@MNP strategy 75
Table 7. Detail information of identified N-glycopeptide in HBL1 cell lines 91
dc.language.isozh-TW
dc.subject完整醣蛋白質體學zh_TW
dc.subject岩藻醣基化醣胜?zh_TW
dc.subject橙黃網胞盤菌凝集素修飾磁性奈米粒子zh_TW
dc.subjectB淋巴球zh_TW
dc.subject質譜技術zh_TW
dc.subjectintact glycoproteomeen
dc.subjectmass spectrometry.en
dc.subjectB lymphoma cellen
dc.subjectmagnetic nanoparticleen
dc.subjectAleuria aurantia lectinen
dc.subjectfucosylationen
dc.title開發凝集素奈米粒子結合親和質譜術之岩藻醣蛋白質體分析方法zh_TW
dc.titleFucose-specific Glycosylation Profiling by Lectin-modified Nanoparticle and Mass Spectrometryen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林俊成(Chun-Cheng Lin),戴桓青(Hwan-Ching Tai)
dc.subject.keyword完整醣蛋白質體學,岩藻醣基化醣胜?,橙黃網胞盤菌凝集素修飾磁性奈米粒子,B淋巴球,質譜技術,zh_TW
dc.subject.keywordintact glycoproteome,fucosylation,Aleuria aurantia lectin,magnetic nanoparticle,B lymphoma cell,mass spectrometry.,en
dc.relation.page121
dc.rights.note有償授權
dc.date.accepted2015-08-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved