Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52539
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張祖亮
dc.contributor.authorYi-Jie Leeen
dc.contributor.author李宜潔zh_TW
dc.date.accessioned2021-06-15T16:17:55Z-
dc.date.available2019-08-20
dc.date.copyright2015-08-20
dc.date.issued2015
dc.date.submitted2015-08-17
dc.identifier.citation1. 古源翎. 2008.中草藥化學指紋圖譜分析技術之建立與應用. 農業生技產業季刊. NO.14:52-55.
2. 吳俊民. 2013. 生薑中6 -薑酚與薑酮之萃取純化及其抗氧化性之研究. 國立高雄應用科技大學化學工程與材料工程系博碩士班碩士論文.
3. 李茂榮、陳崇宇、李祖光. 2005. 固相萃取技術於微量分析之應用.化學63(3):329-342.
4. 沈百奎. 2000. 芳香蝴蝶-薑花. 豐年50(12): 35-38.
5. 沈馨仙、郭旻奇、張思平、鍾佳玲. 2010. 抗氧化劑及常見之抗氧化活性評估方法.The journal of Taiwan Pharmacy Vol.26 No.2 Jun. 30.
6. 胡雪吟. 2006. 閉鞘薑抗乳癌之活性成分研究. 臺北醫學大學生藥學研究所碩士論文.
7. 洗藝庭. 2012. 薑黃屬植物精油萃取物誘導人類非小細胞肺癌細胞凋亡之分子機轉研究.中興大學生物化學研究所碩士論文.
8. 許文章. 2005. 薑. 台灣農家要覽(二). 行政院農業委員會. 臺北.301-304.
9. 張上鎮. 2011.快速鑑別土肉桂品系之方法.Taiwan forestry journal .Vol.37 No.2.23-25.
10. 郭育妏. 2006. 台灣產月桃屬(薑科)植物分類與根莖精油分析之研究. 國立嘉義大學農學院林業暨自然資源研究所碩士論文.
11. 陳信泰. 2010. 薑麻園休閒農業區景觀吸引力、遊客滿意度與重遊意願關係之研究. 大葉大學休閒事業管理學系碩士班碩士論文.
12. 陳沛清. 2015. 野薑花化學成分之分離純化與萃取物之抗氧化能力分析. 朝陽科技大學應用化學系碩士論文.
13. 陳義男. 2008. 台灣薑科植物資源之調查與利用. 國立臺灣大學生物資源暨農學院園藝學系博士論文.
14. 黃增泉. 1990. 高等植物分類學原理.華香園出版社.臺北.
15. 黃玟瑄. 2010. 紅肉李萃取物對於以H2O2誘發PC-12神經細胞氧化壓力之影響. 台北醫學大學保健營養學研究所碩士論文.
16. 曾耀銘、李孟真. 2010. 月桃等植物抗氧化神經保護作用成份純化鑑定、定量分析與製備檢測的研究探討. 朝陽科技大學生化科技研究所. 行政院國家科學委員會研究計畫NSC99-2113-M324-001.
17. 楊正仲. 1993. 臺灣月桃屬植物之分類研究. 國立師範大學生物學研究所碩士論文.
18. 楊恭毅. 1985. 楊氏園藝植物大名典第3、4、6、9 冊. 中國花卉雜誌社. 臺北.
19. 楊遠波、劉和義、林讚標編著. 2002. 臺灣維管束植物簡誌第伍卷. 行政院農
業委員會. 臺北.
20. 潘懷宗、劉晉魁、周良穎、謝秉甫、李沐勳. 1994. 利用超臨界二氧化碳萃取肉桂中之精油成份:並與水蒸氣蒸餾法進行比較. 中醫藥雜誌5卷3期199-207頁.
21. 謝玟珣. 2007. 山胡椒抗氧化性質及其抗菌性質之研究.國立宜蘭大學食品科學系碩士班碩士論文.
22. 蘇柏榕. 2007. 山月桃之抗癌活性研究.台北醫學大學生藥學研究所碩士論文.
23. 台南縣本土教學資源網-單元 55 野薑花.http://ltrc.tnc.edu.tw/modules/tadbook2/view.php?book_sn=3&bdsn=480.
24. 臺北市政府客家事務委員會.2004年客家文化季刊春季號 端午飄粽香 口味很多樣─找尋古早味的那份感動. http://www.hac.gov.taipei/mp.asp?mp=122021.
25. Bown, D . 2001. New encyclopedia of herbs and their uses. New York.
26. Chen IN, Chang CC, Ng CC, Wang CY, Shyu YT, Chang TL. 2008. Antioxidant and antimicrobial activity of Zingiberaceae plants in Taiwan. Plant Foods Hum Nutr. 63:15-20.
27. Chen IN, Ng CC, Wang CY, Chang TL. 2009. Lactic fermentation and antioxidant activity of Zingiberaceae plants in Taiwan. Int J Food Sci Nutr. Suppl 2:57-66. doi: 10.1080/09637480802375531.
28. Diäaz-Maroto, M. C., E. S. Nchez-Palomo and M. S. P. Rez-Coello . 2004. Fast screening method for volatile compounds of oak wood used for aging wines byheadspace SPME-GC-MS (SIM). J. Agric.Food Chem. 52: 6857-6861.
29. Duncan, T. and B. R. Baum. 1981. Numerical phenetics: its uses in botanical systematics. Annual review of ecology and systematic 12: 387-404.
30. Ebrahimzadeh Attari V, Asghari Jafarabadi M, Zemestani M, Ostadrahimi A. 2015. Effect of Zingiber officinale Supplementation on Obesity Management with Respect to the Uncoupling Protein 1 -3826A>G and ß3-adrenergic Receptor Trp64Arg Polymorphism. Phytother Res. Apr 21. doi: 10.1002/ptr.5343.
31. Funakoshi, H. and H. Ohashi. 2000. Vanovergberghia sasakiana H. Funak. & H.Ohashi (Zingiberaceae), a new species and a new generic record for the flora of Taiwan. Taiwania 45: 270-275.
32. Gümüşay ÖA, Borazan AA, Ercal N, Demirkol O. 2015. Drying effects on the antioxidant properties of tomatoes and ginger. Food Chem. 173:156-162.
33. György, V. and K. Vökey . 2004. Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. J. Mass Spectrom.39: 233-254.
34. Halliwell, B. and Gutteridge, J. M. C. 1994. Free radicals and antioxidants: A personal view. Nutr. Rev. 52(8): 253-265.
35. Halliwell, B. Murica, M. A. Chirico, S. and Aruoma, O. I. 1995. Free radicals and antioxidants in ford and in vivo: what they do and how they work. Crit. Rev. Food Sci. Nutr. 35:7-20.
36. Hwnauer, R. and A. kyrockmisrry. 1986. Phytochemistry and plant taxonomy -An essay on the chemotaxonomy of higher plants. Phytochemistry. 25(7):1519-1535.
37. Hiroyuki K., L. L. Heather and P. Janusz. 2000. Applications of solid-phase microextraction in food analysis. J. Chromatogr.A 880: 35-62.
38. Kumar L, Chhibber S, Kumar R, Kumar M, Harjai K. 2015. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa. Fitoterapia. 102:84-95.
39. Kress, W. J., A. Z. Liu, M. Newman, and Q. J. Li. 2005. The molecular phylogeny of Alpinia (Zingiberaceae): a complex and polyphyletic genus of gingers. Amer. J. Bot. 92(1): 167-178.
40. Lagalante, A. F. and M. E. Montgomery. 2003. Analysis of terpenoids from hemlock(Tsuga) species by solid-phase microextraction/gas
chromatography/ion-trap mass spectrometry. J. Agric. Food Chem.51: 2115-2120.
41. Lee, E. and Y.J. Surh. 1998. Induction of apoptosis in HL-60 cells by pungent vanilloids,[6]-gingerol and [6]-paradol. Cancer Lett. 134(2):163-168.
42. Lindsay D.G, Astley S.B. 2002. European research on the functional effects of dietary antioxidants-EUROFEDA.Mol Aspects Med.;23:1-38.
43. Lin LY, Peng CC, Yeh XY, Huang BY, Wang HE, Chen KC, Peng RY. 2015. Antihyperlipidemic bioactivity of Alpinia officinarum (Hance) Farw Zingiberaceae can be attributed to the coexistance of curcumin, polyphenolics, dietary fibers and phytosterols. Food Funct. 6:1600-1610.
44. Loziene, K., J. Vaiciuniene, and P.R. Venskutonis. 2003. Chemical composition of the essential oil of different varieties of thyme (Thymus pulegioides) growing wild in Lithuania. Biochem. Syst. Ecol. 31:249-259.
45. Mandal, V., Y. Mohan, and S. Hemalatha. 2007. Microwave assisted extraction -an innovative and promising extraction tool for medicinal plant research. Phcog. Rew. 1: 7-18.
46. Nagpal M, Sood S. 2013. Role of curcumin in systemic and oral health: An overview. J Nat Sci Biol Med. 4:3-7.
47. Oyaizu, M. 1986. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J.Nutr. 44: 307.
48. Pan, X., G. Niu, and H. Liu. 2002. Comparison of microwave-assisted extraction and conventional extraction techniques for the extraction of tanshinones from Salvia miltiorrhiza bunge. Biochem. Eng. J. 12: 71-77.
49. Pavia, Donald L., Gary M. Lampman, George S. Kritz, Randall G. Engel. 2006. Introduction to Organic Laboratory Techniques (4th Ed.). Thomson Brooks/Cole. 797-817.
50. Randhir ,R., Y.T. Lin, K. Shetty .2004. Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochem 39: 637-46.
51. Rohloff, J. 1999. Monoterpene composition of essential oil from peppermint (Mentha x piperita L.) with regard to leaf position using solid-phase microextraction and gas chromatography/mass spectrometry analysis. J Agric Food Chem. 47: 3782-3786.
52. Rowe, D.J. 2005 .Chemistry and technology of flavours and fragrances .Oxford
:Blackwell Publishing Ltd.pp.179-172.
53. Robles-Zepeda, R.E., J. Molina-Torres, E. Lozoya-Gloria, and M.G. López. 2006. Volatile organic compounds of leaves and flowers of Montanoa tomentosa. Flavour Fragr. J. 21:225-227.
54. Sies H. 1993. Strategies of antioxidant defense. Eur. J. Biochem. 215:213-219.
55. Simon, J.E., H.R. Juliani. 2008. Chemical Diversity of Lippia multiflora Essential Oils from West Africa. J. Essent. Oil Res 20:49-55.
56. Skoog. 2007. Principles of Instrumental Analysis. p. 863.
57. Sneath, P. H. A. 1995. Thirty years of numerical taxonomy. Systematic Biology 44(3): 281-298.
58. Sneath, P. H. A. and R. R. Sokal . 1973. Numerical Taxonomy. USA: W. H. Freeman and Company, San Francisco. 573 pp.
59. Suhaj, M. and J. HorvathovÁ. 2007. Changes in antioxidant activity induced by irradiation of clove (Syzygium aromaticum) and ginger (Zingiber officinale). J Food Nutr Res. 46:112-122.
60. Tanaka, Y., Takeshi, O. 2007. Extraction of Phospholipids from salmon roe with supercritical carbon dioxide and an entrainer. Journal of Oleo Science 53:417-424.
61. Togar B, Türkez H, Stefano AD, Tatar A, Cetin D. 2015. Zingiberene attenuates hydrogen peroxide-induced toxicity in neuronal cells. Hum Exp Toxicol. 34:135-44.
62. Tzeng TF, Liou SS, Chang CJ, Liu IM. 2015 .[6]-Gingerol dampens hepatic steatosis and inflammation in experimental nonalcoholic steatohepatitis. Phytomedicine. 22:452-461.
63. Van Brussel I, Ammi R, Rombouts M, Cools N, Vercauteren SR, De Roover D, Jenkins JR, Ayton P, Jones T, Davies SL, Simmons DL, Harris AL, Sheer D, Hickson ID. 1992. Isolation of cDNA clones encoding the beta isozyme of human DNA topoisomerase II and localisation of the gene to chromosome 3p24. Nucleic Acids Res. 20:5587-5592.
64. Wang, J. C. , J. J. Yang, H. Funakoshi, H. Ohashi, C. T. Moo. 2000. Zingiberaceae. In Boufford, D. E., C. F. Hsieh, T. C. Huang, C. S. Kuoh, H.Ohashi, H. J. Su (eds.). Flora of Taiwan. ed. 2. Vol. V. pp. 707-724. Committee of Flora of Taiwan. Taipei.
65. Wang, L.S., F. Hashimoto, A. Shiraishi, N. Aoki, and J.J. Li. 2004. Chemical taxonomy of Xibei tree peony from Chia by floral pigmentation. J. Plant Res. 117:47-55.
66. Wattanathorn J, Thiraphatthanavong P, Muchimapura S, Thukhammee W, Lertrat K, Suriharn B. 2015. The Combined Extract of Zingiber officinale and Zea mays (Purple Color) Improves Neuropathy, Oxidative Stress, and Axon Density in Streptozotocin Induced Diabetic Rats. Evid Based Complement Alternat Med:301029.
67. Wu CH, Hong BH, Ho CT, Yen GC. 2015. Targeting cancer stem cells in breast cancer: potential anticancer properties of 6-shogaol and pterostilbene. J Agric Food Chem. 63:2432-2441.
68. Yu Y, Zheng H, Buckwalter JA, Martin JA. 2014. Single cell sorting identifies progenitor cell population from full thickness bovine articular cartilage. Osteoarthritis Cartilage. 22:1318-1326.
69. Zini, C. A., F. Augusto, E. Christensen, E. B.Caramao and J. Pawliszyn . 2002. SPME applied to the study of volatile organic compounds by three species of Eucalyptus in situ. J. Agric. Food Chem. 50: 7199-7205.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52539-
dc.description.abstract本研究利用頂空固態微萃取法(HS-SPME)和氣相層析質譜儀(gas chromatograph / mass spectrometry,GC/MS)建立台灣薑科植物葉片的取樣及分析流程,再進行各品種葉片之香氣成分分析。先以月桃(Alpinia zerumbet (Pers.) Burtt & Smith)葉片5 種香氣主成分,α-pinene、Camphene、Limonene、Camphor及Caryophyllene確立分析流程為:取樣時間為早上 9 時至 12 時,樣品為新鮮葉片,取樣後不冷凍儲藏直接分析,以直徑 3 mm 打孔器取單一植株中間葉序之葉片,而單一葉片內靠近葉柄處葉圓片 8 片,置入 25ml 之頂空玻璃瓶,加入內標準品 n-tridecane、n-hexadecane,以 75℃ 乾熱器加熱 4 分鐘,SPME 纖維吸附 4 分鐘,之後插入注射孔以 250℃ 脫附 30 秒後開始進行香氣質譜分析。GC oven 升溫起始溫度為 30℃ 維持 3 分鐘,第一階段升溫為每分鐘升溫 15℃ 至 120℃,第二階段為每分鐘升溫 5℃ 至 200℃,再以每分鐘 25℃ 升溫至 300℃ 後維持 1 分鐘。
26 種台灣薑科植物葉片共分析得 126 種香氣成分。其中香氣種類最少的為閉鞘薑(Costus speciosus (Koenig) Smith),僅含有 2 種香氣成分、最多的是呂宋月桃(Alpinia flabellate Ridly, 採自台中科博館),含有 32 種香氣成分。
利用 R code cluster analysis 軟體建立群集分析,得到已知的20個台灣薑科種原之群聚樹狀圖。加上未檢定的6個種原,總共26個試驗樣品可分為三大群。採自蘭嶼(陳義男)及台中科博館的呂宋月桃(Alpinia flabellate Ridly)則分類在第一群;第二群為月桃屬中的UN 1 A. sp、 UN 2 A. sp、月桃、川上氏月桃(Alpinia kawakamii Hayata)、島田氏月桃(Alpinia shimadai Hayata)、角板山月桃(Alpinia mesanthera Hayata)、普萊氏月桃(Alpinia pricei Hayata)、屈尺月桃(Alpinia kusshakuensis Hayata)、七星月桃(Alpinia densespicata Hayata)、烏來月桃(Alpinia uraiensis Hayata)、UN 3 A. sp及UN 4 A. sp共 12 個種原;第三群為月桃屬中的山月桃(Alpinia intermedia Gagnep)、紅豆蔻(Alpinia galanga (L.) Sw )及紅花月桃(Alpinia purpurata (Vieill.) K. Schum ),薑黃屬中的二黃(Curcuma viridiflora Roxb)、莪朮(Curcuma zedoaria (Berg.)Rosc)、薑黃(Curcuma domestica Valet)、UN 5 C.sp,山奈屬中的三奈(Kaempferia galanga L.),薑屬中UN 6 Z.sp,閉鞘薑屬中的閉鞘薑(Costus speciosus (Koenig) Smith)及蝴蝶薑屬中採自台大山地農場春陽分場及屏東的穗花山奈(Hedychium coronarium Koenig)共 12 個種原。
分別以水及95%乙醇萃取26種台灣薑科植物葉片,記錄其萃取率並測定萃取物之清除DPPH自由基能力及還原力。結果顯示,各種薑科植物之乙醇萃取率以三奈萃取率最高(205.67 mg/g),紅花月桃最低(70.67 mg/g);水萃取以屈尺月桃最高(82.33 mg/g),三奈萃取率最低(6.33 mg/g)。另外清除 DPPH 自由基能力,各樣品水萃取物中,UN 1 A. sp (南投特生中心)對 DPPH自由基具最強之清除能力,IC50 值為0.412 mg/mL,較弱的二黃及莪朮,IC50 值為分別為11.441 mg/mL及9.852 mg/mL。乙醇萃取物中,紅花月桃具最強之清除能力,IC50 值為0.154 mg/mL,薑黃及UN 6 Z. sp較弱,IC50 值為分別為0.4517 mg/mL及0.3678 mg/mL。在還原力方面,各樣品水萃取物中以月桃最強(k值為0.920 ± 0.007 mL/mg),最低的為二黃水萃取物(k值為0.032 ± 0.027 mL/mg);各樣品乙醇萃取物中,以月桃最強(k值為1.480 ± 0.008 mL/mg),最低的為UN 6 Z. sp 乙醇萃取物(k值為0.050 ± 0.002 mL/mg)。
zh_TW
dc.description.abstractThis study utilized the headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) to establish procedure of sampling and analyzing for volatile leaf components of Zingiberaceae plants cultured in Taiwan. The standard operation procedure (SOP) for the analysis was established by analyzing five major ingredients (α-pinene, Camphene, Limonene, Camphor, Caryophyllene) of shell ginger (Alpinia zerumbet (Pers.) Burtt & Smith) leaf. The suggested SOP as follow: 8 discs of 3 mm diameter punched from the middle part, near the petiole of a fresh sample leave, between 9:00 to 12:00. Put discs in 25 mL vial immediately, heating 4 minutes at 75℃ after internal standards (n-tridecane and n-hexadecane) added, trapping 4 minutes by SPME. Volatile components analysis by chromatography-mass spectrometry (GC-MS) with the condition of inserting the 250℃injection holes for 30 seconds , maintained the initial GC oven temperature at 30℃ for 3 minutes, then rising 15℃/min to 120℃, 5℃/min to 200℃, and 25℃/min to 300℃ and maintained 1 minute.
Analyzing leaves of 26 accessions in the ginger family totally have 126 volatile components. Costus speciosus (Koenig) Smith has only two components and Alpinia flabellate Ridly from Taichung Science Museum has thirty-two components.
Using R code cluster analysis software, cluster tree can be obtained from identified 20 accessions. With another 6 unknown accessions, a total of 26 accessions were divided into three groups. Two accessions of Alpinia flabellate Ridly are classified as the first group, the second group including 12 accessions of Alpinia (zerumbet, kawakamii, shimadai , mesanthera, pricei, kusshakuensis, densespicata, uraiensis, UN 1, UN 2, UN 3 and UN 4) and the other 12 accessions as the third group, including Alpinia intermedia, A. galanga, A. purpurata, Curcuma viridiflora, C. zedoaria, C. domestica, C. sp. UN 5, Kaempferia galanga, Zingiber sp UN 6, Costus speciosus and 2 collections of Hedychium coronarium.
Leaves of 26 accessions were extracted with water and 95% ethanol, after recording its extraction rate, the DPPH radical scavenging and reducing power of the extracts were measured. Water extraction rate of A. kusshakuensis (82.33 mg /g) is the highest and K. galanga (6.33 mg/g) is the lowest. 95% ethanol extraction rate of K. galanga (205.67 mg/g) is the highest and A. purpurata (70.67 mg/g) is the lowest. About DPPH radical scavenging capacity, water extracts of UN 1 A. sp has the strongest IC50 of 0.412 mg/mL, while C. viridiflora and C. zedoaria have weak IC50 of 11.441 mg/mL and 9.852 mg/mL, respectively. Ethanol extracts of A. purpurata has the strongest IC50 of 0.154 mg/mL while C. domestica and UN 6 Z. sp have weak IC50 of 0.4517 mg/mL and 0.3678 mg/mL, respectively. In terms of reducing power, aqueous extracts of A. zerumbet is with strong k value of 0.920 ± 0.007 mL/mg), the lowest is C. viridiflora with k value of 0.032 ± 0.027 mL/mg. The strongest k value of 1.480 ± 0.008 mL/mg is ethanol extracts of A. zerumbet, and ethanol extracts of UN 6 Z. sp has k value of 0.050 ± 0.002 mL/mg.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:17:55Z (GMT). No. of bitstreams: 1
ntu-104-R98628129-1.pdf: 1534915 bytes, checksum: 2f5c6f4d40871ceb89f2cd29dba8e91d (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents論文口試委員審定書…………………………………………i
誌謝………………………………………………………………………ii
摘要………………………………………………………………………iii
Abstract………………………………………………………………v
目錄………………………………………………………………………vii
圖目錄……………………………………………………………………ix
表目錄……………………………………………………………………x
壹、前言………………………………………………………………1
貳、前人研究………………………………………………………3
一、薑科植物簡介………………………………………………………………3
二、薑科植物主要成分及利用現況……………………………6
三、植物分類之概念及分類方法………………………………10
四、植物成分分析樣品製備法……………………………………12
五、氣相質譜層析儀之原理與介紹……………………………16
六、抗氧化作用…………………………………………………………………16
參、材料與方法…………………………………………………………………20
一、試驗材料………………………………………………………………………20
二、分析方法………………………………………………………………………21
三、樣品製備………………………………………………………………………21
四、月桃葉片揮發性香氣成分分析流程之建立……22
五、數據分析………………………………………………………………………24
六、台灣薑科葉片植物香氣成分比較………………………25
七、群集分析………………………………………………………………………25
八、抗氧化試驗…………………………………………………………………25
肆、結果與討論…………………………………………………………28
一、確立葉片揮發性成分分析流程……………………………28
二、台灣薑科植物各種原之葉片香氣成分的比較……32
三、台灣薑科植物葉片群集分析………………………………………34
四、台灣薑科植物葉片抗氧化分析…………………………………35
伍、結論…………………………………………………………………38
陸、參考文獻……………………………………………………………65
柒、附錄…………………………………………………………………73
dc.language.isozh-TW
dc.subject抗氧化力zh_TW
dc.subject頂空固態微萃取法zh_TW
dc.subject群聚樹狀圖zh_TW
dc.subject氣相層析質譜儀zh_TW
dc.subjectCluster dendrogramen
dc.subjectSPMEen
dc.subjectAntioxidative capacityen
dc.subjectGC/MSen
dc.title薑科植物之葉片揮發性成分分析與利用zh_TW
dc.titleLeaf Volatile Components Analysis and Utilization of Zingiberaceae Plants in Taiwanen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳開憲,李瑞宗
dc.subject.keyword頂空固態微萃取法,氣相層析質譜儀,群聚樹狀圖,抗氧化力,zh_TW
dc.subject.keywordSPME,GC/MS,Cluster dendrogram,Antioxidative capacity,en
dc.relation.page123
dc.rights.note有償授權
dc.date.accepted2015-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
1.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved