Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52534
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖運炫
dc.contributor.authorYao-Wen Kuoen
dc.contributor.author郭耀文zh_TW
dc.date.accessioned2021-06-15T16:17:45Z-
dc.date.available2017-08-28
dc.date.copyright2015-08-28
dc.date.issued2015
dc.date.submitted2015-08-17
dc.identifier.citation[1] Y. Altintaş and E. Budak, 'Analytical prediction of stability lobes in milling,' CIRP Annals - Manufacturing Technology, vol. 44, pp. 357-362, 1995.
[2] E. Merchant, 'Mechanics of the metal cutting process .1. Orthogonal cutting and a type-2 chip,' Journal of Applied Physics, vol. 16, pp. 267-275, 1945.
[3] C. Andrew and S. A. Tobias, 'A critical comparison of two current theories of machine tool chatter,' International Journal of Machine Tool Design and Research, vol. 1, pp. 325-335, 1961.
[4] M. K. Das and S. A. Tobias, 'The relation between the static and the dynamic cutting of metals,' International Journal of Machine Tool Design and Research, vol. 7, pp. 63-89, 1967.
[5] H. E. Merritt, 'Theory fo self-excited machine-tool chatter - contribution to machine-tool chatter research .1,' Journal of Engineering for Industry, vol. 87, pp. 447-&, 1965.
[6] J. Tlusty and F. Ismail, 'Basic non-linearity in machining chatter,' CIRP Annals - Manufacturing Technology, vol. 30, pp. 299-304, 1981.
[7] J. Tlusty, W. Zaton, and F. Ismail, 'Stability lobes in milling,' CIRP Annals - Manufacturing Technology, vol. 32, pp. 309-313, 1983.
[8] Y. Altintas and M. Weck, 'Chatter stability of metal cutting and grinding,' Cirp Annals-Manufacturing Technology, vol. 53, pp. 619-642, 2004.
[9] M. A. Davies, J. R. Pratt, B. Dutterer, and T. J. Burns, 'Stability prediction for low radial immersion milling,' Journal of Manufacturing Science and Engineering-Transactions of the Asme, vol. 124, pp. 217-225, 2002.
[10] Y. Altintas, Manufacturing automation: Metal cutting mechanics, machine tool vibrations, and cnc design, 2nd edition, 2012.
[11] R. P. H. Faassen, N. van de Wouw, J. A. J. Oosterling, and H. Nijmeijer, 'Prediction of regenerative chatter by modelling and analysis of high-speed milling,' International Journal of Machine Tools & Manufacture, vol. 43, pp. 1437-1446, 2003.
[12] C. M. Zheng and J. J. J. Wang, 'Stability prediction in radial immersion for milling with symmetric structure,' International Journal of Machine Tools & Manufacture, vol. 75, pp. 72-81, 2013.
[13] C. M. Zheng, J. J. J. Wang, and C. F. Sung, 'Analytical prediction of the critical depth of cut and worst spindle speeds for chatter in end milling,' Journal of Manufacturing Science and Engineering-Transactions of the Asme, vol. 136, 2014.
[14] J. Gradisek, M. Kalveram, T. Insperger, K. Weinert, G. Stepan, E. Govekar, et al., 'On stability prediction for milling,' International Journal of Machine Tools & Manufacture, vol. 45, pp. 769-781, 2005.
[15] J. J. J. Wang and C. M. Zheng, 'Identification of shearing and ploughing cutting constants from average forces in ball-end milling,' International Journal of Machine Tools & Manufacture, vol. 42, pp. 695-705, 2002.
[16] G. Quintana and J. Ciurana, 'Chatter in machining processes: A review,' International Journal of Machine Tools & Manufacture, vol. 51, pp. 363-376, 2011.
[17] T. Delio, J. Tlusty, and S. Smith, 'Use of audio signals for chatter detection and control,' Journal of Engineering for Industry-Transactions of the Asme, vol. 114, pp. 146-157, 1992.
[18] E. Kuljanic, M. Sortino, and G. Totis, 'Multisensor approaches for chatter detection in milling,' Journal of Sound and Vibration, vol. 312, pp. 672-693, 2008.
[19] E. Kuljanic, G. Totis, and M. Sortino, 'Development of an intelligent multisensor chatter detection system in milling,' Mechanical Systems and Signal Processing, vol. 23, pp. 1704-1718, 2009.
[20] 吳宏亮, '遠端監控系統應用於工具機切削動態異常診控之應用研究,' 碩士論文, 中原大學, 2007.
[21] 張成綱, 'CNC工具機之切削異常線上監控系統改善研究,' 碩士論文, 中原大學, 2010.
[22] Z. H. Yao, D. Q. Mei, and Z. C. Chen, 'On-line chatter detection and identification based on wavelet and support vector machine,' Journal of Materials Processing Technology, vol. 210, pp. 713-719, 2010.
[23] N. C. Tsai, D. C. Chen, and R. M. Lee, 'Chatter prevention for milling process by acoustic signal feedback,' International Journal of Advanced Manufacturing Technology, vol. 47, pp. 1013-1021, 2010.
[24] G. F. Jia, B. Wu, Y. M. Hu, F. Y. Xie, and A. Liu, 'A synthetic criterion for early recognition of cutting chatter,' Science China-Technological Sciences, vol. 56, pp. 2870-2876, 2013.
[25] L. Ma, S. N. Melkote, and J. B. Castle, 'A model-based computationally efficient method for on-line detection of chatter in milling,' Journal of Manufacturing Science and Engineering-Transactions of the Asme, vol. 135, 2013.
[26] M. K. Khraisheh, C. Pezeshki, and A. E. Bayoumi, 'Time-series based analysis for primary chatter in metal-cutting,' Journal of Sound and Vibration, vol. 180, pp. 67-87, 1995.
[27] Y. S. Tarng, Y. W. Hseih, and T. C. Li, 'Automatic selection of spindle speed for suppression of regenerative chatter in turning,' International Journal of Advanced Manufacturing Technology, vol. 11, pp. 12-17, 1996.
[28] Y. S. Liao and Y. C. Young, 'A new on-line spindle speed regulation strategy for chatter control,' International Journal of Machine Tools & Manufacture, vol. 36, pp. 651-660, 1996.
[29] 孟尚賢, '銑削顫振之控制-主軸轉速調整方法之研究,' 碩士論文, 國立臺灣大學, 2002.
[30] Y. Altintas and P. K. Chan, 'In-process detection and suppression of chatter in milling,' International Journal of Machine Tools & Manufacture, vol. 32, pp. 329-347, 1992.
[31] E. Al-Regib, J. Ni, and S. H. Lee, 'Programming spindle speed variation for machine tool chatter suppression,' International Journal of Machine Tools & Manufacture, vol. 43, pp. 1229-1240, 2003.
[32] A. Phinyomark, P. Phukpattaranont, and C. Limsakul, 'Feature reduction and selection for emg signal classification,' Expert Systems with Applications, vol. 39, pp. 7420-7431, 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52534-
dc.description.abstract銑削製程由於能製作複雜形狀而被廣泛用於機械製造,然而不適當的切削條件之選用會容易產生加工時的顫振。再生式顫振屬於加工顫振中最常見的一種,再生式顫振發生時會造成刀具的損傷與降低工件的表面品質並且產生大量的噪音。由於再生式效應與切削過程的動態力有關,而此動態力在特定的頻率下會造成系統不穩定,引發自激式振動的再生式顫振。藉由區分刀具通過頻率與再生式顫振特有的頻率,即能偵測到顫振的形成。然而純粹的頻域分析無法對時間序列做分析,因而無法達到即時預測的效果。
本文提出一種線上再生式顫振的預測法則,藉由量測線上切削訊號頻率的轉變,達到預測顫振發生之目的。藉由計算連續短暫時間區間的頻率,再由本文提出的公式來描述每時刻切削訊號的主要頻率,以觀察頻率隨切削進給的轉變。並定義一套再生式顫振的預測法則,找出頻率從刀具通過頻率趨向再生式顫振頻率之轉變,讓顫振在未完全成型之前,預測再生式顫振的發生。本文設計三部分實驗:固定軸向切深、變動軸向切深與曲線加工的實驗,並以不同的時頻分析,分別分析訊號的變化,並比較預測再生式顫振的效果。實驗分析發現,透過動力計量測切削力訊號,並藉由觀察頻率隨時間的轉變,能提早發現再生式顫振;而利用麥克風量測到的空氣壓力變化也能有效發揮判斷效果,兩者皆能在切削力還未因為顫振大幅增長時,便即時找出可能會發生再生式顫振的情況。
zh_TW
dc.description.abstractMilling process is widely used in manufacturing due to the ability to produce complicate form of workpieces. However the cause of inappropriate cutting conditions may induce chatter. Regenerative chatter, one of the most common types of chatter in milling, damages the cutting tool as well as surface quality and makes a lot of noise. Because the regenerative effect is caused by cutting process and dynamic force, which makes system unstable and induces self-excited vibration in specific chatter frequency. By means of distinguishing the chatter frequency and tool passing frequency, chatter can be online detected. But only frequency domain analysis can’t analyze the time sequence and achieve chatter prediction.
To achieve chatter prediction, this work proposes an online chatter prediction rule by the method of monitoring the trend of frequency change. Dynamometer and microphone are used to record signal and then continuously calculate the frequency of cutting signal as well as their dominated frequency. The frequency, calculated from new formula proposed by this work, can represent the frequency trend in each time period. And the chatter prediction rule warns when discover the change of frequency. This essay includes three part of experiment: fixed depth of cut, varying depth of cut and cutting along a curve. Different time-frequency analysis are used to analyze the signal and compare their ability to predict chatter in experiment. The experiment result shows that, through monitoring frequency varying with time, both force and sound can judge the chatter occur when the chatter amplitude is still small.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:17:45Z (GMT). No. of bitstreams: 1
ntu-104-R02522710-1.pdf: 7858516 bytes, checksum: e5045289738fd8429626c871bdea8821 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 xii
1 序論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.2.1 再生式顫振與切削穩定性圖 2
1.2.2 線上監控顫振與切削的異常狀態 5
1.2.3 抑制再生式顫振的方法 7
1.3 研究目的與方法 8
1.4 本文架構 9
2 再生式顫振的相關理論 10
2.1 銑床切削力模型與振動造成的動態力 10
2.2 銑床的方向因子 13
2.3 銑床再生式顫振的閉迴路模型 16
2.4 再生式顫振頻率與加工條件的關係 20
2.4.1 變動軸向切深引發顫振 21
2.4.2 固定軸向切深引發顫振 22
2.5 小結 23
3 代表頻率與線上再生式顫振預測的策略 24
3.1 暫態變化與訊號模擬 24
3.1.1 暫態變化 24
3.1.2 模擬切削的暫態訊號 25
3.2 傅利葉轉換與短時傅立葉轉換 27
3.3 P階代表頻率 31
3.4 預測再生式顫振的執行流程 37
3.4.1 再生式顫振的預測法則 37
3.4.2 執行流程 39
3.5 小結 43
4 實驗設備與方法 44
4.1 實驗目的 44
4.2 實驗設備與材料 44
4.2.1 加工設備與材料 44
4.2.2 量測設備 46
4.3 實驗設備架構 49
4.4 實驗設計與方法 50
4.4.1 加工條件設計 50
4.4.2 訊號擷取參數 52
4.5 再生式顫振的預測法則之程式設計 52
4.6 小結 54
5 實驗結果與分析 55
5.1 實驗結果整理 55
5.1.1 實驗結果概述 55
5.1.2 切削力的時域訊號 60
5.1.3 暫態變化 65
5.2 切削力的時頻分析 67
5.2.1 固定切深的短時傅立葉轉換 67
5.2.2 固定切深的4階代表頻率與離散小波轉換 70
5.2.3 變動切深的短時傅立葉轉換 75
5.2.4 變動切深的4階代表頻率與離散小波轉換 78
5.3 切削中的聲音訊號 83
5.3.1 聲音與力量訊號的比較 83
5.3.2 四階代表頻率與離散小波轉換 90
5.4 曲線加工的再生式顫振預測 97
5.5 實驗結果分析與討論 101
5.6 小結 102
6 結論與未來展望 104
6.1 結論 104
6.2 未來展望 105
7 參考文獻 107
dc.language.isozh-TW
dc.subject再生式顫振zh_TW
dc.subject時頻分析zh_TW
dc.subject代表頻率zh_TW
dc.subject銑削加工zh_TW
dc.subjectrepresentative frequencyen
dc.subjectmillingen
dc.subjectregenerative chatteren
dc.subjecttime-frequency analysisen
dc.titleCNC立式銑削再生式顫振預測之研究zh_TW
dc.titlePrediction of the Regenerative Chatter in Vertical CNC Milling Processen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡曜陽,王世明
dc.subject.keyword銑削加工,再生式顫振,代表頻率,時頻分析,zh_TW
dc.subject.keywordmilling,regenerative chatter,representative frequency,time-frequency analysis,en
dc.relation.page109
dc.rights.note有償授權
dc.date.accepted2015-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
7.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved