請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52528完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林水龍 | |
| dc.contributor.author | Fang-Ling Liao | en |
| dc.contributor.author | 廖芳翎 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:17:33Z | - |
| dc.date.available | 2018-09-25 | |
| dc.date.copyright | 2015-09-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-17 | |
| dc.identifier.citation | 1. Bagshaw, S. M., Bellomo, R., Devarajan, P., Johnson, C., Karvellas, C. J., Kutsiogiannis, D. J., Mehta, R., Pannu, N., Romanovsky, A., Sheinfeld, G., Taylor, S., Zappitelli, M., and Gibney, R. T. (2010) [Review article: Acute kidney injury in critical illness]. Canadian journal of anaesthesia = Journal canadien d'anesthesie 57, 985-998
2. Raj Munshi, C. H., Jonathan Himmelfarb. (2011) Advances in understanding ischemic acute kidney injury. BMC Medicine 3. Sharfuddin, A. A., and Molitoris, B. A. (2011) Pathophysiology of ischemic acute kidney injury. Nature reviews. Nephrology 7, 189-200 4. Sutton, T. A. (2009) Alteration of microvascular permeability in acute kidney injury. Microvascular research 77, 4-7 5. Yang, J. V. B. a. L. (2011) Cellular pathophysiology of ischemic acute kidney injury. The Journal of Clinical Investigation 121, 4210-4221 6. Stroo, I., Stokman, G., Teske, G. J., Raven, A., Butter, L. M., Florquin, S., and Leemans, J. C. (2010) Chemokine expression in renal ischemia/reperfusion injury is most profound during the reparative phase. International immunology 22, 433-442 7. Sutton, T. A., Mang, H. E., Campos, S. B., Sandoval, R. M., Yoder, M. C., and Molitoris, B. A. (2003) Injury of the renal microvascular endothelium alters barrier function after ischemia. American journal of physiology. Renal physiology 285, F191-198 8. Bonventre, J. V. (2010) Mechanisms of Acute Kidney Injury and Repair. 9. Basile, D. P., Friedrich, J. L., Spahic, J., Knipe, N., Mang, H., Leonard, E. C., Changizi-Ashtiyani, S., Bacallao, R. L., Molitoris, B. A., and Sutton, T. A. (2011) Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury. American journal of physiology. Renal physiology 300, F721-733 10. Basile, D. P., Fredrich, K., Chelladurai, B., Leonard, E. C., and Parrish, A. R. (2008) Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor. American journal of physiology. Renal physiology 294, F928-936 11. Kazunori Karasawa, K. A., Shigetaka Moriyama, Mikiko Ushiki, Misa Monya,, Mayumi Iida, E. K., Hideo Yagita, Keiko Uchida, Kosaku Nitta, and, and Tanaka, M. (2015) Vascular-Resident CD169-Positive Monocytes and Macrophages Control Neutrophil Accumulation in the Kidney with Ischemia-Reperfusion Injury. J Am Soc Nephrol 26, 896-906 12. Basile, D. P., Donohoe, D., Roethe, K., and Osborn, J. L. (2001) Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. American journal of physiology. Renal physiology 281, F887-899 13. Wei, Q., and Dong, Z. (2012) Mouse model of ischemic acute kidney injury: technical notes and tricks. American journal of physiology. Renal physiology 303, F1487-1494 14. Singh, A. P., Junemann, A., Muthuraman, A., Jaggi, A. S., Singh, N., Grover, K., and Dhawan, R. (2012) Animal models of acute renal failure. Pharmacological reports : PR 64, 31-44 15. Sanz, A. B., Sanchez-Nino, M. D., Martin-Cleary, C., Ortiz, A., and Ramos, A. M. (2013) Progress in the development of animal models of acute kidney injury and its impact on drug discovery. Expert opinion on drug discovery 8, 879-895 16. Karasawa, K., Asano, K., Moriyama, S., Ushiki, M., Monya, M., Iida, M., Kuboki, E., Yagita, H., Uchida, K., Nitta, K., and Tanaka, M. (2015) Vascular-Resident CD169-Positive Monocytes and Macrophages Control Neutrophil Accumulation in the Kidney with Ischemia-Reperfusion Injury. J Am Soc Nephrol 26, 896-906 17. Molitoris, B. A., Dagher, P. C., Sandoval, R. M., Campos, S. B., Ashush, H., Fridman, E., Brafman, A., Faerman, A., Atkinson, S. J., Thompson, J. D., Kalinski, H., Skaliter, R., Erlich, S., and Feinstein, E. (2009) siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J Am Soc Nephrol 20, 1754-1764 18. Swaminathan, M. (2014) ACT-AKI: A Phase 2 Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial of AC607 for the Treatment of Acute Kidney Injury in Cardiac Surgery Subjects. J Am Soc Nephrol 25, B3 19. Lappin, T. (2003) The cellular biology of erythropoietin receptors. The oncologist 8 Suppl 1, 15-18 20. Weidemann, A., and Johnson, R. S. (2009) Nonrenal regulation of EPO synthesis. Kidney international 75, 682-688 21. Moore, E., and Bellomo, R. (2011) Erythropoietin (EPO) in acute kidney injury. Ann Intensive Care 1, 1-10 22. Chateauvieux, S., Grigorakaki, C., Morceau, F., Dicato, M., and Diederich, M. (2011) Erythropoietin, erythropoiesis and beyond. Biochemical pharmacology 82, 1291-1303 23. Pan, X., Suzuki, N., Hirano, I., Yamazaki, S., Minegishi, N., and Yamamoto, M. (2011) Isolation and characterization of renal erythropoietin-producing cells from genetically produced anemia mice. PloS one 6, e25839 24. Pan, S. Y., Chang, Y. T., and Lin, S. L. (2014) Microvascular pericytes in healthy and diseased kidneys. International journal of nephrology and renovascular disease 7, 39-48 25. Jacobs, K., Shoemaker, C., Rudersdorf, R., Neill, S. D., Kaufman, R. J., Mufson, A., Seehra, J., Jones, S. S., Hewick, R., Fritsch, E. F., and et al. (1985) Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature 313, 806-810 26. Lin, F. K., Suggs, S., Lin, C. H., Browne, J. K., Smalling, R., Egrie, J. C., Chen, K. K., Fox, G. M., Martin, F., Stabinsky, Z., and et al. (1985) Cloning and expression of the human erythropoietin gene. Proceedings of the National Academy of Sciences of the United States of America 82, 7580-7584 27. Bohlius, J., Tonia, T., and Schwarzer, G. (2011) Twist and shout: one decade of meta-analyses of erythropoiesis-stimulating agents in cancer patients. Acta haematologica 125, 55-67 28. Anagnostou, A., Lee, E. S., Kessimian, N., Levinson, R., and Steiner, M. (1990) Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 87, 5978-5982 29. Ferdinand H. Bahlmann, K. d. G., Jens-Michael Spandau, Aimee L. Landry, Barbara Hertel, Thorsten Duckert, Sascha M. Boehm, Jan Menne, Hermann Haller and Danilo Fliser. (2004) Erythropoietin regulates endothelial progenitor cells. Blood 103, 921-926 30. Liu, N., Tian, J., Cheng, J., and Zhang, J. (2013) Effect of erythropoietin on the migration of bone marrow-derived mesenchymal stem cells to the acute kidney injury microenvironment. Experimental cell research 319, 2019-2027 31. Liu, N., Han, G., Cheng, J., Huang, J., and Tian, J. (2013) Erythropoietin promotes the repair effect of acute kidney injury by bone-marrow mesenchymal stem cells transplantation. Experimental biology and medicine 238, 678-686 32. Liu, N., Tian, J., Wang, W., Cheng, J., Hu, D., and Zhang, J. (2011) Effect and mechanism of erythropoietin on mesenchymal stem cell proliferation in vitro under the acute kidney injury microenvironment. Experimental biology and medicine 236, 1093-1099 33. Michael L. Brines, P. G., Sonja Keenan, Davide Agnello, Nihal C. de Lanerolle, Carla Cerami, Loretta M. Itri, and Anthony Cerami. (2000) EPO crosses the blood-brain barrier to protect against experimental brain injury. Proceedings of the National Academy of Sciences of the United States of America 97, 10526-10531 34. Ponce, L. L., Navarro, J. C., Ahmed, O., and Robertson, C. S. (2013) Erythropoietin neuroprotection with traumatic brain injury. Pathophysiology : the official journal of the International Society for Pathophysiology / ISP 20, 31-38 35. Ryou, M. G., Liu, R., Ren, M., Sun, J., Mallet, R. T., and Yang, S. H. (2012) Pyruvate protects the brain against ischemia-reperfusion injury by activating the erythropoietin signaling pathway. Stroke; a journal of cerebral circulation 43, 1101-1107 36. Lipsic, E., van der Meer, P., Henning, R. H., Suurmeijer, A. J., Boddeus, K. M., van Veldhuisen, D. J., van Gilst, W. H., and Schoemaker, R. G. (2004) Timing of erythropoietin treatment for cardioprotection in ischemia/reperfusion. Journal of cardiovascular pharmacology 44, 473-479 37. Santhanam, A. V., d'Uscio, L. V., and Katusic, Z. S. (2010) Cardiovascular effects of erythropoietin an update. Advances in pharmacology 60, 257-285 38. Ardalan, M. R., Estakhri, R., Hajipour, B., Ansarin, K., Asl, N. A., Nasirizade, M. R., Azar, A. N., Ghorbanihaghjou, A., Vatankhah, A. M., and Esmaili, H. A. (2013) Erythropoietin ameliorates oxidative stress and tissue injury following renal ischemia/reperfusion in rat kidney and lung. Medical principles and practice : international journal of the Kuwait University, Health Science Centre 22, 70-74 39. Sharples, E. J., Patel, N., Brown, P., Stewart, K., Mota-Philipe, H., Sheaff, M., Kieswich, J., Allen, D., Harwood, S., Raftery, M., Thiemermann, C., and Yaqoob, M. M. (2004) Erythropoietin protects the kidney against the injury and dysfunction caused by ischemia-reperfusion. J Am Soc Nephrol 15, 2115-2124 40. Vesey, D. A. (2004) Erythropoietin protects against ischaemic acute renal injury. Nephrology Dialysis Transplantation 19, 348-355 41. Caetano, A. M., Vianna Filho, P. T., Castiglia, Y. M., Golim, M. A., de Souza, A. V., de Carvalho, L. R., Deffune, E., de Oliveira, C., and Vianna, P. T. (2011) Erythropoietin attenuates apoptosis after ischemia-reperfusion-induced renal injury in transiently hyperglycemic Wister rats. Transplantation proceedings 43, 3618-3621 42. Hu, L., Yang, C., Zhao, T., Xu, M., Tang, Q., Yang, B., Rong, R., and Zhu, T. (2012) Erythropoietin ameliorates renal ischemia and reperfusion injury via inhibiting tubulointerstitial inflammation. The Journal of surgical research 176, 260-266 43. Yang, C. W., Li, C., Jung, J. Y., Shin, S. J., Choi, B. S., Lim, S. W., Sun, B. K., Kim, Y. S., Kim, J., Chang, Y. S., and Bang, B. K. (2003) Preconditioning with erythropoietin protects against subsequent ischemia-reperfusion injury in rat kidney. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 17, 1754-1755 44. Patel, N. S., Sharples, E. J., Cuzzocrea, S., Chatterjee, P. K., Britti, D., Yaqoob, M. M., and Thiemermann, C. (2004) Pretreatment with EPO reduces the injury and dysfunction caused by ischemia/reperfusion in the mouse kidney in vivo. Kidney international 66, 983-989 45. Ates, E., Yalcin, A. U., Yilmaz, S., Koken, T., and Tokyol, C. (2005) Protective effect of erythropoietin on renal ischemia and reperfusion injury. ANZ journal of surgery 75, 1100-1105 46. Bahlmann, F. H., Song, R., Boehm, S. M., Mengel, M., von Wasielewski, R., Lindschau, C., Kirsch, T., de Groot, K., Laudeley, R., Niemczyk, E., Guler, F., Menne, J., Haller, H., and Fliser, D. (2004) Low-dose therapy with the long-acting erythropoietin analogue darbepoetin alpha persistently activates endothelial Akt and attenuates progressive organ failure. Circulation 110, 1006-1012 47. Johnson, D. W., Pat, B., Vesey, D. A., Guan, Z., Endre, Z., and Gobe, G. C. (2006) Delayed administration of darbepoetin or erythropoietin protects against ischemic acute renal injury and failure. Kidney international 69, 1806-1813 48. Ishii, Y., Sawada, T., Murakami, T., Sakuraoka, Y., Shiraki, T., Shimizu, A., Kubota, K., Fuchinoue, S., and Teraoka, S. (2011) Renoprotective effect of erythropoietin against ischaemia-reperfusion injury in a non-human primate model. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 26, 1157-1162 49. Cassis, P., Gallon, L., Benigni, A., Mister, M., Pezzotta, A., Solini, S., Gagliardini, E., Cugini, D., Abbate, M., Aiello, S., Rocchetta, F., Scudeletti, P., Perico, N., Noris, M., and Remuzzi, G. (2012) Erythropoietin, but not the correction of anemia alone, protects from chronic kidney allograft injury. Kidney international 81, 903-918 50. Ahn, S., Min, S. K., Min, S. I., Suh, J. H., Kim, S. J., and Ha, J. (2012) Early sustained injections of erythropoietin improve angiogenesis and restoration of perfusion in the ischemic mouse hindlimb. Journal of Korean medical science 27, 1073-1078 51. Kang, D. H., Park, E. Y., Yu, E. S., Lee, Y. S., and Yoon, K. I. (2005) Renoprotective effect of erythropoietin (EPO): possibly via an amelioration of renal hypoxia with stimulation of angiogenesis in the kidney. Kidney international 67, 1683 52. Gouva, C., Nikolopoulos, P., Ioannidis, J. P., and Siamopoulos, K. C. (2004) Treating anemia early in renal failure patients slows the decline of renal function: a randomized controlled trial. Kidney international 66, 753-760 53. Oh, S. W., Chin, H. J., Chae, D. W., and Na, K. Y. (2012) Erythropoietin improves long-term outcomes in patients with acute kidney injury after coronary artery bypass grafting. Journal of Korean medical science 27, 506-511 54. Tasanarong, A., Duangchana, S., Sumransurp, S., Homvises, B., and Satdhabudha, O. (2013) Prophylaxis with erythropoietin versus placebo reduces acute kidney injury and neutrophil gelatinase-associated lipocalin in patients undergoing cardiac surgery: a randomized, double-blind controlled trial. BMC nephrology 14, 136 55. Endre, Z. H., Walker, R. J., Pickering, J. W., Shaw, G. M., Frampton, C. M., Henderson, S. J., Hutchison, R., Mehrtens, J. E., Robinson, J. M., Schollum, J. B., Westhuyzen, J., Celi, L. A., McGinley, R. J., Campbell, I. J., and George, P. M. (2010) Early intervention with erythropoietin does not affect the outcome of acute kidney injury (the EARLYARF trial). Kidney international 77, 1020-1030 56. Kim, J. H., Shim, J. K., Song, J. W., Song, Y., Kim, H. B., and Kwak, Y. L. (2013) Effect of erythropoietin on the incidence of acute kidney injury following complex valvular heart surgery: a double blind, randomized clinical trial of efficacy and safety. Critical care 17, R254 57. Pfeffer, M. A., Burdmann, E. A., Chen, C. Y., Cooper, M. E., de Zeeuw, D., Eckardt, K. U., Feyzi, J. M., Ivanovich, P., Kewalramani, R., Levey, A. S., Lewis, E. F., McGill, J. B., McMurray, J. J., Parfrey, P., Parving, H. H., Remuzzi, G., Singh, A. K., Solomon, S. D., Toto, R., and Investigators, T. (2009) A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. The New England journal of medicine 361, 2019-2032 58. Wu, W. T., Hu, T. M., Lin, N. T., Subeq, Y. M., Lee, R. P., and Hsu, B. G. (2010) Low-dose erythropoietin aggravates endotoxin-induced organ damage in conscious rats. Cytokine 49, 155-162 59. SØLling, C., Christensen, A. T., Nygaard, U., Krag, S., FrØKiÆR, J., Wogensen, L., Krog, J., and TØNnesen, E. K. (2011) Erythropoietin does not attenuate renal dysfunction or inflammation in a porcine model of endotoxemia. Acta anaesthesiologica Scandinavica 55, 411-421 60. Okazaki, T., Ebihara, S., Asada, M., Yamanda, S., Niu, K., and Arai, H. (2008) Erythropoietin Promotes the Growth of Tumors Lacking Its Receptor and Decreases Survival of Tumor-Bearing Mice by Enhancing Angiogenesis. Neoplasia 10, 932-939 61. Elliott, S., and Sinclair, A. M. (2012) The effect of erythropoietin on normal and neoplastic cells. Biologics : targets & therapy 6, 163-189 62. Bennett, C. L., Silver, S. M., Djulbegovic, B., Samaras, A. T., Blau, C. A., Gleason, K. J., Barnato, S. E., Elverman, K. M., Courtney, D. M., McKoy, J. M., Edwards, B. J., Tigue, C. C., Raisch, D. W., Yarnold, P. R., Dorr, D. A., Kuzel, T. M., Tallman, M. S., Trifilio, S. M., West, D. P., Lai, S. Y., and Henke, M. (2008) Venous thromboembolism and mortality associated with recombinant erythropoietin and darbepoetin administration for the treatment of cancer-associated anemia. Jama 299, 914-924 63. Lund, A., Lundby, C., and Olsen, N. V. (2014) High-dose erythropoietin for tissue protection. European journal of clinical investigation 44, 1230-1238 64. Vlachopanos, G., Kassimatis, T. I., and Agrafiotis, A. (2015) Perioperative administration of high-dose recombinant human erythropoietin for delayed graft function prevention in kidney transplantation: a meta-analysis. Transplant international : official journal of the European Society for Organ Transplantation 28, 330-340 65. Gobe, G. C., Endre, Z. H., and Johnson, D. W. (2007) Administration of erythropoietin and its derivatives in renal disease: Advantages, mechanisms and concerns. Drug Discovery Today: Therapeutic Strategies 4, 79-84 66. Sawada, K., Krantz, S. B., Dai, C. H., Koury, S. T., Horn, S. T., Glick, A. D., and Civin, C. I. (1990) Purification of human blood burst-forming units-erythroid and demonstration of the evolution of erythropoietin receptors. Journal of cellular physiology 142, 219-230 67. Wickrema, A., Krantz, S. B., Winkelmann, J. C., and Bondurant, M. C. (1992) Differentiation and erythropoietin receptor gene expression in human erythroid progenitor cells. Blood 80, 1940-1949 68. Matthews, D. J., Topping, R. S., Cass, R. T., and Giebel, L. B. (1996) A sequential dimerization mechanism for erythropoietin receptor activation. Proceedings of the National Academy of Sciences of the United States of America 93, 9471-9476 69. Brines, M., Grasso, G., Fiordaliso, F., Sfacteria, A., Ghezzi, P., Fratelli, M., Latini, R., Xie, Q. W., Smart, J., Su-Rick, C. J., Pobre, E., Diaz, D., Gomez, D., Hand, C., Coleman, T., and Cerami, A. (2004) Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proceedings of the National Academy of Sciences of the United States of America 101, 14907-14912 70. Fliser, D., Bahlmann, F. H., and Haller, H. (2006) EPO: renoprotection beyond anemia correction. Pediatric nephrology 21, 1785-1789 71. Hand, C. C., and Brines, M. (2011) Promises and pitfalls in erythopoietin-mediated tissue protection: are nonerythropoietic derivatives a way forward? Journal of investigative medicine : the official publication of the American Federation for Clinical Research 59, 1073-1082 72. Beleslin-Cokic, B. B., Cokic, V. P., Yu, X., Weksler, B. B., Schechter, A. N., and Noguchi, C. T. (2004) Erythropoietin and hypoxia stimulate erythropoietin receptor and nitric oxide production by endothelial cells. Blood 104, 2073-2080 73. Anagnostou, A., Liu, Z., Steiner, M., Chin, K., Lee, E. S., Kessimian, N., and Noguchi, C. T. (1994) Erythropoietin receptor mRNA expression in human endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 91, 3974-3978 74. Um, M., Gross, A. W., and Lodish, H. F. (2007) A 'classical' homodimeric erythropoietin receptor is essential for the antiapoptotic effects of erythropoietin on differentiated neuroblastoma SH-SY5Y and pheochromocytoma PC-12 cells. Cellular signalling 19, 634-645 75. Marti, H. H., Bernaudin, M., Petit, E., and Bauer, C. (2000) Neuroprotection and Angiogenesis: Dual Role of Erythropoietin in Brain Ischemia. News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society 15, 225-229 76. Farrell, F., and Lee, A. (2004) The erythropoietin receptor and its expression in tumor cells and other tissues. The oncologist 9 Suppl 5, 18-30 77. Westenfelder, C., Biddle, D. L., and Baranowski, R. L. (1999) Human, rat, and mouse kidney cells express functional erythropoietin receptors. Kidney international 55, 808-820 78. Elliott, S., Busse, L., Bass, M. B., Lu, H., Sarosi, I., Sinclair, A. M., Spahr, C., Um, M., Van, G., and Begley, C. G. (2006) Anti-Epo receptor antibodies do not predict Epo receptor expression. Blood 107, 1892-1895 79. Elliott, S., Busse, L., Swift, S., McCaffery, I., Rossi, J., Kassner, P., and Begley, C. G. (2012) Lack of expression and function of erythropoietin receptors in the kidney. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 27, 2733-2745 80. Angus M. Sinclair, A. C., Ian McCaffery, Stephen Kaufman, Katherine Paweletz, Liqin Liu, Leigh Busse, Susan Swift, Steven Elliott and C. Glenn Begley. (2010) Functional erythropoietin receptor is undetectable in endothelial, cardiac, neuronal and renal cells. Blood 115 81. Shearer, W. (2003) Biology of common β receptor–signaling cytokines IL-3, IL-5, and GM-CSF. Journal of Allergy and Clinical Immunology 112, 653-665 82. Coldewey, S. M., Khan, A. I., Kapoor, A., Collino, M., Rogazzo, M., Brines, M., Cerami, A., Hall, P., Sheaff, M., Kieswich, J. E., Yaqoob, M. M., Patel, N. S., and Thiemermann, C. (2013) Erythropoietin attenuates acute kidney dysfunction in murine experimental sepsis by activation of the beta-common receptor. Kidney international 84, 482-490 83. Murray, P. J., and Wynn, T. A. (2011) Protective and pathogenic functions of macrophage subsets. Nature reviews. Immunology 11, 723-737 84. Geissmann, F., Manz, M. G., Jung, S., Sieweke, M. H., Merad, M., and Ley, K. (2010) Development of monocytes, macrophages, and dendritic cells. Science 327, 656-661 85. Duffield, J. S. (2010) Macrophages and immunologic inflammation of the kidney. Seminars in nephrology 30, 234-254 86. Lin, S. L., Li, B., Rao, S., Yeo, E. J., Hudson, T. E., Nowlin, B. T., Pei, H., Chen, L., Zheng, J. J., Carroll, T. J., Pollard, J. W., McMahon, A. P., Lang, R. A., and Duffield, J. S. (2010) Macrophage Wnt7b is critical for kidney repair and regeneration. Proceedings of the National Academy of Sciences of the United States of America 107, 4194-4199 87. Lin, S. L., Castano, A. P., Nowlin, B. T., Lupher, M. L., Jr., and Duffield, J. S. (2009) Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. Journal of immunology 183, 6733-6743 88. Biswas, S. K., and Mantovani, A. (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature immunology 11, 889-896 89. Wang, Y., and Harris, D. C. (2011) Macrophages in renal disease. J Am Soc Nephrol 22, 21-27 90. Gordon, S. (2003) Alternative activation of macrophages. Nature reviews. Immunology 3, 23-35 91. Lee, S., Huen, S., Nishio, H., Nishio, S., Lee, H. K., Choi, B. S., Ruhrberg, C., and Cantley, L. G. (2011) Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol 22, 317-326 92. Rogers, N. M., Ferenbach, D. A., Isenberg, J. S., Thomson, A. W., and Hughes, J. (2014) Dendritic cells and macrophages in the kidney: a spectrum of good and evil. Nature reviews. Nephrology 10, 625-643 93. Kitamoto, K., Machida, Y., Uchida, J., Izumi, Y., Shiota, M., Nakao, T., Iwao, H., Yukimura, T., Nakatani, T., and Miura, K. (2009) Effects of liposome clodronate on renal leukocyte populations and renal fibrosis in murine obstructive nephropathy. Journal of pharmacological sciences 111, 285-292 94. Day, Y. J., Huang, L., Ye, H., Linden, J., and Okusa, M. D. (2005) Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: role of macrophages. American journal of physiology. Renal physiology 288, F722-731 95. Jo, S. K., Sung, S. A., Cho, W. Y., Go, K. J., and Kim, H. K. (2006) Macrophages contribute to the initiation of ischaemic acute renal failure in rats. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 21, 1231-1239 96. Sung, S. A., Jo, S. K., Cho, W. Y., Won, N. H., and Kim, H. K. (2007) Reduction of renal fibrosis as a result of liposome encapsulated clodronate induced macrophage depletion after unilateral ureteral obstruction in rats. Nephron. Experimental nephrology 105, e1-9 97. Heinrich, A. C., Pelanda, R., and Klingmuller, U. (2004) A mouse model for visualization and conditional mutations in the erythroid lineage. Blood 104, 659-666 98. Shuei-Liong Lin, B. L., Sujata Rao, Eun-Jin Yeo, Thomas E. Hudson, Brian T. Nowlin, Huaying Pei, Lijun Chen, Jie J. Zheng, Thomas J. Carroll, Jeffrey W. Pollard, Andrew P. McMahon, Richard A. Lang, and Jeremy S. Duffield. (2010) Macrophage Wnt7b is critical for kidney repair and regeneration. PNAS 107, 4194-4199 99. Lifshitz, L., Tabak, G., Gassmann, M., Mittelman, M., and Neumann, D. (2010) Macrophages as novel target cells for erythropoietin. Haematologica 95, 1823-1831 100. Sautina, L., Sautin, Y., Beem, E., Zhou, Z., Schuler, A., Brennan, J., Zharikov, S. I., Diao, Y., Bungert, J., and Segal, M. S. (2010) Induction of nitric oxide by erythropoietin is mediated by the {beta} common receptor and requires interaction with VEGF receptor 2. Blood 115, 896-905 101. Jackson, D. B., Stein, M., Voss, H., Brock, S., Danes, C. G., and Sood, A. (2010) Novel tissue protective erythropoietin receptor (nepor) and methods of use. Google Patents | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52528 | - |
| dc.description.abstract | 促紅血球生成素(erythropoietin, EPO)已普遍用來治療慢性腎臟病患者的貧血。自約西元2000年始便已有研究指出,在急性腎損傷的動物模型中,給予EPO的治療,能夠降低腎臟的損傷程度。但是關於EPO的詳細作用機轉,以及EPO與其受體之間的互動關係,甚至是受體在動物體內的表現情形等,卻遲遲未能有所定論。多數研究報告顯示刺激紅血球生成藥物(erythropoiesis-stimulating agents, ESA)對腎臟損傷有保護效用,但臨床使用顯示,ESA亦有其副作用,例如:提高心血管疾病、高血壓以及腫瘤形成的風險等,若能釐清ESA的作用機制,並找出最適當的投藥時機,或與EPO類似但具更專一性的組織保護分子,或許將能使ESA的效用發揮至最大,並期盼能對急性腎損傷的病患有所幫助。
本實驗選用八至十二週大的C57BL/6公鼠,施予右側腎臟摘除二週後緊接著左側腎臟缺血再灌流手術,做為本實驗的急性腎損傷小鼠模型,並採用不同的EPO投藥劑量與投藥時間點 (術前/術後) 來比較是否會造成療效差異。 另外,先前已有相關研究指出,EPO與不同的受體作用後,可產生兩種不同效果:若與EPOR-EPOR同型二聚體受體結合,會促進紅血球生成;若與EPOR-CSF2Rβ異型二聚體受體結合,則具有組織保護的效果。已知成年期的EPO絕大多數由腎臟血管周邊細胞製造產生,但關於EPO受體在腎臟中的表現與其功能,仍具相當大的爭議,因此成為本研究課題的一部分。 最後,延續林老師與本實驗室先前的研究主題,已知巨噬細胞在小鼠體內具備了不同的表現型,主要可分別為與發炎反應相關的M1型,將於損傷初期大量表現,以及與細胞修復再生相關的M2型,於損傷後期較為活躍,並可根據其細胞激素與趨化因子的表現情形,來辨別此兩種不同的表現型。在實驗室先前的研究中已發現,在小鼠單側輸尿管結紮的慢性腎病變模型中,給予EPO有抑制腎臟纖維化的效果,且應與EPO抑制了巨噬細胞的活化機制有關。因此,在本實驗中欲探究,在小鼠的缺血再灌流性急性腎損傷模型中,給予EPO是否亦能調控巨噬細胞,進而影響急性腎損傷與修復。 本實驗結果顯示,無論是在IRI術前或術後給予EPO,皆未能達到顯著降低腎臟損傷或促進腎功能恢復之療效,而僅提升了部分曾被指出具有促進組織修復功能的基因表現量,例如:Ccl17與Arg-1。另一方面,實驗中亦偵測了兩種EPO受體的表現情形,發現CSF2Rβ在腎臟組織中的表現遠高於EPOR,且CSF2Rβ在腎臟巨噬細胞中的表現會隨著IRI病程的進展而顯著增加,暗示了接下來的實驗可以就腎臟巨噬細胞的CSF2Rβ表現與EPO是否能藉此來調節腎臟巨噬細胞做更進一步的探討。 為了瞭解EPO是否能藉由巨噬細胞上的CSF2Rβ 受體來對其進行調控,我們未來將使用基因轉殖鼠來針對巨噬細胞上的CSF2Rβ 受體做剔除,並加以觀察EPO是否會對此基因轉殖鼠的IRI情形造成影響。若能釐清EPO與巨噬細胞之間的互動關係,或許能藉此找到對於急性腎損傷或是慢性腎臟病患者更佳的治療方針,增加病患福祉。 | zh_TW |
| dc.description.abstract | Erythropoietin (EPO), a kind of the erythropoiesis-stimulating agents (ESAs), is used commonly to correct anemia of chronic kidney disease (CKD) patients. Since the last decade, many studies have shown the protective role of EPO in animal models of acute kidney injury (AKI). However, the precise mechanism of EPO for tissue protection is still not fully understood. Moreover, evidence has shown that EPO administration is accompanied with side effects in clinical practice. For instance, EPO treatment may raise the risk of cardiovascular diseases, hypertension and tumor formation. Nowadays, scientists make efforts to clarify the functioning mechanisms of EPO, to define the most effective dosages or to find the alternative EPO-like molecules with higher specificity than EPO, in order to maximize the benefits of EPO and avoid side effects.
In my experiments, AKI was induced by right nephrectomy followed by ischemia-reperfusion injury (IRI) surgery on left kidney 2 weeks later in 8-to-12-week-old male C57BL/6 mice. EPO was injected subcutaneously at different doses before or after IRI surgery to study whether it can prevent kidney injury or affect the repair and regeneration after kidney injury. On the other hand, it is still not clear about the interaction between EPO and its receptors, which might be EPOR-EPOR homodimer for erythropoiesis or EPOR-CSF2R heterodimer for tissue protection. In adults, EPO is produced mainly from the kidney pericytes, but the expression of EPO receptors in the kidney has not been confirmed. As a result, to detect the EPO receptors in the kidney is one of my goals in this study. In previous studies, Dr. Lin showed that macrophages can differentiate into two subtypes in vivo, which are so-called pro-inflammatory M1 macrophages and pro-reparative M2 macrophages. M1 macrophages will be dramatically increased in the early phase of injury and promote inflammation responses, whereas M2 macrophages are more active during the late phase and are associated with tissue repair and regeneration. Preliminary data in our lab suggested that EPO might ameliorate renal fibrosis in mice induced by unilateral ureteral obstruction (UUO) through inhibiting both subtypes of macrophages. Therefore, the effects of EPO on IRI kidney macrophages was investigated in this study. In present study, our data showed that recombinant human erythropoietin (rHuEPO) administration before or after IRI did not provide beneficial effects on reducing renal injury or promoting functional recovery, though it increased the expression of Ccl17 and Arg-1, which are factors that promote tissue repair and regeneration . On the other hand, the expression of CSF2Rβ was found in kidney and was significantly increased in kidney macrophages after IRI whereas EPOR expression in kidney was low. In an attempt to clarify whether rHuEPO regulates macrophages through CSF2Rβ receptor, we will use the genetic mouse model to specifically knock out CSF2Rβ on kidney macrophages and then evaluate the effects of rHuEPO on renal IRI. The final goal is to delineate the interaction between rHuEPO and macrophages, which might be the potential target cells of rHuEPO in kidney, hoping to find a better strategy of rHuEPO treatment on AKI or CKD patients. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:17:33Z (GMT). No. of bitstreams: 1 ntu-104-R01441009-1.pdf: 1703549 bytes, checksum: 3e64175a38b4ff82b23a6c67e3eba84b (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 摘要 ii
Abstract iv Table of contents vi Table of figures ix List of tables x Chapter 1 Introduction 1 1.1 Ischemia-reperfusion injury 1 1.1.1 Overview 1 1.1.2 Mechanism of acute inflammation, repair and regeneration phase 2 1.1.3 As a model of acute kidney injury 6 1.2 Erythropoietin (EPO) 9 1.2.1 Overview 9 1.2.2 The pleiotropic effects of EPO 10 1.2.3 The expression of EPO receptors in kidney 13 1.3 Macrophages 15 1.3.1 Overview 15 1.3.2 Heterogeneity of different subtypes 17 1.3.3 Macrophage depletion and its effect in AKI 19 1.4 Purpose of study 21 Chapter 2 Materials and methods 22 2.1 Materials 22 2.1.1 Animals 22 2.1.2 Chemicals 23 2.1.3 Buffer 27 2.1.4 Antibodies 29 2.1.5 Instruments 31 2.2 Methods 32 2.2.1 Ischemia-reperfusion injury (IRI) model 32 2.2.2 Experimental design 33 2.2.2 Sample preparation 33 2.2.2.1 Blood plasma sample collection 33 2.2.2.2 Kidney sample collection 33 2.2.2.3 Isolation of kidney macrophages with magnetic beads 33 2.2.2.4 Isolation of bone marrow cells 34 2.2.3 Fluorescence-activated cell sorting (FACS) system 35 2.2.4 RNA extraction and real-time PCR 35 2.2.5 Immunofluorescence staining 36 2.2.6 Statistical analyses 37 Chapter 3 Results 38 3.1 Mouse AKI model of renal ischemia-reperfusion injury (IRI) 38 3.2 The expression of erythropoietin receptor (EPOR) and colony- stimulating factor 2 receptor β (CSF2Rβ) in kidney 38 3.3 Macrophage infiltration and phenotypic change during IRI 40 3.4 rHuEPO pretreatment showed no effect on prevention of the kidneys from IRI 41 3.5 Administration of rHuEPO after AKI had no significant effect on functional recovery after IRI 42 3.6 Macrophage-related gene expression was regulated by rHuEPO. 43 Chapter 4 Discussion 45 4.1 A more faithful model of AKI in our experiments. 45 4.2 The expression of EPO receptors, including EPOR and CSF2Rβ, was quite low in kidney, which may challenge the studies about the benefits of EPO on AKI. 46 4.3 Macrophages play an important role in repair and regeneration of AKI so that whether rHuEPO administration impaired functional recovery of kidney through macrophages regulation was investigated. 46 4.4 Novel candidates of EPO receptor subunits rather than classical EPOR due to its extremely low or undetectable expression in kidney macrophages. 48 Chapter 5 Conclusion and future prospect 49 Chapter 6 References 65 Table of figures Figure 1. The construction of IRI mice model. 50 Figure 2. The expression of EPOR and CSF2Rβ in kidney macrophages. 52 Figure 3. The expression of EPOR and CSF2R in EporGFPCre/+; Rs26fstdTomato/+ mice. 53 Figure 4. EPOR was expressed on kidney macrophages. 54 Figure 5. Phenotypic change of macrophages in IRI kidney. 55 Figure 6. rHuEPO pretreatment did not show significant effects on the prevention of AKI. 57 Figure 7. The effects of rHuEPO administration after IRI at day 6. 58 Figure 8. The effects of rHuEPO administration after IRI at day 10. 59 Figure 9. The effects of rHuEPO administration on IRI kidney macrophages. 60 Figure 10. The effects of rHuEPO on the expression of EPOR and CSF2R in IRI kidney macrophages. 61 List of tables Table 1. Primer sequences for genotyping 62 Table 2. Primer sequences used in real-time PCR 63 | |
| dc.language.iso | en | |
| dc.subject | 促紅血球生成素 | zh_TW |
| dc.subject | 急性腎損傷 | zh_TW |
| dc.subject | 缺血再灌流損傷 | zh_TW |
| dc.subject | CSF2Rβ | zh_TW |
| dc.subject | 巨噬細胞 | zh_TW |
| dc.subject | Ischemia-reperfusion injury (IRI) | en |
| dc.subject | Erythropoietin (EPO) | en |
| dc.subject | Acute kidney injury (AKI) | en |
| dc.subject | Colony-stimulating factor-2 receptor β (CSF2Rβ) | en |
| dc.subject | Macrophages | en |
| dc.title | 促紅血球生成素在缺血再灌流急性腎損傷模型小鼠中的效用與可能的作用機轉 | zh_TW |
| dc.title | The effect of erythropoietin on the mice model of ischemia-reperfusion acute kidney injury and the possible functioning mechanism | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳允升,姜文智 | |
| dc.subject.keyword | 促紅血球生成素,急性腎損傷,缺血再灌流損傷,CSF2Rβ,巨噬細胞, | zh_TW |
| dc.subject.keyword | Erythropoietin (EPO),Acute kidney injury (AKI),Ischemia-reperfusion injury (IRI),Colony-stimulating factor-2 receptor β (CSF2Rβ),Macrophages, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-17 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
