Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52527
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇志杰(Chih-Chieh Su)
dc.contributor.authorYao-Li Changen
dc.contributor.author張堯禮zh_TW
dc.date.accessioned2021-06-15T16:17:32Z-
dc.date.available2015-08-20
dc.date.copyright2015-08-20
dc.date.issued2015
dc.date.submitted2015-08-17
dc.identifier.citation中央氣象局,2015。http://www.cwb.gov.tw/V7/climate/dailyPrecipitation/dP.htm
江崇榮,黃智昭,陳瑞娥,2002。經濟部中央地質調查所彙刊,第15號,17-47頁。
吳樂群,1998。臺灣區地下水觀測網第一期計畫,水文地質調查研究及建檔八十七年度報告,屏東平原沈積物與沈積環境分析及地層對比研究:中央地質調查所,共125 頁。
林清芬,1999。南海及呂宋海峽海水氧同位素組成之研究。國立中山大學海洋地質及化學研究所碩士論文,1-91頁。
林其郁,2012。臺灣地區水體中水氡之空間分布初探。國立臺灣大學海洋研究所碩士論文,1-65頁。
郭慧敏,2004。臺灣海峽水團時空變化之研究。國立中山大學海洋物理研究所碩士論文,1-91頁。
高屏溪流域管理委員會,2007。高屏溪流域整治綱要檢討計畫98-103年規劃報告。經濟部水利署第七河川局,共199頁。
陳松春,2011。臺灣西南海域高屏上部斜坡之逸氣構造和天然氣水合物賦存關係之研究。經濟部中央地質調查所100年度自行研究計畫報告,共112頁。
簡銘成,杜永昌,汪中和,丁澈士,2011。應用氫氧穩定同位素分析地下水補注之研究。農業工程學報,第57期,61-74頁。
經濟部中央地質調查所,2014。屏東平原地下水補注地質敏感區劃定計畫書。經濟部中央地質調查所網站,http://www.moeacgs.gov.tw/newlaw/newlaw.htm。

Burnett, W. C., P. K. Aggarwal, A. Aureli, H. Bokuniewicz, J. E. Cable, M. A. Charette, E. Kontar, S. Krupa, K. M. Kulkarni, A. Loveless, W. S. Moore, J. A. Oberdorfer, J. Oliveira, N. Ozyurt, P. Povinec, A. M. G. Privitera, R. Rajar, R. T. Ramessur, J. Scholten, T. Stieglitz, M. Taniguchi, and J. V. Turner, 2006, Quantifying submarine groundwater discharge in the coastal zone via multiple methods: Science of The Total Environment, v. 367, p. 498-543.
Burnett, W. C., and H. Dulaiova, 2003, Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements: Journal of Environmental Radioactivity, v. 69, p. 21-35.
Cable, J. E., G. C. Bugna, W. C. Burnett, and J. P. Chanton, 1996, Application of 222Rn and CH4 for assessment of groundwater discharge to the coastal ocean: Limnology and Oceanography, v. 41, p. 1347-1353.
Charette, M. A., K. O. Buesseler, and J. E. Andrews, 2001, Utility of radium isotopes for evaluating the input and transport of groundwater‐derived nitrogen to a Cape Cod estuary: Limnology and Oceanography, v. 46, p. 465-470.
Chiu, J., W. Tseng, and C. Liu, 2006, Distribution of gassy sediments and mud volcanoes offshore southwestern Taiwan: Terrestrial Atmospheric and Oceanic Sciences, v. 17, p. 703.
Corbett, D. R., W. C. Burnett, P. H. Cable, and S. B. Clark, 1997, Radon tracing of groundwater input into Par Pond, Savannah River site: Journal of Hydrology, v. 203, p. 209-227.
Dulaiova, H., R. Peterson, W. C. Burnett, and D. Lane-Smith, 2005, A multi-detector continuous monitor for assessment of 222Rn in the coastal ocean: Journal of Radioanalytical and Nuclear Chemistry, v. 263, p. 361-363.
Durridge, 2009, RAD7 radon detector user manual.
Fan, K.-L., and C.-Y. Yu, 1981, A study of water masses in the seas of southernmost Taiwan: Acta Oceanogr. Taiwanica, v. 12, p. 94-111.
Friedman, I., and J. R. O'Neil, 1977, Compilation of stable isotope fractionation factors of geochemical interest, v. 440, USGPO.
Garcia-Solsona, E., J. Garcia-Orellana, P. Masqué, and H. Dulaiova, 2008, Uncertainties associated with 223Ra and 224Ra measurements in water via a Delayed Coincidence Counter (RaDeCC): Marine Chemistry, v. 109, p. 198-219.
Gat, J. R., 1980, The isotopes of hydrogen and oxygen in precipitation, Handbook of environmental isotope geochemistry. Vol. 1, p. 557.
Gat, J. R., and R. Gonfiantini, 1981, Stable isotope hydrology. Deuterium and Oxygen-18 in the water cycle, p. 339.
Gonfiantini, R., 1978, Standards for stable isotope measurements in natural compounds, p. 534-536.
Hancock, G. J., I. T. Webster, P. W. Ford, and W. S. Moore, 2000, Using Ra isotopes to examine transport processes controlling benthic fluxes into a shallow estuarine lagoon: Geochimica et Cosmochimica Acta, v. 64, p. 3685-3699.
Hwang, D.-W., G. Kim, W.-C. Lee, and H.-T. Oh, 2010, The role of submarine groundwater discharge (SGD) in nutrient budgets of Gamak Bay, a shellfish farming bay, in Korea: Journal of Sea Research, v. 64, p. 224-230.
Hwang, D.-W., G. Kim, Y.-W. Lee, and H.-S. Yang, 2005a, Estimating submarine inputs of groundwater and nutrients to a coastal bay using radium isotopes: Marine Chemistry, v. 96, p. 61-71.
Hwang, D. W., Y. W. Lee, and G. Kim, 2005b, Large submarine groundwater discharge and benthic eutrophication in Bangdu Bay on volcanic Jeju Island, Korea: Limnology and Oceanography, v. 50, p. 1393-1403.
Kim, G., and D. W. Hwang, 2002, Tidal pumping of groundwater into the coastal ocean revealed from submarine 222Rn and CH4 monitoring: Geophysical Research Letters, v. 29, p. 23-1-23-4.
Kim, G., J. W. Ryu, H. S. Yang, and S. T. Yun, 2005, Submarine groundwater discharge (SGD) into the Yellow Sea revealed by 228Ra and 226Ra isotopes: Implications for global silicate fluxes: Earth and Planetary Science Letters, v. 237, p. 156-166.
Kopf, A. J., 2002, Significance of mud volcanism: Reviews of Geophysics, v. 40, p. 2-1-2-52.
Lin, I.-T., C.-H. Wang, C.-F. You, S. Lin, K.-F. Huang, and Y.-G. Chen, 2010, Deep submarine groundwater discharge indicated by tracers of oxygen, strontium isotopes and barium content in the Pingtung coastal zone, southern Taiwan: Marine Chemistry, v. 122, p. 51-58.
Liu, Q., M. Dai, W. Chen, C.-A. Huh, G. Wang, Q. Li, and M. Charette, 2011, How significant is submarine groundwater discharge and its associated dissolved inorganic carbon in a river-dominated shelf system-the northern South China Sea?: Biogeosciences Discussions, v. 8, p. 12381-12422.
Majoube, M., 1971, Fractionnement en oxygene-18 et en deuterium entre l’eau et sa vapeur: J. Chim. phys, v. 68, p. 1423-1436.
Merlivat, L., and J. Jouzel, 1979, Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation: Journal of Geophysical Research, v. 84, p. 5029-5033.
Moore, W. S., 1996, Large groundwater inputs to coastal waters revealed by 226Ra enrichments: Nature, v. 380, p. 612-614.
Moore, W. S., 1999, The subterranean estuary: a reaction zone of ground water and sea water: Marine Chemistry, v. 65, p. 111-125.
Moore, W. S., 2003, Sources and fluxes of submarine groundwater discharge delineated by radium isotopes: Biogeochemistry, v. 66, p. 75-93.
Moore, W. S., R. M. Key, and J. L. Sarmiento, 1985, Techniques for precise mapping of 226Ra and 228Ra in the ocean: Journal of Geophysical Research: Oceans (1978–2012), v. 90, p. 6983-6994.
Moore, W. S., and D. F. Reid, 1973, Extraction of radium from natural waters using manganese‐impregnated acrylic fibers: Journal of Geophysical Research, v. 78, p. 8880-8886.
Mulligan, A. E., and M. A. Charette, 2006, Intercomparison of submarine groundwater discharge estimates from a sandy unconfined aquifer: Journal of Hydrology, v. 327, p. 411-425.
Senturk, F., S. Bursali, Y. Omay, I. Ertan, S. Guler, H. Yalcin, and E. Onhan, 1970, Isotope techniques applied to groundwater movement in the Konya plain: Isotope hydrology 1970. Proceedings of a symposium, p. 153-161.
Shaw, P. T., 1989, The intrusion of water masses into the sea southwest of Taiwan: Journal of Geophysical Research: Oceans (1978–2012), v. 94, p. 18213-18226.
South Florida Information Access (SOFIA), 2014, http://sofia.usgs.gov/
Su, C.-C., J.-Y. Tseng, H.-H. Hsu, C.-S. Chiang, H.-S. Yu, S. Lin, and J. T. Liu, 2012, Records of submarine natural hazards off SW Taiwan: Geological Society, London, Special Publications, v. 361, p. 41-60.
Sun, Y., and T. Torgersen, 1998, The effects of water content and Mn-fiber surface conditions on 224Ra measurement by 220Rn emanation: Marine Chemistry, v. 62, p. 299-306.
Surbeck, H., 1996, A radon-in-water monitor based on fast gas transfer membranes: International Conference on Technologically Enhanced Natural Radioactivity (TENR) Caused by Non-Uranium Mining.
Van der Straaten, C., and W. Mook, 1983, Stable isotopic composition of precipitation and climatic variability, Palaeoclimates and Palaeowaters: A collection of environmental isotope studies, p. 53-64.
Wang, C.-H., C.-H. Kuo, T.-R. Peng, W.-F. Chen, T.-K. Liu, C.-J. Chiang, W.-C. Liu, and J.-J. Hung, 2001, Isotope characteristics of Taiwan groundwaters: Western Pacific Earth Sciences, v. 1, p. 415-428.
Xu, B.-c., W. Burnett, D. Lane-Smith, and Z.-g. Yu, 2010, A simple laboratory-based radon calibration system: Journal of radioanalytical and nuclear chemistry, v. 283, p. 457-463.
Yeh, J.-C., and Y. Chung, 1997, 228Ra and 226Ra distributions off north and southwest Taiwan: Terrestrial, Atmospheric and Oceanic Sciences, v. 8, p. 141-154.
Zavialov, P. O., R. C. Kao, V. V. Kremenetskiy, V. I. Peresypkin, C. F. Ding, J. T. Hsu, O. V. Kopelevich, K. A. Korotenko, Y. S. Wu, and P. Chen, 2012, Evidence for submarine groundwater discharge on the Southwestern shelf of Taiwan: Continental Shelf Research, v. 34, p. 18-25.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52527-
dc.description.abstract本研究旨在以放射性同位素示蹤劑估算高屏沿岸海底地下水輸出通量(submarine groundwater discharge, SGD)。在陸域調查方面,2014年於屏東平原的河川及湧泉進行水體採樣工作,而海域調查方面則以海研三號研究船在高屏沿海分別於五月及九月進行兩個航次(OR3-1768以及OR3-1799)採樣工作。
本研究利用同步延時計數計(Delayed Coincidence Counter, RaDeCC)以及RAD7進行短半衰期鐳同位素(224Ra、223Ra)及水氡活度測量。陸域分析結果顯示,水氡能反應短時間區域性的降雨事件,濕季時淺層地下水水氡活度高達26000 dpm/100 L以上,但鐳同位素活度低於4 dpm/100 L。鐳同位素活度受到溶解時間以及地層岩性差異的影響,河水及湧泉的長半衰期的核種活度普遍高於短半衰期核種,惟高屏溪下游在山區降雨增加時224Ra活度明顯上升,其來源可能為地下水因地下水位升高而進入到河水中。海域調查結果顯示,平原區降雨增加會使表層海水的水氡及224Ra活度升高1.5倍,山區降雨則會反應在沿海底層的226Ra活度。
在海底地下水輸出通量估算方面,五月高屏沿岸的輸出主要發生在底部的地層,其輸出通量為26890 m3/day是表層輸出量的五倍;九月則集中在表層的輸出,其通量為981295 m3/day是底層八倍。以放射性同位素估算之SGD流速範圍約為2×10-10-4×10-8 m/sec,滲透係數約為1.1×10-7-2.2×10-5 m/sec,與地調所調查資料中顯示之屏東平原全區透水層的滲透係數範圍10-3-10-6 m/sec相符。
zh_TW
dc.description.abstractThis study aims to estimate the submarine groundwater discharge (SGD) flux in Pingtung coastal zone with radioisotope tracers. For SGD fluxes estimation, radon and radium isotopes in river and estuary waters were measured in dry and wet seasons, and coastal investigations were conducted by using Ocean Researcher 3 in May (OR3-1768) and September (OR3-1799) 2014.
Delayed Coincidence Counter (RaDeCC) and RAD7 instruments were used for measuring the short-lived radium isotopes (224Ra, 223Ra) and 222Rn.
The analysis results of river and spring samples in Pingtung Plain showed the variation of radon-in-water activities may reflect short-term regional rainfall events. In wet season, radon-in-water activities in shallow groundwater can reached up to 26000 dpm/100 L or more. In contrast, the 224Ra activities were less than 4 dpm/100 L. Owing to radium isotopes activities are controlled by the dissolution time and lithology of aquifer, activities of long-lived radionuclides in rivers and springs were generally higher than the short-lived radionuclides. In the downstream of Gaoping River, 224Ra activities are significantly increased with rainfall which implied the deep groundwater input by the rise of water table. Marine investigation results showed the rainfall in plain area will increased activities of radon-in-water and 224Ra in surface waters by 1.5 times, but on the other hand, the variation of 226Ra activities in coastal bottom waters will be reflected on precipitation in mountain range.
In May 2014, the main SGD output occurred in the bottom layer, the estimated flux of SGD is 26890 m3/day, which is five times higher than the surface flux. However, the SGD output in September is mainly on the surface layer, and the flux (981295 m3/day) is eight times higher than the bottom.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:17:32Z (GMT). No. of bitstreams: 1
ntu-104-R02241308-1.pdf: 7029906 bytes, checksum: 71f98274c5e5929195749775935a0ba4 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員審定書 I
致謝 II
摘要 III
Abstract IV
目錄 VI
圖目錄 VIII
表目錄 X
第一章 緒論 1
1-1 前言 1
1-2 研究區域背景 2
1-3 研究目的 9
第二章 研究方法 10
2-1實驗原理 11
2-2儀器介紹 12
2-3實驗方法 17
第三章 實驗結果 28
3-1陸域水體分析結果 28
3-2沿海水體調查結果 34
第四章 討論 49
4-1海底地下水通量計算 49
4-2海底地下水輸出通量計算結果 52
第五章 總結 55
參考文獻 57
附錄一 2013年至2014年陸上採樣位置及分析資料。 65
附錄二 OR3-1768採樣資料及分析結果。 66
附錄三 OR3-1799採樣資料及分析結果。 67
附錄四 高屏沿岸氫氧同位素測量結果 68
dc.language.isozh-TW
dc.title利用水氡及鐳同位素建立高屏沿岸海底湧泉輸出及通量zh_TW
dc.titleEstimating SGD flux in the Pingtung Plain coastal area using Radon and Radium isotopesen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李孟陽(Mon-Young Lee),董家鈞,林殷田
dc.subject.keyword海底地下水,屏東平原,放射性同位素示蹤法,鐳同位素,水氡,zh_TW
dc.subject.keywordPingtung,coastal ocean,submarine groundwater discharge,Radon,Radium,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2015-08-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
6.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved