請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52523
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 龔秀妮(Hsiu-Ni Kung) | |
dc.contributor.author | Yu-Ting Lo | en |
dc.contributor.author | 羅于庭 | zh_TW |
dc.date.accessioned | 2021-06-15T16:17:24Z | - |
dc.date.available | 2020-09-25 | |
dc.date.copyright | 2015-09-25 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-17 | |
dc.identifier.citation | Amptoulach, S., and N. Tsavaris. 2011. Neurotoxicity caused by the treatment with platinum analogues. Chemotherapy research and practice. 2011:843019.
Arany, I., J.K. Megyesi, H. Kaneto, P.M. Price, and R.L. Safirstein. 2004. Cisplatin-induced cell death is EGFR/src/ERK signaling dependent in mouse proximal tubule cells. American journal of physiology. Renal physiology. 287:F543-549. Asher, G., J. Lotem, R. Kama, L. Sachs, and Y. Shaul. 2002. NQO1 stabilizes p53 through a distinct pathway. Proceedings of the National Academy of Sciences of the United States of America. 99:3099-3104. Barth, S., D. Glick, and K.F. Macleod. 2010. Autophagy: assays and artifacts. The Journal of pathology. 221:117-124. Carew, J.S., S.T. Nawrocki, C.N. Kahue, H. Zhang, C. Yang, L. Chung, J.A. Houghton, P. Huang, F.J. Giles, and J.L. Cleveland. 2007. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood. 110:313-322. Cea, M., A. Cagnetta, F. Patrone, A. Nencioni, M. Gobbi, and K.C. Anderson. 2013. Intracellular NAD(+) depletion induces autophagic death in multiple myeloma cells. Autophagy. 9:410-412. Cheung-Ong, K., G. Giaever, and C. Nislow. 2013. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chemistry & biology. 20:648-659. Choi, E.K., K. Terai, I.M. Ji, Y.H. Kook, K.H. Park, E.T. Oh, R.J. Griffin, B.U. Lim, J.S. Kim, D.S. Lee, D.A. Boothman, M. Loren, C.W. Song, and H.J. Park. 2007. Upregulation of NAD(P)H:quinone oxidoreductase by radiation potentiates the effect of bioreductive beta-lapachone on cancer cells. Neoplasia. 9:634-642. Cutts, S.M., A. Nudelman, A. Rephaeli, and D.R. Phillips. 2005. The power and potential of doxorubicin-DNA adducts. IUBMB life. 57:73-81. Deavall, D.G., E.A. Martin, J.M. Horner, and R. Roberts. 2012. Drug-induced oxidative stress and toxicity. Journal of toxicology. 2012:645460. Fagerholm, R., K. Sprott, T. Heikkinen, J. Bartkova, P. Heikkila, K. Aittomaki, J. Bartek, D. Weaver, C. Blomqvist, and H. Nevanlinna. 2013. Overabundant FANCD2, alone and combined with NQO1, is a sensitive marker of adverse prognosis in breast cancer. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. 24:2780-2785. Farber, S. 1949. Some observations on the effect of folic acid antagonists on acute leukemia and other forms of incurable cancer. Blood. 4:160-167. Firat, E., A. Weyerbrock, S. Gaedicke, A.L. Grosu, and G. Niedermann. 2012. Chloroquine or chloroquine-PI3K/Akt pathway inhibitor combinations strongly promote gamma-irradiation-induced cell death in primary stem-like glioma cells. PloS one. 7:e47357. Fu, S.C., Y.P. Chau, K.S. Lu, and H.N. Kung. 2011. beta-lapachone accelerates the recovery of burn-wound skin. Histology and histopathology. 26:905-914. Glick, D., S. Barth, and K.F. Macleod. 2010. Autophagy: cellular and molecular mechanisms. The Journal of pathology. 221:3-12. Goodman, L.S., M.M. Wintrobe, and et al. 1946. Nitrogen mustard therapy; use of methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for Hodgkin's disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. Journal of the American Medical Association. 132:126-132. Hsiang, Y.H., R. Hertzberg, S. Hecht, and L.F. Liu. 1985. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. The Journal of biological chemistry. 260:14873-14878. Hwang, J.H., D.W. Kim, E.J. Jo, Y.K. Kim, Y.S. Jo, J.H. Park, S.K. Yoo, M.K. Park, T.H. Kwak, Y.L. Kho, J. Han, H.S. Choi, S.H. Lee, J.M. Kim, I. Lee, T. Kyung, C. Jang, J. Chung, G.R. Kweon, and M. Shong. 2009. Pharmacological stimulation of NADH oxidation ameliorates obesity and related phenotypes in mice. Diabetes. 58:965-974. Jordan, M.A., and L. Wilson. 2004. Microtubules as a target for anticancer drugs. Nature reviews. Cancer. 4:253-265. Kelland, L. 2007. The resurgence of platinum-based cancer chemotherapy. Nature reviews. Cancer. 7:573-584. Kim, H.J., G.S. Oh, A. Shen, S.B. Lee, S.K. Choe, K.B. Kwon, S. Lee, K.S. Seo, T.H. Kwak, R. Park, and H.S. So. 2014. Augmentation of NAD(+) by NQO1 attenuates cisplatin-mediated hearing impairment. Cell death & disease. 5:e1292. Kim, S.Y., N.H. Jeoung, C.J. Oh, Y.K. Choi, H.J. Lee, H.J. Kim, J.Y. Kim, J.H. Hwang, S. Tadi, Y.H. Yim, K.U. Lee, K.G. Park, S. Huh, K.N. Min, K.H. Jeong, M.G. Park, T.H. Kwak, G.R. Kweon, K. Inukai, M. Shong, and I.K. Lee. 2009. Activation of NAD(P)H:quinone oxidoreductase 1 prevents arterial restenosis by suppressing vascular smooth muscle cell proliferation. Circulation research. 104:842-850. Kim, Y.H., J.H. Hwang, J.R. Noh, G.T. Gang, H. Kim do, H.Y. Son, T.H. Kwak, M. Shong, I.K. Lee, and C.H. Lee. 2011. Activation of NAD(P)H:quinone oxidoreductase ameliorates spontaneous hypertension in an animal model via modulation of eNOS activity. Cardiovascular research. 91:519-527. Kim, Y.H., J.H. Hwang, J.R. Noh, G.T. Gang, S. Tadi, Y.H. Yim, N.H. Jeoung, T.H. Kwak, S.H. Lee, G.R. Kweon, J.M. Kim, M. Shong, I.K. Lee, and C.H. Lee. 2012. Prevention of salt-induced renal injury by activation of NAD(P)H:quinone oxidoreductase 1, associated with NADPH oxidase. Free radical biology & medicine. 52:880-888. Krumbhaar, E.B., and H.D. Krumbhaar. 1919. The Blood and Bone Marrow in Yelloe Cross Gas (Mustard Gas) Poisoning: Changes produced in the Bone Marrow of Fatal Cases. The Journal of medical research. 40:497-508 493. Kung, H.N., M.J. Yang, C.F. Chang, Y.P. Chau, and K.S. Lu. 2008. In vitro and in vivo wound healing-promoting activities of beta-lapachone. American journal of physiology. Cell physiology. 295:C931-943. Kuo, L.J., and L.X. Yang. 2008. Gamma-H2AX - a novel biomarker for DNA double-strand breaks. In vivo. 22:305-309. Lee, J.S., A.H. Park, S.H. Lee, S.H. Lee, J.H. Kim, S.J. Yang, Y.I. Yeom, T.H. Kwak, D. Lee, S.J. Lee, C.H. Lee, J.M. Kim, and D. Kim. 2012. Beta-lapachone, a modulator of NAD metabolism, prevents health declines in aged mice. PloS one. 7:e47122. Li, C.J., C. Wang, and A.B. Pardee. 1995. Induction of apoptosis by beta-lapachone in human prostate cancer cells. Cancer research. 55:3712-3715. Makhlin, I., J. Zhang, C.J. Long, K. Devarajan, Y. Zhou, A.J. Klein-Szanto, M. Huang, J. Chernoff, and S.A. Boorjian. 2011. The mTOR pathway affects proliferation and chemosensitivity of urothelial carcinoma cells and is upregulated in a subset of human bladder cancers. BJU international. 108:E84-90. Marullo, R., E. Werner, N. Degtyareva, B. Moore, G. Altavilla, S.S. Ramalingam, and P.W. Doetsch. 2013. Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PloS one. 8:e81162. Mukhopadhyay, P., B. Horvath, M. Kechrid, G. Tanchian, M. Rajesh, A.S. Naura, A.H. Boulares, and P. Pacher. 2011. Poly(ADP-ribose) polymerase-1 is a key mediator of cisplatin-induced kidney inflammation and injury. Free radical biology & medicine. 51:1774-1788. Munafo, D.B., and M.I. Colombo. 2001. A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. Journal of cell science. 114:3619-3629. Oh, G.S., H.J. Kim, J.H. Choi, A. Shen, S.K. Choe, A. Karna, S.H. Lee, H.J. Jo, S.H. Yang, T.H. Kwak, C.H. Lee, R. Park, and H.S. So. 2014. Pharmacological activation of NQO1 increases NAD(+) levels and attenuates cisplatin-mediated acute kidney injury in mice. Kidney international. 85:547-560. Pabla, N., and Z. Dong. 2008. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney international. 73:994-1007. Pardee, A.B., Y.Z. Li, and C.J. Li. 2002. Cancer therapy with beta-lapachone. Current cancer drug targets. 2:227-242. Park, E.J., K.J. Min, T.J. Lee, Y.H. Yoo, Y.S. Kim, and T.K. Kwon. 2014. beta-Lapachone induces programmed necrosis through the RIP1-PARP-AIF-dependent pathway in human hepatocellular carcinoma SK-Hep1 cells. Cell death & disease. 5:e1230. Pink, J.J., S.M. Planchon, C. Tagliarino, M.E. Varnes, D. Siegel, and D.A. Boothman. 2000. NAD(P)H:Quinone oxidoreductase activity is the principal determinant of beta-lapachone cytotoxicity. The Journal of biological chemistry. 275:5416-5424. Ramesh, G., and W.B. Reeves. 2005. p38 MAP kinase inhibition ameliorates cisplatin nephrotoxicity in mice. American journal of physiology. Renal physiology. 289:F166-174. Rosenberg, B., L. Vancamp, and T. Krigas. 1965. Inhibition of Cell Division in Escherichia Coli by Electrolysis Products from a Platinum Electrode. Nature. 205:698-699. Rybak, L.P., and S. Somani. 1999. Ototoxicity. Amelioration by protective agents. Annals of the New York Academy of Sciences. 884:143-151. Shino, Y., Y. Itoh, T. Kubota, T. Yano, T. Sendo, and R. Oishi. 2003. Role of poly(ADP-ribose)polymerase in cisplatin-induced injury in LLC-PK1 cells. Free radical biology & medicine. 35:966-977. Sui, X., R. Chen, Z. Wang, Z. Huang, N. Kong, M. Zhang, W. Han, F. Lou, J. Yang, Q. Zhang, X. Wang, C. He, and H. Pan. 2013. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell death & disease. 4:e838. Wang, D., and S.J. Lippard. 2005. Cellular processing of platinum anticancer drugs. Nature reviews. Drug discovery. 4:307-320. Wang, J., and G.S. Wu. 2014. Role of autophagy in cisplatin resistance in ovarian cancer cells. The Journal of biological chemistry. 289:17163-17173. Yao, X., K. Panichpisal, N. Kurtzman, and K. Nugent. 2007. Cisplatin nephrotoxicity: a review. The American journal of the medical sciences. 334:115-124. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52523 | - |
dc.description.abstract | DNA損傷藥劑在臨床上被用來做為腫瘤的化學治療藥物已有很長的歷史,cisplatin (CDDP)屬於此類藥物且經常被用來當作第一線治療藥物。Cisplatin結構中含有一個鉑、兩個氨離子以及兩個氯離子,在進入細胞後,cisplatin的氯離子易解離而使得其中的鉑與DNA鹼基發生配位,形成配位結構後,會影響複製叉的形成而導致細胞週期異常。除了傷害細胞核的DNA外,研究中也指出cisplatin會傷害粒線體DNA,導致粒線體無法正常合成電子傳遞鏈上蛋白質,造成細胞內ROS堆積而使細胞走向死亡。基於這樣的機轉,cisplatin在癌細胞的治療上具有很大的潛力;然而,這些損傷的效應不是只有發生在目標癌細胞上,在其他正常組織也會受到影響而導致副作用的產生,因此,降低cisplatin副作用在臨床上是個非常重要的議題。
先前研究顯示,β-lapachone (β-lap)有促進傷口癒合與細胞增生等功效。β-lap在細胞中的活性主要是受到NAD(P)H:quinone dehydrogenase 1 (NQO1) 酵素活性影響,在先前研究中NQO1 酵素被指出可能穩定p53蛋白質,而p53又與核酸穩定有關,因此我們推測NQO1酵素在維持細胞中基因完整性扮演了重要角色。近年來研究指出β-lap可有效改善cisplatin在小鼠上造成的腎臟損傷以及聽力功能受損,基於上述的研究結果,我們推測當正常細胞被給予cisplatin前,利用β-lap預處理可能藉由降低cisplatin對於細胞核DNA及粒線體DNA的損害效應而對細胞具有保護的功效。除了上述機制外,近年來文獻指出,細胞自噬(autophagy)雖然被認為是細胞的保護機制,且可能參與cisplatin的抗藥性,但此現象可能也扮演了促死亡的角色。因此在本篇研究中,我們使用NIH3T3纖維母細胞來進行實驗,檢測β-lap對cisplatin所引致損傷效應之抑制機制,也探討細胞自噬在其中所扮演之角色。 本篇研究結果發現,β-lap有利於挽救cisplatin所造成之細胞死亡並改善cisplatin造成的DNA損傷,也改善cisplatin導致之NAD+/NADH比例下降現象,並具有保護粒線體的功能。除此之外,我們還發現給予細胞cisplatin,與細胞自噬相關蛋白質 LC3BII的表現量及自噬溶小體(autolysosme)染色有明顯上升,而預處理β-lap可抑制LC3BII及自噬溶小體的表現,我們推測細胞自噬可能也和β-lap的保護機制有關,因此,β-lap具有很大的潛力可作為cisplatin治療之保護劑。 | zh_TW |
dc.description.abstract | DNA-damaging agents can be used as chemotherapeutic drugs,which have a long history in clinical use. Cisplatin (CDDP) is categorized as the most popular and the first line chemotherapeutic drug. It has a platinum core with two chloride leaving groups and two amine non-leaving groups. When cisplatin enters cells, the aquation of the leaving groups allows the platinum core to bind to DNA bases. Thus, adducts are formed on the DNA. These structures block the progression of the replication fork and causing cell cycle abnormality. In addition, studies have shown that cisplatin may also form DNA adduct on mitochondria DNA. These structures interfere with the production of the proteins involved in the electron transport chain, therefore, causing mitochondria dysfunction and ROS production. Based on the fact, cisplatin has a promising potential on treating solid tumors. However, the damaging effects not only affect the targeted cancer cells, but also the non-targeted normal tissues. It is important for clinic to discover the solution to this problem.
Previous studies have shown that β-lapachone (β-lap) is effective in proliferation of many types of cells in vitro and promoting wound healing in vivo. The effect of β-lap in cells is tightly relied on the activity of NAD(P)H:quinone dehydrogenase 1 (NQO1), which is shown to involve in the maintenance of chromosomal integrity through p53 stabilization. Moreover, recent studies have reported that β-lap pretreatment ameliorates cisplatin-induced acute kidney injury and hearing impairment. Those evidences imply that it is possible for non-cancer cells to be protected by β-lap, while treating with cisplatin, with blocking the DNA damaging effect of cisplatin on nuclear DNA and mitochondria DNA. In addition to the above-mentioned mechanism, recent studies have shown that despite the protecting role of autophagy in the occurrences of cisplatin-resistance, it may play a pro-death role under certain conditions. In this study, NIH3T3 fibroblast was used as a cell model to investigate the inhibitory mechanisms of β-lap on the damages caused by cisplatin and to explore the role of autophagy. We found that β-lap was effective in rescuing the cisplatin-induced cell death, NAD+/NADH ratio decline and protecting cells from cisplatin-induced DNA damage. Besides, the pretreatment of β-lapachone protected cells from cisplatin-mediated mitochondrial dysfunction. We also discovered a phenomenon that the levels of autophagy markers, LC3BII and MDC fluorescences, were increased by cisplatin treatment, and the increase can be blocked by β-lap. Therefore, autophagy may also play a role in the protecting mechanisms of β-lap. According to the above results, β-lap may be a potential chemoprotective agent in the treatment of cancer. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:17:24Z (GMT). No. of bitstreams: 1 ntu-104-R02446006-1.pdf: 2715513 bytes, checksum: 71413f313cb1c473a1f498469111e668 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口委審定書 i
致 謝 ii 摘要 iii Abstract v 縮寫表 vii 目錄 viii 第一章、緒論 1 一、 引言 1 二、 化療藥物之發展 1 三、 Cisplatin的作用機轉及臨床應用 3 四、 Cisplatin與細胞自噬 (Autophagy)之關係 4 五、 Cisplatin化療之副作用 4 六、 β-lapachone藥理特性及應用 6 七、 研究目的 7 第二章、實驗材料與方法 9 一、 藥品與試劑 9 二、 細胞培養 10 三、 細胞存活率分析 10 四、 西方墨點分析 11 五、 免疫螢光染色 13 六、 細胞自噬性溶酶體染色 13 七、 MTT試驗 13 八、 流式細胞儀分析 13 九、 NAD+/NADH比例分析 14 十、 ATP含量測定 15 十一、 統計分析 15 第三章、實驗結果 16 一、 β-lapachone可減緩cisplatin所造成的細胞死亡 16 二、 Cisplatin在NIH3T3上的DNA損傷效應 16 三、 β-lapachone有助於保護NIH3T3細胞降低cisplatin所造成的DNA損傷 17 四、 β-lapachone降低cisplatin所誘發的PARP1蛋白質過度活化之現象 17 五、 β-lapachone可改善cisplatin造成NIH3T3 NAD+/NADH比例下降之現象 18 六、 β-lapachone可降低cisplatin對於NIH3T3所誘發的Sirt1表現 18 七、 β-lapachone可改善cisplatin所造成之粒線體受損現象 19 八、 β-lapachone可有效降低cisplatin對於NIH3T3所誘發的細胞自噬(autophagy)現象 20 九、 β-lapachone的保護現象不會影響cisplatin毒殺癌細胞之效果 21 第四章、討論 22 一、 簡述 22 二、 NQO1的角色探討 22 三、 NAD+缺失與β-lapachone保護機制之關係 23 四、 Sirt1的蛋白質表現與酵素活性之探討 24 五、 粒線體損傷與ROS之關係探討 24 六、 Cisplatin毒殺細胞之其他機轉 25 七、 細胞自噬的角色探討 25 八、 本研究之應用性 26 第五章、附圖 28 第六章、參考文獻 45 | |
dc.language.iso | zh-TW | |
dc.title | β-lapachone抑制cisplatin對纖維母細胞損傷之機制 | zh_TW |
dc.title | The inhibitory mechanisms of β-lapachone on cisplatin-induced damages in fibroblast | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 周逸鵬(Yat-Pang Chau),許美鈴(Meei-Ling Sheu),王淑慧(Shu-Huei Wang) | |
dc.subject.keyword | β-lapachone,cisplatin,DNA損傷,細胞自噬,NIH3T3, | zh_TW |
dc.subject.keyword | β-lapachone,cisplatin,DNA damage,autophagy,NIH3T3, | en |
dc.relation.page | 48 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-17 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | zh_TW |
顯示於系所單位: | 解剖學暨細胞生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 2.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。