請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52483完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林浩雄(Hao-Hsiung Lin) | |
| dc.contributor.author | Tien-Hao Huang | en |
| dc.contributor.author | 黃天浩 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:16:04Z | - |
| dc.date.available | 2015-08-20 | |
| dc.date.copyright | 2015-08-20 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-17 | |
| dc.identifier.citation | [1] W. J. MoberlyChan, D. P. Adams, M. J. Aziz, G. Hobler, and T. Schenkel, 'Fundamentals of focused ion beam nanostructural processing: Below, at, and above the surface,' Mrs Bulletin, vol. 32, p. 424, May 2007.
[2] G. W. Holloway, Y. P. Song, C. M. Haapamaki, R. R. LaPierre, and J. Baugh, 'Trapped charge dynamics in InAs nanowires,' Journal of Applied Physics, vol. 113, p. 5, Jan 2013. [3] J. Liu, Photonic Devices: Cambridge University Press, 2005. [4] P. YU and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties: Springer, 2010. [5] C. S. R. Rao, S. Sundaram, R. L. Schmidt, and J. Comas, 'Study of ion-implantation damage in GaAs-Be and InP-Be using Raman-scattering,' Journal of Applied Physics, vol. 54, p. 1808, 1983. [6] R. Carles, N. Saintcricq, J. B. Renucci, M. A. Renucci, and A. Zwick, '2nd-Order Raman-scattering in InAs,' Physical Review B, vol. 22, pp. 4804-4815, 1980. [7] L. Artus, R. Cusco, J. Ibanez, J. M. Martin, and G. GonzalezDiaz, 'Raman-scattering criteria for characterization of anneal-restored zinc blende single crystals: Application to Si+-implanted InP,' Journal of Applied Physics, vol. 82, pp. 3736-3739, Oct 1997. [8] Y. B. Li, I. T. Ferguson, R. A. Stradling, and R. Zallen, 'Raman-scattering by plasmon phonon modes in highly doped n-InAs grown by molecular-beam epitaxy,' Semiconductor Science and Technology, vol. 7, pp. 1149-1154, Sep 1992. [9] R. Cusco, J. Ibanez, and L. Artus, 'Raman-scattering study of photoexcited plasma in semiconducting and semi-insulating InP,' Physical Review B, vol. 57, pp. 12197-12206, May 1998. [10] T. A. Tanzer, P. W. Bohn, I. V. Roshchin, L. H. Greene, and J. F. Klem, 'Near-surface electronic structure on InAs(100) modified with self-assembled monolayers of alkanethiols,' Applied Physics Letters, vol. 75, pp. 2794-2796, Nov 1999. [11] K. K. Tiong, P. M. Amirtharaj, F. H. Pollak, and D. E. Aspnes, 'Effects of As+ ion-implantation on the Raman-spectra of GaAs - spatial correlation interpretation,' Applied Physics Letters, vol. 44, pp. 122-124, 1984. [12] J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, 'software: SRIM-2008,' ed, 2008. [13] S. J. Yu, H. Asahi, S. Emura, H. Sumida, S. Gonda, and H. Tanoue, 'Study of Ga ion-implantation damage and annealing effect in Sn-doped InP using Raman-scattering,' Journal of Applied Physics, vol. 66, pp. 856-860, Jul 1989. [14] S. G. Kim, H. Asahi, M. Seta, S. Emura, H. Watanabe, S. Gonda, et al., 'Raman-scattering study on the effects of Ga ion-implantation and subsequent thermal annealing for AlSb grown by molecular-beam epitaxy,' Journal of Applied Physics, vol. 74, pp. 2300-2305, Aug 1993. [15] M. Tamura, 'Damage formation and annealing of ion-implantation in Si,' Materials Science Reports, vol. 6, pp. 141-214, Apr 1991. [16] F. Laruelle, P. Hu, R. Simes, R. Kubena, W. Robinson, J. Merz, et al., 'Implantation enhanced interdiffusion in GaAs/GaAlAs quantum structures,' Journal of Vacuum Science & Technology B, vol. 7, pp. 2034-2038, Nov-Dec 1989. [17] J. W. Mayer, L. Eriksson, and J. A. Davies, Ion implantation in semiconductors, silicon and germanium: Academic Press, 1970. [18] K. A. Grossklaus and J. M. Millunchick, 'Mechanisms of nanodot formation under focused ion beam irradiation in compound semiconductors,' Journal of Applied Physics, vol. 109, p. 11, Jan 2011. [19] J. R. Dennis and E. B. Hale, 'Amorphization of silicon by ion-implantation - homogeneous or heterogeneous nucleation,' Radiation Effects and Defects in Solids, vol. 30, pp. 219-225, 1976. [20] V. Swaminathan and A. T. Macrander, Materials aspects of GaAs and InP based structures: Prentice Hall, 1991. [21] C. Kittel, Introduction to Solid State Physics: Wiley, 2004. [22] L. A. Giannuzzi and F. A. Stevie, Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice: Springer, 2005. [23] S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information: Springer US, 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52483 | - |
| dc.description.abstract | 本論文利用 focus ion beam (FIB) 之離子束對砷化銦表面成像,並使用Raman 量測觀察其破壞的程度。由於從變功率之 Raman 量測原生砷化銦試片,觀察到此砷化銦試片易受到雷射產生之載子影響產生 LO-plasmon couple mode (L-),並觀察到當雷射功率降低至 2 kW/cm2 可排除此信號。接著量測受到 30 keV 之離子束成像之區域,出現受到晶格破壞之影響,產生被破壞的LO信號。使用spatial correlation model 擬合此信號,無論在高注量或低注量下,其correlation length呈現較短且對注量較無變化之趨勢。由於FIB 具有較高電流密度且較短停留時間,同一區域受到離子束破壞較嚴重,除此之外,FIB之加速電壓操作在較低電壓,因此傾向於在表面造成破壞,correlation length 較小。而correlation length 與離子注量較無關係,我們認為在進行離子成像時,因砷化銦之熱導係數較小,局部產生溫度較高,因此有修復晶格之現象。降低離子加速電壓後成像,隨注量變化較明顯,是因晶格受到離子碰撞產生之熱能較少,因此加熱修復晶格效應較小,correlation 變化較劇烈。由破壞區域產生的TO信號隨注量提升,且在高加速電壓下 TO 信號較明顯,原因是在大注量下發生 collision cascade 次數較多,破壞厚度隨注量增加,而較高之加速電壓可破壞之深度較大,因此 TO 信號較大,但是未破壞的 LO 反而在較高加速電壓信號較強。由於表面破壞較少,而在表面釋放熱能較大,因此表層也有未破壞的 LO 信號,整體 LO 信號較強。 | zh_TW |
| dc.description.abstract | In this thesis, the effect of focused ion beam (FIB) imaging on the crystallinity of InAs was investigated by Raman scattering. The as-grown InAs sample shown a LO-plasmon couple mode (L-) at high laser power due to low carrier concentration. We lower the laser power (2 kW/cm2) to avoid this effect. The FIB ion imaging region (beam energy at 30 keV) shown a damaged LO mode, and the spatial correlation model was applied to fit this mode. The fitting result gives a short correlation length characteristic and invariant with ion fluence. We attribute this large damage in InAs surface to the high beam current density and the low dwell time of the FIB imaging process. In addition, low ion energy will prefer to nuclear stopping which will lead to damage the sample. In the other hand, due to the low InAs thermal conductivity, the imaging process also lead to a high local temperature in the imaging region and annihilated the defects, which reduce the relation between fluence and correlation length. Lower the beam energy, the correlation length shows a relation to ion fluence because of the low local temperature which suppresses the effect of annihilated the defects. Moreover, the TO mode intensity from damaged layer increase with fluence due to the collision cascade effect increase the damaged layer thickness. At beam energy of 30 keV , the damaged layer thickness is thicker than that of beam energy of 5 keV/16 keV. However, the undamaged LO at beam energy of 30 keV shows a higher intensity. We attributed to large annihilated defects at surface region which revived the damaged crystallinity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:16:04Z (GMT). No. of bitstreams: 1 ntu-104-R02941042-1.pdf: 2426942 bytes, checksum: c966a537b7aef7f0a512933bd319d70c (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 iv 圖目錄 v 表目錄 viii 1. 簡介 1 1.1. 研究動機 1 1.2. 論文架構 3 2. 實驗儀器簡介 4 2.1. 試片製備 4 2.2. 離子束成像 4 2.3. Raman量測 6 2.3.1. 儀器架設 6 2.3.2. 雷射光點 7 2.3.3. 選擇律的計算 9 3. 結果與討論 10 3.1. 原生砷化銦之 Raman 頻譜 10 3.2. 離子能量30 keV成像之影響 24 3.3. 較低離子成像之影響 35 4. 結論 44 5. 參考資料 45 | |
| dc.language.iso | zh-TW | |
| dc.subject | 離子成像 | zh_TW |
| dc.subject | 拉曼 | zh_TW |
| dc.subject | 聚焦式離子束 | zh_TW |
| dc.subject | 砷化銦 | zh_TW |
| dc.subject | InAs | en |
| dc.subject | focus ion beam | en |
| dc.subject | ion imaging | en |
| dc.subject | Raman | en |
| dc.title | 利用拉曼散射分析聚焦式鎵離子束成像對砷化銦表面造成之影響 | zh_TW |
| dc.title | Raman analysis of Ga+ ion imaging using focus ion beam on InAs bulk surface | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 馮哲川(Zhe-Chuan Feng),陳敏璋(Miin-Jang Chen),胡振國(Jenn-Gwo Hwu) | |
| dc.subject.keyword | 砷化銦,聚焦式離子束,離子成像,拉曼, | zh_TW |
| dc.subject.keyword | InAs,focus ion beam,ion imaging,Raman, | en |
| dc.relation.page | 46 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-17 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
