Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52466
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃建璋
dc.contributor.authorChen-Yu Changen
dc.contributor.author張鎮宇zh_TW
dc.date.accessioned2021-06-15T16:15:35Z-
dc.date.available2018-08-20
dc.date.copyright2015-08-20
dc.date.issued2015
dc.date.submitted2015-08-17
dc.identifier.citation[1] J.-H. Han, H.-J. Kim, L. Sudheendra, S. J. Gee, B. D. Hammock, and I. M. Kennedy, 'Photonic Crystal Lab-On-a-Chip for Detecting Staphylococcal Enterotoxin B at Low Attomolar Concentration,' Analytical Chemistry, vol. 85, pp. 3104-3109, 2013/03/19 2013.
[2] K. Matsubara, S. Kawata, and S. Minami, 'Optical chemical sensor based on surface plasmon measurement,' Applied Optics, vol. 27, pp. 1160-1163, 1988/03/15 1988.
[3] E. C. Wu, J. S. Andrew, L. Cheng, W. R. Freeman, L. Pearson, and M. J. Sailor, 'Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles,' Biomaterials, vol. 32, pp. 1957-1966, 3// 2011.
[4] E. Engvall and P. Perlmann, 'Enzyme-linked immunosorbent assay, ELISA III. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes,' The Journal of Immunology, vol. 109, pp. 129-135, 1972.
[5] D. Rosenblatt, A. Sharon, and A. A. Friesem, 'Resonant grating waveguide structures,' Quantum Electronics, IEEE Journal of, vol. 33, pp. 2038-2059, 1997.
[6] N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, 'Photonic-crystal waveguide biosensor,' Optics Express, vol. 15, pp. 3169-3176, 2007/03/19 2007.
[7] S. Weiss, 'Fluorescence Spectroscopy of Single Biomolecules,' Science, vol. 283, pp. 1676-1683, March 12, 1999 1999.
[8] V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, 'A Porous Silicon-Based Optical Interferometric Biosensor,' Science, vol. 278, pp. 840-843, October 31, 1997 1997.
[9] L. Rindorf and O. Bang, 'Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing,' Journal of the Optical Society of America B, vol. 25, pp. 310-324, 2008/03/01 2008.
[10] B. Liedberg, I. Lundström, and E. Stenberg, 'Principles of biosensing with an extended coupling matrix and surface plasmon resonance,' Sensors and Actuators B: Chemical, vol. 11, pp. 63-72, 3/1/ 1993.
[11] J. Homola, 'On the sensitivity of surface plasmon resonance sensors with spectral interrogation,' Sensors and Actuators B: Chemical, vol. 41, pp. 207-211, 6/30/ 1997.
[12] J. Homola, I. Koudela, and S. S. Yee, 'Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,' Sensors and Actuators B: Chemical, vol. 54, pp. 16-24, 1/25/ 1999.
[13] J. Homola, 'Present and future of surface plasmon resonance biosensors,' Analytical and Bioanalytical Chemistry, vol. 377, pp. 528-539, 2003/10/01 2003.
[14] W. W. Lam, L. H. Chu, C. L. Wong, and Y. T. Zhang, 'A surface plasmon resonance system for the measurement of glucose in aqueous solution,' Sensors and Actuators B: Chemical, vol. 105, pp. 138-143, 3/28/ 2005.
[15] M. Shinn and W. M. Robertson, 'Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,' Sensors and Actuators B: Chemical, vol. 105, pp. 360-364, 3/28/ 2005.
[16] C. J. Choi and B. T. Cunningham, 'Single-step fabrication and characterization of photonic crystal biosensors with polymer microfluidic channels,' Lab on a Chip, vol. 6, pp. 1373-1380, 2006.
[17] N. Ganesh, I. D. Block, and B. T. Cunningham, 'Near ultraviolet-spectral photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,' Applied Physics Letters, vol. 89, p. 023901, 2006.
[18] B. K. Singh and A. C. Hillier, 'Surface Plasmon Resonance Imaging of Biomolecular Interactions on a Grating-Based Sensor Array,' Analytical Chemistry, vol. 78, pp. 2009-2018, 2006/03/01 2006.
[19] N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, et al., 'Enhanced fluorescence emission from quantum dots on a photonic crystal surface,' Nat Nano, vol. 2, pp. 515-520, 08//print 2007.
[20] A. Shalabney and I. Abdulhalim, 'Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation,' Optics Letters, vol. 37, pp. 1175-1177, 2012/04/01 2012.
[21] S. G. Johnson, P. R. Villeneuve, S. Fan, and J. Joannopoulos, 'Linear waveguides in photonic-crystal slabs,' Physical Review B, vol. 62, p. 8212, 2000.
[22] Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. J. R. Baker, et al., 'Real-Time Biomolecular Binding Detection Using a Sensitive Photonic Crystal Biosensor,' Analytical Chemistry, vol. 82, pp. 5211-5218, 2010/06/15 2010.
[23] L. L. Chan, M. Pineda, J. T. Heeres, P. J. Hergenrother, and B. T. Cunningham, 'A General Method for Discovering Inhibitors of Protein−DNA Interactions Using Photonic Crystal Biosensors,' ACS Chemical Biology, vol. 3, pp. 437-448, 2008/07/01 2008.
[24] S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, et al., 'A three-dimensional photonic crystal operating at infrared spectrals,' Nature, vol. 394, pp. 251-253, 07/16/print 1998.
[25] M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, 'Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals,' Lightwave Technology, Journal of, vol. 17, pp. 2096-2112, 1999.
[26] J. Homola, S. S. Yee, and G. Gauglitz, 'Surface plasmon resonance sensors: review,' Sensors and Actuators B: Chemical, vol. 54, pp. 3-15, 1/25/ 1999.
[27] I. Stemmler, A. Brecht, and G. Gauglitz, 'Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,' Sensors and Actuators B: Chemical, vol. 54, pp. 98-105, 1/25/ 1999.
[28] S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, et al., 'Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals,' Physical Review E, vol. 63, p. 056603, 04/11/ 2001.
[29] J. F. Galisteo Lòpez and W. L. Vos, 'Angle-resolved reflectivity of single-domain photonic crystals: Effects of disorder,' Physical Review E, vol. 66, p. 036616, 09/25/ 2002.
[30] A. F. Koenderink and W. L. Vos, 'Light Exiting from Real Photonic Band Gap Crystals is Diffuse and Strongly Directional,' Physical Review Letters, vol. 91, p. 213902, 11/19/ 2003.
[31] B. Cunningham, 'Photonic Crystal Biosensors,' in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, Charlotte, North Carolina, 2005, p. ITuC1.
[32] N. Ganesh, I. D. Block, and B. T. Cunningham, 'Near ultraviolet-spectral photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,' Applied Physics Letters, vol. 89, pp. -, 2006.
[33] L. Chan, S. Gosangari, K. Watkin, and B. Cunningham, 'A label-free photonic crystal biosensor imaging method for detection of cancer cell cytotoxicity and proliferation,' Apoptosis, vol. 12, pp. 1061-1068, 2007/06/01 2007.
[34] L. L. Chan, B. T. Cunningham, P. Y. Li, and D. Puff, 'Self-referenced assay method for photonic crystal biosensors: Application to small molecule analytes,' Sensors and Actuators B: Chemical, vol. 120, pp. 392-398, 1/10/ 2007.
[35] L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, 'Label-free imaging of cancer cells using photonic crystal biosensors and application to cytotoxicity screening of a natural compound library,' Sensors and Actuators B: Chemical, vol. 132, pp. 418-425, 6/16/ 2008.
[36] X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, 'Sensitive optical biosensors for unlabeled targets: A review,' Analytica Chimica Acta, vol. 620, pp. 8-26, 7/14/ 2008.
[37] Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, 'Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal,' Physical Review Letters, vol. 100, p. 013905, 01/10/ 2008.
[38] W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, 'High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,' Sensors and Actuators B: Chemical, vol. 131, pp. 279-284, 4/14/ 2008.
[39] B. Guo, 'Photonic band gap structures of obliquely incident electromagnetic wave propagation in a one-dimension absorptive plasma photonic crystal,' Physics of Plasmas (1994-present), vol. 16, pp. -, 2009.
[40] M. Piliarik and J. Homola, 'Surface plasmon resonance (SPR) sensors: approaching their limits?,' Optics Express, vol. 17, pp. 16505-16517, 2009/09/14 2009.
[41] Y. Wang, J. Dostalek, and W. Knoll, 'Magnetic Nanoparticle-Enhanced Biosensor Based on Grating-Coupled Surface Plasmon Resonance,' Analytical Chemistry, vol. 83, pp. 6202-6207, 2011/08/15 2011.
[42] L. Feuz, F. Höök, and E. Reimhult, 'Design of Intelligent Surface Modifications and Optimal Liquid Handling for Nanoscale Bioanalytical Sensors,' in Intelligent Surfaces in Biotechnology, ed: John Wiley & Sons, Inc., 2012, pp. 71-122.
[43] J.-H. Han, L. Sudheendra, H.-J. Kim, S. J. Gee, B. D. Hammock, and I. M. Kennedy, 'Ultrasensitive On-Chip Immunoassays with a Nanoparticle-Assembled Photonic Crystal,' ACS Nano, vol. 6, pp. 8570-8582, 2012/10/23 2012.
[44] J.-H. Han, H.-J. Kim, L. Sudheendra, E. A. Hass, S. J. Gee, B. D. Hammock, et al., 'Electrophoretic build-up of multi nanoparticle array for a highly sensitive immunoassay,' Biosensors and Bioelectronics, vol. 41, pp. 302-308, 3/15/ 2013.
[45] S. Jahns, Y. Nazirizadeh, B. O. Meyer, M. Gerken, S. B. Gutekunst, and C. Selhuber-Unkel, 'Photometric aptasensor using biofunctionalized photonic crystal slabs,' in Sensors, 2013 IEEE, 2013, pp. 1-3.
[46] V. Konopsky, T. Karakouz, E. Alieva, C. Vicario, S. Sekatskii, and G. Dietler, 'Photonic Crystal Biosensor Based on Optical Surface Waves,' Sensors, vol. 13, pp. 2566-2578, 2013.
[47] R. D. Peterson, B. T. Cunningham, and J. E. Andrade, 'A photonic crystal biosensor assay for ferritin utilizing iron-oxide nanoparticles,' Biosensors and Bioelectronics, vol. 56, pp. 320-327, 6/15/ 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52466-
dc.description.abstract近年來,物聯網逐漸興起,穿戴式裝置及各式建置物聯網所需的感測器需求使的這個領域具有龐大的市場需求。物聯網應用於生物感測器上如食品安全、醫學檢測、藥品測試上,能夠以低成本、高性價比製作而成的感測器相當吸引人。生物感測器如二維光子晶體生物感測器,其量測極限已能到達相當低的物質濃度。唯其使用之量測設備諸如光源及偵測器之價格仍相當高昂,使用低解析度及低成本光源又能維持相當的量測精度為普及生物感測器之重要課題。 本篇論文主要研究於二維光子晶體利用能帶分布圖檢測待測物的折射率。
在第一部分的研究中,我們在矽基板上製作二維光子晶體,以三種不同顏色的色光進行0.002到0.5莫耳濃度區間的葡萄糖水溶液折射率量測。我們將元件置於載台上並且將入射光以固定角度經由光纖照射於光子晶體生物感測器之區域。並以低成本光譜儀收集其反射訊號,以傳統方式量測其反射光譜之角度隨濃度變化、反射光譜之波長隨濃度變化之訊號。 其結果發現我們的二維光子晶體生物感測器以傳統方式之量測分析,在低解析度之光譜儀下其結果並無法反映待測物葡萄糖溶液之折射率。
在第二部分的研究中,我們一樣製做了二維光子晶體在矽基板上,由於二維光子晶體在橫截面上可視為多種不同周期之一維光子晶體,為此我們延續第一部分的實驗,將三種不同顏色的色光照射於裝載0.002到0.5莫耳濃度葡萄糖水溶液的光子晶體生物感測器上,並且將光子晶體生物感測器置於可旋轉之載台上調整其載台角度使入射光照射於不同的一維光子晶體周期上。並延續第一部分的實驗以傳統的角度變化、波長變化以及本篇的研究主題-能帶分布圖進行葡萄糖水溶液的折射率分析。結果發現在低解析度下的傳統方式量測分析,其結果受外在環境干擾嚴重。而光子晶體能帶分布圖則受惠於正規化的數據處理技巧,能不受外在環境影響並且以自校準的方式顯示出個別葡萄糖水溶液的折射率值,我們同時定義出感測器的敏感度和其量測極限,並且得到敏感度和量測之光子晶體周期成正比,量測極限會受到入射光波長影響及待測物本身光吸收率的影響。
zh_TW
dc.description.abstractRecent years, Iot (internet of things) has become a very popular topic in consumer electronics. Wearable device and various of sensors which construct the Iot makes the market have tremendous demand. Iot biosensing application such as food safety, medical and drug testing. It is attractive article of sensor product with cost-effective price. Biosensing technology such as 2 D PhC (photonic crystal) biosensor. The detection limit can reach to watery concentration. Although the high detection limit it reached, the measurement facility such as light source and monochromatic meter are still in high cost. Usage of low resolution detector and low cost light source but sill remain the sufficient precision is an important issue to promote the biosensor to consumer. In this thesis, the anatyle detection via 2 D PhC band diagram is studied.
In the first part, we fabricated the 2 D PhC structure on silicon wafer. Three kinds of LED (light emitting diode) are used to measuring refractive index of glucose solution which the concentration range are 0.002 mole/L to 0.5 mole/L. The device is putting on the stage and fixing the angle of incident light. The LED illuminated the PhC biosensor sensing area via fiber. The reflect signal was collected by the cost-effective spectral meter. The traditional analysis method including angular spectra and spectral analysis was executed. The results found that our 2 D PhC biosensor cannot measure the glucose solution reflective index under the low resolution spectral meter with traditional analysis.
In second part, the same 2 D PhC structure is fabricate on silicon wafer. Multi period grating can be measured by changing the incident direction on 2 D photonic crystal. Thus we extend the experiment in the first part. Measuring the 3 kinds LEDs and changing the glucose solution range from 0.002 mole/L to 0.5mole/L on the PhC biosensor. Changing the grating period by rotating the stage. Also, traditional measurement method employed and the main method in this thesis – band diagram analysis to analyze the reflective index of glucose concentration. Results shows that the traditional measurement method still interfered by noise. The PhC band diagram analysis benefits from the normalize process which can control the noise and presenting the refractive index with self-align rather than water reference. The sensor’s detection limit and sensitivity are also defined. The sensitivity is proportional to PhC period. The detection limit is effected by incident spectral and absorption of analyte.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:15:35Z (GMT). No. of bitstreams: 1
ntu-104-R02941065-1.pdf: 3036411 bytes, checksum: 9da2f4421b9da1fc9863cd3092ff11f3 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
ABSTRACT v
CONTENTS vii
LIST OF FIGURES ix
LIST OF TABLES xi
LIST OF FORMULAS xii
Chapter 1 Introduction 1
1.1 Research background 1
1.2 Biomaterial detection technology 3
1.3 Biomaterial detection via Photonic Crystal band diagram 9
Chapter 2 Analysis of glucose sensing by grating sensor 10
2.1 Preface 10
2.2 Fabrication and measurement of the biodetection 11
2.2.1 Silicon based photonic crystal glucose sensor fabrication 11
2.2.2 Glucose solution preparation 15
2.2.3 Measurement setup 16
2.3 Results and discussions on single period diffraction property of glucose solution 18
2.3.1 Analysis of angular spectra 18
2.3.2 Spectral analysis 20
2.4 Summary 23
Chapter 3 Detection of glucose sensing by PhCs sensor 24
3.1 Preface 24
3.2 Fabrication and Measurement on PhCs biosensor 25
3.2.1 Sensor fabrication 25
3.2.2 Measurement setup 26
3.3 Results and discussions on multidirectional period diffraction property of glucose solution 29
3.3.1 Analysis of angular spectra 29
3.3.2 Spectral analysis 31
3.3.3 Band diagram analysis 33
3.4 Summary 40
Chapter 4 Conclusion 40
REFERENCE 43
dc.language.isoen
dc.subject生物感測器zh_TW
dc.subject葡萄糖zh_TW
dc.subject折射率zh_TW
dc.subject能帶分布圖zh_TW
dc.subject光子晶體zh_TW
dc.subject角度分析zh_TW
dc.subject光譜分析zh_TW
dc.subjectglucoseen
dc.subjectangular spectraen
dc.subjectspectral analysisen
dc.subjectphotonic crystalen
dc.subjectband diagramen
dc.subjectrefractive indexen
dc.subjectbiosensoren
dc.title利用矽基光子晶體感測器分析葡萄糖濃度zh_TW
dc.titleSilicon Based Photonic Crystal biosensors for Glucose Concentration Analysisen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳肇欣,賴韋志,吳育任
dc.subject.keyword生物感測器,角度分析,光譜分析,光子晶體,能帶分布圖,折射率,葡萄糖,zh_TW
dc.subject.keywordbiosensor,angular spectra,spectral analysis,photonic crystal,band diagram,refractive index,glucose,en
dc.relation.page46
dc.rights.note有償授權
dc.date.accepted2015-08-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved