Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52465
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳瑞菁(JUI-CHING WU)
dc.contributor.authorMeng-Sheng Xiaoen
dc.contributor.author蕭孟生zh_TW
dc.date.accessioned2021-06-15T16:15:33Z-
dc.date.available2020-08-26
dc.date.copyright2020-08-26
dc.date.issued2020
dc.date.submitted2020-08-13
dc.identifier.citation1 Hirsh, D., Oppenheim, D. Klass, M. Development of the reproductive system of Caenorhabditis elegans. Developmental Biology 49, 200-219, doi:https://doi.org/10.1016/0012-1606(76)90267-0 (1976).
2 Shakes, D. C. et al. Spermatogenesis-Specific Features of the Meiotic Program in Caenorhabditis elegans. PLOS Genetics 5, e1000611, doi:10.1371/journal.pgen.1000611 (2009).
3 Braun, R. E., Behringer, R. R., Peschon, J. J., Brinster, R. L. Palmiter, R. D. Genetically haploid spermatids are phenotypically diploid. Nature 337, 373-376, doi:10.1038/337373a0 (1989).
4 Flemming, W. CONTRIBUTIONS TO THE KNOWLEDGE OF THE CELL AND ITS VITAL PROCESSES. The Journal of cell biology 25, 3-69 (1965).
5 Bohr, T., Ashley, G., Eggleston, E., Firestone, K. Bhalla, N. Synaptonemal Complex Components Are Required for Meiotic Checkpoint Function in Caenorhabditis elegans. Genetics 204, 987-997, doi:10.1534/genetics.116.191494 (2016).
6 Grill, S. W., Gönczy, P., Stelzer, E. H. K. Hyman, A. A. Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 409, 630-633, doi:10.1038/35054572 (2001).
7 Mito, Y., Sugimoto, A. Yamamoto, M. Distinct developmental function of two Caenorhabditis elegans homologs of the cohesin subunit Scc1/Rad21. Mol Biol Cell 14, 2399-2409, doi:10.1091/mbc.e02-09-0603 (2003).
8 Mikeladze-Dvali, T. et al. Analysis of centriole elimination during C. elegans oogenesis. Development (Cambridge, England) 139, 1670-1679, doi:10.1242/dev.075440 (2012).
9 Huang, J., Wang, H., Chen, Y., Wang, X. Zhang, H. Residual body removal during spermatogenesis in C. elegans requires genes that mediate cell corpse clearance. Development 139, 4613-4622, doi:10.1242/dev.086769 (2012).
10 Conradt, B. Xue, D. Programmed cell death. WormBook, 1-13, doi:10.1895/wormbook.1.32.1 (2005).
11 Sulston, J. E. Horvitz, H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Developmental Biology 56, 110-156, doi:https://doi.org/10.1016/0012-1606(77)90158-0 (1977).
12 Kimble, J. Hirsh, D. The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Developmental Biology 70, 396-417, doi:https://doi.org/10.1016/0012-1606(79)90035-6 (1979).
13 Blanco-Rodríguez, J. Martínez-García, C. Apoptosis Is Physiologically Restricted to a Specialized Cytoplasmic Compartment in Rat Spermatids. Biology of Reproduction 61, 1541-1547, doi:10.1095/biolreprod61.6.1541 (1999).
14 Gartner, A., Boag, P. R. Blackwell, T. K. Germline survival and apoptosis. WormBook, 1-20, doi:10.1895/wormbook.1.145.1 (2008).
15 Gumienny, T. L., Lambie, E., Hartwieg, E., Horvitz, H. R. Hengartner, M. O. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 126, 1011 (1999).
16 Ward, S., Argon, Y. Nelson, G. A. Sperm morphogenesis in wild-type and fertilization-defective mutants of Caenorhabditis elegans. The Journal of cell biology 91, 26-44, doi:10.1083/jcb.91.1.26 (1981).
17 L'Hernault, S. W., Benian, G. M. Emmons, R. B. Genetic and molecular characterization of the Caenorhabditis elegans spermatogenesis-defective gene spe-17. Genetics 134, 769-780 (1993).
18 Chu, D. S. et al. Sperm chromatin proteomics identifies evolutionarily conserved fertility factors. Nature 443, 101-105, doi:10.1038/nature05050 (2006).
19 L'Hernault, S. W. Spermatogenesis. WormBook, 1-14, doi:10.1895/wormbook.1.85.1 (2006).
20 Shaye, D. D. Greenwald, I. OrthoList: a compendium of C. elegans genes with human orthologs. PLoS One 6, e20085-e20085, doi:10.1371/journal.pone.0020085 (2011).
21 Priti, A. et al. Syncytial germline architecture is actively maintained by contraction of an internal actomyosin corset. Nature Communications 9, 4694, doi:10.1038/s41467-018-07149-2 (2018).
22 Wolf, N., Hirsh, D. McIntosh, J. R. Spermatogenesis in males of the free-living nematode, Caenorhabditis elegans. Journal of Ultrastructure Research 63, 155-169, doi:https://doi.org/10.1016/S0022-5320(78)80071-9 (1978).
23 Wolke, U., Jezuit, E. A. Priess, J. R. Actin-dependent cytoplasmic streaming in C. elegans oogenesis. Development 134, 2227-2236, doi:10.1242/dev.004952 (2007).
24 Nadarajan, S., Govindan, J. A., McGovern, M., Hubbard, E. J. A. Greenstein, D. MSP and GLP-1/Notch signaling coordinately regulate actomyosin-dependent cytoplasmic streaming and oocyte growth in C. elegans. Development (Cambridge, England) 136, 2223-2234, doi:10.1242/dev.034603 (2009).
25 Maddox, A. S., Habermann, B., Desai, A. Oegema, K. Distinct roles for two C. elegans anillins in the gonad and early embryo. Development 132, 2837-2848, doi:10.1242/dev.01828 (2005).
26 Robison, W. G. MICROTUBULES IN RELATION TO THE MOTILITY OF A SPERM SYNCYTIUM IN AN ARMORED SCALE INSECT. The Journal of Cell Biology 29, 251, doi:10.1083/jcb.29.2.251 (1966).
27 Dym, M. Fawcett, D. W. Further Observations on the Numbers of Spermatogonia, Spermatocytes, and Spermatids Connected by Intercellular Bridges in the Mammalian Testis1. Biology of Reproduction 4, 195-215, doi:10.1093/biolreprod/4.2.195 (1971).
28 Carvalho, A., Desai, A. Oegema, K. Structural Memory in the Contractile Ring Makes the Duration of Cytokinesis Independent of Cell Size. Cell 137, 926-937, doi:https://doi.org/10.1016/j.cell.2009.03.021 (2009).
29 Fawcett, D. W., Ito, S. Slautterback, D. The occurrence of intercellular bridges in groups of cells exhibiting synchronous differentiation. J Biophys Biochem Cytol 5, 453-460, doi:10.1083/jcb.5.3.453 (1959).
30 Nelson, G. A., Roberts, T. M. Ward, S. Caenorhabditis elegans spermatozoan locomotion: amoeboid movement with almost no actin. The Journal of cell biology 92, 121-131, doi:10.1083/jcb.92.1.121 (1982).
31 Hu, J. et al. Distinct roles of two myosins in C. elegans spermatid differentiation. PLOS Biology 17, e3000211, doi:10.1371/journal.pbio.3000211 (2019).
32 Wloka, C. Bi, E. Mechanisms of cytokinesis in budding yeast. Cytoskeleton 69, 710-726, doi:10.1002/cm.21046 (2012).
33 de Arruda, M. V., Watson, S., Lin, C. S., Leavitt, J. Matsudaira, P. Fimbrin is a homologue of the cytoplasmic phosphoprotein plastin and has domains homologous with calmodulin and actin gelation proteins. Journal of Cell Biology 111, 1069-1079, doi:10.1083/jcb.111.3.1069 (1990).
34 Laukaitis, C. M., Webb, D. J., Donais, K. Horwitz, A. F. Differential Dynamics of α5 Integrin, Paxillin, and α-Actinin during Formation and Disassembly of Adhesions in Migrating Cells. Journal of Cell Biology 153, 1427-1440, doi:10.1083/jcb.153.7.1427 (2001).
35 Dayel, M. J. Mullins, R. D. Activation of Arp2/3 complex: addition of the first subunit of the new filament by a WASP protein triggers rapid ATP hydrolysis on Arp2. PLoS biology 2, E91-E91, doi:10.1371/journal.pbio.0020091 (2004).
36 Chan, F.-Y. et al. The ARP2/3 complex prevents excessive formin activity during cytokinesis. Mol Biol Cell 30, 96-107, doi:10.1091/mbc.E18-07-0471 (2019).
37 Bray, D. White, J. G. Cortical flow in animal cells. Science 239, 883, doi:10.1126/science.3277283 (1988).
38 Carvalho, K. et al. Actin polymerization or myosin contraction: two ways to build up cortical tension for symmetry breaking. Philos Trans R Soc Lond B Biol Sci 368, 20130005-20130005, doi:10.1098/rstb.2013.0005 (2013).
39 Yang, F., Wei, Q., Adelstein, R. S. Wang, P. J. Non-muscle myosin IIB is essential for cytokinesis during male meiotic cell divisions. Developmental Biology 369, 356-361, doi:https://doi.org/10.1016/j.ydbio.2012.07.011 (2012).
40 Steinhauer, J. Separating from the pack: Molecular mechanisms of Drosophila spermatid individualization. Spermatogenesis 5, e1041345, doi:10.1080/21565562.2015.1041345 (2015).
41 Fang, X. et al. Biphasic targeting and cleavage furrow ingression directed by the tail of a myosin II. The Journal of cell biology 191, 1333-1350, doi:10.1083/jcb.201005134 (2010).
42 Wloka, C. et al. Immobile myosin-II plays a scaffolding role during cytokinesis in budding yeast. The Journal of cell biology 200, 271-286, doi:10.1083/jcb.201208030 (2013).
43 Karasmanis, E. P. et al. A Septin Double Ring Controls the Spatiotemporal Organization of the ESCRT Machinery in Cytokinetic Abscission. Current Biology 29, 2174-2182.e2177, doi:https://doi.org/10.1016/j.cub.2019.05.050 (2019).
44 An, H., Morrell, J. L., Jennings, J. L., Link, A. J. Gould, K. L. Requirements of fission yeast septins for complex formation, localization, and function. Mol Biol Cell 15, 5551-5564, doi:10.1091/mbc.e04-07-0640 (2004).
45 Gatti, M., Giansanti, M. G. Bonaccorsi, S. Relationships between the central spindle and the contractile ring during cytokinesis in animal cells. Microscopy Research and Technique 49, 202-208, doi:Doi 10.1002/(Sici)1097-0029(20000415)49:2<202::Aid-Jemt13>3.0.Co;2-8 (2000).
46 Avino, P. P., Savoian, M. S. Glover, D. M. Cleavage furrow formation and ingression during animal cytokinesis: a microtubule legacy. Journal of Cell Science 118, 1549, doi:10.1242/jcs.02335 (2005).
47 Capalbo, L. et al. Coordinated regulation of the ESCRT-III component CHMP4C by the chromosomal passenger complex and centralspindlin during cytokinesis. Open Biol 6, 160248, doi:10.1098/rsob.160248 (2016).
48 Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71-94 (1974).
49 Wu, J. C. et al. Sperm development and motility are regulated by PP1 phosphatases in Caenorhabditis elegans. Genetics 190, 143-157, doi:10.1534/genetics.111.135376 (2012).
50 Howe, M., McDonald, K. L., Albertson, D. G. Meyer, B. J. Him-10 Is Required for Kinetochore Structure and Function on Caenorhabditis elegans Holocentric Chromosomes. The Journal of Cell Biology 153, 1227-1238, doi:10.1083/jcb.153.6.1227 (2001).
51 Seidel, H. S. et al. C. elegans germ cells divide and differentiate in a folded tissue. Developmental Biology 442, 173-187, doi:https://doi.org/10.1016/j.ydbio.2018.07.013 (2018).
52 Douglas, L. M., Alvarez, F. J., McCreary, C. Konopka, J. B. Septin function in yeast model systems and pathogenic fungi. Eukaryot Cell 4, 1503-1512, doi:10.1128/EC.4.9.1503-1512.2005 (2005).
53 Neubauer, K. Zieger, B. The Mammalian Septin Interactome. Front Cell Dev Biol 5, 3-3, doi:10.3389/fcell.2017.00003 (2017).
54 Klebig, C., Korinth, D. Meraldi, P. Bub1 regulates chromosome segregation in a kinetochore-independent manner. The Journal of cell biology 185, 841-858, doi:10.1083/jcb.200902128 (2009).
55 Miller, H. E., Larson, C. L. Heinzen, R. A. Actin polymerization in the endosomal pathway, but not on the Coxiella-containing vacuole, is essential for pathogen growth. PLoS Pathog 14, e1007005-e1007005, doi:10.1371/journal.ppat.1007005 (2018).
56 Straight, A. F. et al. Dissecting Temporal and Spatial Control of Cytokinesis with a Myosin II Inhibitor. Science 299, 1743, doi:10.1126/science.1081412 (2003).
57 Kachur, T. M., Audhya, A. Pilgrim, D. B. UNC-45 is required for NMY-2 contractile function in early embryonic polarity establishment and germline cellularization in C. elegans. Developmental Biology 314, 287-299, doi:https://doi.org/10.1016/j.ydbio.2007.11.028 (2008).
58 Nguyen, T. Q., Sawa, H., Okano, H. White, J. G. The C. elegans septin genes, unc-59 and unc-61, are required for normal postembryonic cytokineses and morphogenesis but have no essential function in embryogenesis. Journal of Cell Science 113, 3825 (2000).
59 Kim, D.-W. et al. Differential physiological roles of ESCRT complexes in Caenorhabditis elegans. Mol Cells 31, 585-592, doi:10.1007/s10059-011-1045-z (2011).
60 Frankel, E. B. et al. Ist1 regulates ESCRT-III assembly and function during multivesicular endosome biogenesis in Caenorhabditis elegans embryos. Nature Communications 8, 1439, doi:10.1038/s41467-017-01636-8 (2017).
61 Mishima, M., Kaitna, S. Glotzer, M. Central Spindle Assembly and Cytokinesis Require a Kinesin-like Protein/RhoGAP Complex with Microtubule Bundling Activity. Developmental Cell 2, 41-54, doi:10.1016/S1534-5807(01)00110-1 (2002).
62 Lekomtsev, S. et al. Centralspindlin links the mitotic spindle to the plasma membrane during cytokinesis. Nature 492, 276-279, doi:10.1038/nature11773 (2012).
63 Carlton, J. G. Martin-Serrano, J. Parallels Between Cytokinesis and Retroviral Budding: A Role for the ESCRT Machinery. Science 316, 1908, doi:10.1126/science.1143422 (2007).
64 Zhou, K., Rolls, M. M. Hanna-Rose, W. A postmitotic function and distinct localization mechanism for centralspindlin at a stable intercellular bridge. Developmental Biology 376, 13-22, doi:https://doi.org/10.1016/j.ydbio.2013.01.020 (2013).
65 Jantsch-Plunger, V. et al. CYK-4: A Rho family gtpase activating protein (GAP) required for central spindle formation and cytokinesis. The Journal of cell biology 149, 1391-1404, doi:10.1083/jcb.149.7.1391 (2000).
66 Hickson, G. R. X. o Farrell, P. H. Rho-dependent control of anillin behavior during cytokinesis. The Journal of Cell Biology 180, 285 - 294 (2008).
67 Piekny, A. J. Glotzer, M. Anillin Is a Scaffold Protein That Links RhoA, Actin, and Myosin during Cytokinesis. Current Biology 18, 30-36, doi:https://doi.org/10.1016/j.cub.2007.11.068 (2008).
68 Paschal, B. M., Shpetner, H. S. Vallee, R. B. MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties. Journal of Cell Biology 105, 1273-1282, doi:10.1083/jcb.105.3.1273 (1987).
69 Vallee, R. B., Wall, J. S., Paschal, B. M. Shpetner, H. S. Microtubule-associated protein 1C from brain is a two-headed cytosolic dynein. Nature 332, 561-563, doi:10.1038/332561a0 (1988).
70 Applewhite, D. A., Grode, K. D., Duncan, M. C. Rogers, S. L. The actin-microtubule cross-linking activity of Drosophila Short stop is regulated by intramolecular inhibition. Mol Biol Cell 24, 2885-2893, doi:10.1091/mbc.E12-11-0798 (2013).
71 Slep, K. C. et al. Structural determinants for EB1-mediated recruitment of APC and spectraplakins to the microtubule plus end. The Journal of cell biology 168, 587-598, doi:10.1083/jcb.200410114 (2005).
72 Preciado López, M. et al. Actin-microtubule coordination at growing microtubule ends. Nature communications 5, 4778-4778, doi:10.1038/ncomms5778 (2014).
73 Volkov, V. A. et al. Long tethers provide high-force coupling of the Dam1 ring to shortening microtubules. Proc Natl Acad Sci U S A 110, 7708-7713, doi:10.1073/pnas.1305821110 (2013).
74 Laan, L. et al. Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. Cell 148, 502-514, doi:10.1016/j.cell.2012.01.007 (2012).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52465-
dc.description.abstract在雄性生殖細胞的發展過程中,源自同一精母細胞發展出來的精細胞會在共享的細胞質中完成減數分裂。這個特殊分裂過程存在許多的物種當中,從線蟲、小鼠乃至人類都能夠發現類似模式。目前對於精子是如何調控細胞膜結構去維持細胞相連的機制仍不清楚。我們首先觀察線蟲的雄性減數分裂過程中肌動球蛋白所形成的動態結構。在第一次減數分裂末期,連接兩個次級精母細胞的細胞間橋有著很強的肌動蛋白以及肌球蛋白的信號。 接著在第二次減數分裂要開始的時候,肌動球蛋白的信號會集中聚集在兩個單套精細胞間形成假裂溝的位置。 在第二次減數分裂要結束的時候,兩次減數分裂所產生的細胞膜凹陷都會鬆開形成殘餘體,肌動球蛋白的信號會展開在殘餘體的成形的周圍,在四個正在產生的精細胞與殘餘體連接處可以看到較強的肌動球蛋白信號。 利用肌動蛋白抑制劑去影響肌動蛋白的功能,會發現兩次減數分裂都無法產生細胞膜的凹陷。 有趣的是在剛完成第一次分裂的精母細胞中,抑制肌動蛋白的功能會導致兩個次級精母細胞之間的膜完全分裂。 這些結果顯示出肌動蛋白能夠在雄性減數分裂的過程中支撐細胞間橋的結構。
在抑制肌動蛋白的實驗當中,我們還發現到染色體的分離也受到了肌動蛋白的影響。雖然在紡錘絲型態與染色體分離調控蛋白定位都沒有受到明顯地影響,兩次減數分裂染色體的分離速率卻明顯的降低,甚至染色體也會出現分離後合併的現象。
我們的研究結果顯示的雄性減數分裂過程中,肌動蛋白能夠在分離細胞質成分的同時,藉由維持細胞膜的結構讓精母細胞在減數分裂分裂期間保持合胞體的型態。 而肌動蛋白結構對於雄性減數分裂染色體的分離也相當重要。
zh_TW
dc.description.abstractIn the male reproductive system, spermatids derived from the same spermatocyte share the cytoplasm pool before maturation. This unique process is conserved in most species from nematode to mammals. It is unclear how these syncytial morphologies are regulated. We examined the dynamics of actomyosin network during male meiotic divisions in C. elegans. At the end of meiosis I, two secondary spermatocytes remain connected through an intercellular bridge that is highly enriched with actin and myosin. Such structure is relaxed when the anaphase II begins, as the actomyosin enriches at the position between two haploid spermatids and forms pseudo-cleavage furrow. At the end of meiosis II, all the furrows generated in the two division events would be released, and strong actomyosin signal can be observed at the base of four growing spermatids. After the spermatids are budded off, the remaining cytoplasm is enclosed as the residual body. Inhibition of actin dynamics showed failure of the furrow ingression in both meiosis I and meiosis II spermatocytes. Interestingly, in spermatocytes that have just complete first division, inhibition of actin dynamics causes bisection of the membrane between the two secondary spermatocytes. These results suggest actin maintains the structure of intracellular bridge during male meiotic divisions. Additionally, we found inhibition of actin dynamics perturbed chromosome segregation during male meiotic divisions. Although spindle morphology and key chromosome segregation regulators were properly localized, inhibition of membrane activities causes significantly reduced chromosome segregation rate in both division events, and separating chromosomes tend to collapse back. Taken together, our data reveal that actin plays crucial roles in maintaining membrane structure for separating cytoplasmic components and yet remain syncytium during male meiotic divisions. Such structures are important for proper segregation of chromosomes during the two separation events.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:15:33Z (GMT). No. of bitstreams: 1
U0001-0608202017320800.pdf: 3835151 bytes, checksum: 0642d6e7ccd73d803b89642d7dabb257 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
Introduction 1
Materials and methods 11
C. elegans strains 11
Phalloidin staining 11
Time-lapse imaging 12
Live staining and Pharmacological treatments. 12
Microfluidics 13
Evaluation of chromosome segregation defect 13
Result 15
Distribution of actin cytoskeleton during spermatogenesis in C. elegans 15
F-actin assemble at ingression furrow at anaphase I and spermatid budding formation. 16
Actomyosin cytoskeleton participates in membrane deformation during meiotic divisions. 17
F-actin are required for the initiation of all cleavage furrow ingression. 19
The intercellular bridge requires dynamics actin to prevent completely bisected. 20
Precise Latrunculin treatment to spermatocytes in microfluidic system 21
Septin is not the main factor in bisecting cell membrane during male meiotic division 22
Inhibition of membrane dynamics results in chromosome segregation defects 24
F-actin structure interruption has no notable effect on spindle morphology, chromosome segregation kinase and kinetochore dynamics 25
Discussion 28
Three different reagents were used for visualization of actin in the spermatogenic germline of C. elegans. 28
Myosin participates in membrane activities during cytokinesis 29
Precise Latrunculin treatment would provide detailed function of actin in microfluidic system 30
Septin and ESCRT complex are important for cell abscission 31
Centralspindlin interact with the ESCRT III for membrane abscission 32
Actin structure is important for proper chromosome segregation. 33
Figure 35
Figure 1. The stages of the male meiosis division in C. elegans 35
Figure 2. Distribution of F-actin structure in C. elegans germline 36
Figure 3. Distribution of F-actin during C. elegans male meiotic divisions 37
Figure 4. The dynamics of actin and myosin during meiotic division. 38
Figure 5. Actin disruption affects membrane dynamics during male meiotic divisions 40
Figure 6. The actomyosin ring is disassembled at the intercellular bridge when the latrunculin-treated primary spermatocytes became complete bisected. 41
Figure 7. Precise treatment of Latrunculin to spermatocytes in microfluidic system. 42
Figure 8. Septin is not the main factor in bisecting cell membrane during male meiotic division. 43
Figure 9. Analysis of the chromosome segregation dynamics in the presence of Latrunculin A. 45
Figure 10. Dynamics of chromosome segregation machinery in actin inhibition. 47
Table 49
Table 1. C. elegans strains in this study 49
Appendix 50
Figure S1. Two antibodies were used for visualization of actin in the spermatogenic germline of C. elegans. 50
Figure S2. Distribution of centralspindlin complex during C. elegans male meiotic divisions. 51
Reference 52
dc.language.isoen
dc.subject雄性減數分裂zh_TW
dc.subject微管zh_TW
dc.subject肌動蛋白zh_TW
dc.subject染色體分離zh_TW
dc.subject細胞間橋zh_TW
dc.subject細胞裂溝zh_TW
dc.subjectmicrotubuleen
dc.subjectactinen
dc.subjectmale meiotic divisionen
dc.subjectcleavage furrowen
dc.subjectintercellular bridgeen
dc.subjectchromosome segregationen
dc.title以線蟲為模型探討肌動凝蛋白在雄性減數分裂的細胞膜動態以及染色體分離的角色zh_TW
dc.titleThe role of actomyosin dynamics in membrane activities and chromosome segregation during male meiotic divisions in C. elegansen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳益群(Yi-Chun Wu),蔡欣祐(Hsin-Yue Tsai),郭靜穎(Ching-Ying Kuo),王齡玉(Ling-Yu Wang)
dc.subject.keyword肌動蛋白,雄性減數分裂,細胞裂溝,細胞間橋,染色體分離,微管,zh_TW
dc.subject.keywordactin,male meiotic division,cleavage furrow,intercellular bridge,chromosome segregation,microtubule,en
dc.relation.page63
dc.identifier.doi10.6342/NTU202002566
dc.rights.note有償授權
dc.date.accepted2020-08-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
U0001-0608202017320800.pdf
  未授權公開取用
3.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved