請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52459完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李伯訓 | |
| dc.contributor.author | Yi-Ting Chen | en |
| dc.contributor.author | 陳伊婷 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:15:23Z | - |
| dc.date.available | 2020-09-24 | |
| dc.date.copyright | 2015-09-24 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-17 | |
| dc.identifier.citation | [1] Hollick EJ, Spalton DJ, Ursell PG, Pande MV. Biocompatibility of poly(methyl methacrylate), silicone, and AcrySof intraocular lenses: Randomized comparison of the cellular reaction on the anterior lens surface. Journal of Cataract Refractive Surgery. 1998;24:361-6. [2] Abar F, Abadyan M, Aghazade J. Effects of surface quality and loading history on fatigue life of laser-machined poly(methyl methacrylate). Materials Design. 2015;65:473-81. [3] Thean JH, McNab AA. Blepharoptosis in RGP and PMMA hard contact lens wearers. Clinical Experimental optometry : Journal of the Australian Optometrical Association. 2004;87:11-4. [4] Sheafi EM, Tanner KE. Effects of test sample shape and surface production method on the fatigue behaviour of PMMA bone cement. Journal of the Mechanical Behavior of Biomedical Materials. 2014;29:91-102. [5] Feretis C, Benakis P, Dimopoulos C, Dailianas A, Filalithis P, Stamou KM, et al. Endoscopic implantation of Plexiglas (PMMA) microspheres for the treatment of GERD. Gastrointestinal Endoscopy. 2001;53:423-6. [6] Narva KK, Lassila LV, Vallittu PK. The static strength and modulus of fiber reinforced denture base polymer. Dental Materials. 2005;21:421-8. [7] Gong SQ, Epasinghe DJ, Zhou B, Niu L-n, Kimmerling KA, Rueggeberg FA, et al. Effect of water-aging on the antimicrobial activities of an ORMOSIL-containing orthodontic acrylic resin. Acta Biomaterialia. 2013;9:6964-73. [8] Raja TA, Littlewood SJ, Munyombwe T, Bubb NL. Wear resistance of four types of vacuum-formed retainer materials: A laboratory study. The Angle Orthodontist. 2014;84:656-64. [9] Salehi P, Najafi HZ, Roeinpeikar SM. Comparison of survival time between two types of orthodontic fixed retainer: a prospective randomized clinical trial. Progress in Orthodontis. 2013;14:25. [10] Foek DLS, Yetkiner E, Özcan M. Fatigue resistance, debonding force, and failure type of fiber-reinforced composite, polyethylene ribbon-reinforced, and braided stainless steel wire lingual retainers in vitro. The Korean Journal of Orthodontics. 2013;43:186-92. [11] Haddad MF, Goiato MC, Santos DMd, Crepaldi NdM, Pesqueira AA, Bannwart LC. Bond strength between acrylic resin and maxillofacial silicone. Journal of Applied Oral Science. 2012;20:649-54. [12] Song J, Thurber CM, Kobayashi S, Baker AM, Macosko CW, Silvis HC. Blends of polyolefin/PMMA for improved scratch resistance, adhesion and compatibility. Polymer. 2012;53:3636-41. [13] Cicero S, Madrazo V, Carrascal IA. Analysis of notch effect in PMMA using the Theory of Critical Distances. Engineering Fracture Mechanics. 2012;86:56-72. [14] Riedewald F. Bacterial adhesion to surfaces: the influence of surface roughness. PDA journal of Pharmaceutical Science and Technology. 2006;60:164-71. [15] Chang CC, Merritt K. Microbial adherence on poly(methyl methacrylate) (PMMA) surfaces. Journal of Biomedical Materials Research. 1992;26:197-207. [16] Kim J, Amar S. Periodontal disease and systemic conditions: a bidirectional relationship. Odontology. 2006;94:10-21. [17] Filloux A, Vallet I. Biofilm: set-up and organization of a bacterial community. Medecine Sciences. 2003;19:77-83. [18] Parsek MR, Fuqua C. Biofilms 2003: emerging themes and challenges in studies of surface-associated microbial life. Journal of Bacteriology. 2004;186:4427-40. [19] Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annual Review of Microbiology. 2002;56:187-209. [20] Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials. 2012;33:5967-82. [21] Monroe D. Looking for chinks in the armor of bacterial biofilms. PLoS Biology. 2007;5:2458-61. [22] Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews. 2002;15:167-93. [23] Park A, Jeong HH, Lee J, Kim K, Lee CS. Effect of shear stress on the formation of bacterial biofilm in a microfluidic channel. BioChip Journal. 2011;5:236-41. [24] Van Landuyt KL, Snauwaert J, Peumans M, De Munck J, Lambrechts P, Van Meerbeek B. The role of HEMA in one-step self-etch adhesives. Dental Materials. 2008;24:1412-9. [25] Jones DS, Lorimer CP, McCoy CP, Gorman SP. Characterization of the physicochemical, antimicrobial, and drug release properties of thermoresponsive hydrogel copolymers designed for medical device applications. Journal of Biomedical Materials Research Part B, Applied Biomaterials. 2008;85:417-26. [26] Tsou TL, Tang ST, Huang YC, Wu JR, Young JJ, Wang HJ. Poly(2-hydroxyethyl methacrylate) wound dressing containing ciprofloxacin and its drug release studies. Journal of Materials Science: Materials in Medicine. 2005;16:95-100. [27] McArthur SL, McLean KM, St. John HAW, Griesser HJ. XPS and surface-MALDI-MS characterisation of worn HEMA-based contact lenses. Biomaterials. 2001;22:3295-304. [28] Mabilleau G, Moreau MF, Filmon R, Basle MF, Chappard D. Biodegradability of poly (2-hydroxyethyl methacrylate) in the presence of the J774.2 macrophage cell line. Biomaterials. 2004;25:5155-62. [29] Paranjpe A, Bordador LC, Wang MY, Hume WR, Jewett A. Resin monomer 2-hydroxyethyl methacrylate (HEMA) is a potent inducer of apoptotic cell death in human and mouse cells. Journal of Dental Research. 2005;84:172-7. [30] Schweikl H, Spagnuolo G, Schmalz G. Genetic and cellular toxicology of dental resin monomers. Journal of Dental Research. 2006;85:870-7. [31] Schwengberg S, Bohlen H, Kleinsasser N, Kehe K, Seiss M, Walther UI, et al. In vitro embryotoxicity assessment with dental restorative materials. Journal of Dentistry. 2005;33:49-55. [32] Hogt AH, Dankert J, Feijen J. Adhesion of coagulase-negative staphylococci to methacrylate polymers and copolymers. Journal of Biomedical Materials Research. 1986;20:533-45. [33] Todar K. Todar's Online Textbook of Bacteriology. 2008. Kenneth Todar University of Wisconsin-Madison Department of Bacterology.2011. p. 1-5. [34] Fejerskov O, Kidd E. Dental caries: the disease and its clinical management. 2nd ed: John Wiley Sons, Inc; 2009. p. 200-2. [35] Bakaletz LO. Developing animal models for polymicrobial diseases. Nature Reviews Microbiology. 2004;2:552-68. [36] Scannapieco FA. Saliva-bacterium interactions in oral microbial ecology. Critical Reviews in Oral Biology and Medicine. 1994;5:203-48. [37] Nicolas P, Mor A. Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annual Review of Microbiology. 1995;49:277-304. [38] Lode HM. Clinical impact of antibiotic-resistant Gram-positive pathogens. Clinical Microbiology and Infection. 2009;15:212-7. [39] Pereira Gonzales F, Maisch T. XF drugs: A new family of antibacterials. Drug News Perspectives. 2010;23:167-74. [40] Yang C, Ding X, Ono RJ, Lee H, Hsu LY, Tong YW, et al. Brush-like polycarbonates containing dopamine, cations, and PEG providing a broad-spectrum, antibacterial, and antifouling surface via one-step coating. Advanced Materials. 2014;26:7346-51. [41] Ng A, Chan C, Guo M, Leung Y, Djurišić A, Hu X, et al. Antibacterial and photocatalytic activity of TiO2 and ZnO nanomaterials in phosphate buffer and saline solution. Applied Microbiology Biotechnology. 2013;97:5565-73. [42] Siedenbiedel F, Tiller JC. Antimicrobial polymers in solution and on Surfaces: overview and functional principles. Polymers. 2012;4:46-71. [43] Vu B, Chen M, Crawford R, Ivanova E. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules. 2009;14:2535-2554. [44] Sutherland IW. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology. 2001;147:3-9. [45] Sutherland IW. Novel and established applications of microbial polysaccharides. Trends in Biotechnology. 1998;16:41-6. [46] Cerning J. Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Le Lait. 1995;75:463-72. [47] Donlan RM. Biofilms: microbial life on surfaces. Emerging Infectious Diseases. 2002;8:881-90. [48] Flemming HC, Wingender J. Relevance of microbial extracellular polymeric substances (EPSs)--Part I: Structural and ecological aspects. Water Science and Technology. 2001;43:1-8. [49] Mayer C, Moritz R, Kirschner C, Borchard W, Maibaum R, Wingender J, et al. The role of intermolecular interactions: studies on model systems for bacterial biofilms. International Journal of Biological Macromolecules. 1999;26:3-16. [50] Van Hullebusch E, Zandvoort M, Lens PL. Metal immobilisation by biofilms: mechanisms and analytical tools. Reviews in Environmental Science and Biotechnology. 2003;2:9-33. [51] Romani AM, Fund K, Artigas J, Schwartz T, Sabater S, Obst U. Relevance of polymeric matrix enzymes during biofilm formation. Microbial Ecology. 2008;56:427-36. [52] Ruas-Madiedo P, Hugenholtz J, Zoon P. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. International Dairy Journal. 2002;12:163-71. [53] Priyanka S, Chandana K, Rakhi C. Oleanolic acid and ursolic acid in cell cultures of Lantana Camara L. and their activity against Streptococcus mutans. Research Journal of Biotechnology Special Issue. 2008;361-5. [54] Mukasa H, Slade HD. Mechanism of adherence of Streptococcus mutans to smooth surfaces I. Roles of insoluble dextran-levan synthetase enzymes and cell wall polysaccharide antigen in plaque formation. Infection and Immunity. 1973;8:555-62. [55] Gibbons RJ, Fitzgerald RJ. Dextran-induced agglutination of streptococcus mutans, and its potential role in the formation of microbial dental plaques. Journal of Bacteriology. 1969;98:341-6. [56] Staat RH, Gawronski TH, Schachtele CF. Detection and preliminary studies on dextranase-producing microorganisms from human dental plaque. Infection and Immunity. 1973;8:1009-16. [57] Madi NS, Harvey LM, Mehlert A, McNeil B. Synthesis of two distinct exopolysaccharide fractions by cultures of the polymorphic fungus Aureobasidium pullulans. Carbohydrate Polymers. 1997;32:307-14. [58] Koo H, Hayacibara MF, Schobel BD, Cury JA, Rosalen PL, Park YK, et al. Inhibition of streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. Journal of Antimicrobial Chemotherapy. 2003;52:782-9. [59] Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Analytical Chemistry. 1956;28:350-6. [60] Laurentin A, Edwards CA. A microtiter modification of the anthrone-sulfuric acid colorimetric assay for glucose-based carbohydrates. Analytical Biochemistry. 2003;315:143-5. [61] Huebsch N, Mooney DJ. Inspiration and application in the evolution of biomaterials. Nature. 2009;462:426-32. [62] Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428:487-92. [63] Hu L-X, He J, Hou L, Wang H, Li J, Xie C, et al. Biological evaluation of the copper/low-density polyethylene nanocomposite intrauterine device. PLoS ONE. 2013;8:e74128. [64] Schmalz G. Use of cell cultures for toxicity testing of dental materials—advantages and limitations. Journal of Dentistry. 1994;22, Supplement 2:S6-S11. [65] Pepys J. Types of allergic reaction. Clinical Experimental Allergy. 1973;3:491-506. [66] Magnusson B, Kligman AM. The identification of contact allergens by animal assay: the guinea pig maximization test1. The Journal of Investigative Dermatology. 1969;52:268-76. [67] Prinsen MK, Romijn T, Snoeij NJ. Skin sensitization testing: the relevance of rechallenge and pretreatment with sodium lauryl sulfate in the guinea pig maximization test. Food and Chemical Toxicology. 1997;35:923-6. [68] Tang XJ, Li LY, Huang JX, Deng YY. Guinea pig maximization test for trichloroethylene and its metabolites. Biomedical and Environmental Sciences. 2002;15:113-8. [69] Jorge JH, Giampaolo ET, Machado AL, Vergani CE. Cytotoxicity of denture base acrylic resins: a literature review. The Journal of Prosthetic Dentistry. 2003;90:190-3. [70] Lefebvre CA, Knoernschild KL, Schuster GS. Cytotoxicity of eluates from light-polymerized denture base resins. Journal of Prosthetic Dentisry. 1994;72:644-50. [71] Harsanyi BB, Foong WC, Howell RE, Hidi P, Jones DW. Hamster cheek-pouch testing of dental soft polymers. Journal of Dental Research. 1991;70:991-6. [72] Okita N, Ørstavik D, Ørstavik J, Østby K. In vivo and in vitro studies on soft denture materials: microbial adhesion and tests for antibacterial activity. Dental Materials. 1991;7:155-60. [73] Scarano A, Piattelli M, Caputi S, Favero GA, Piattelli A. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. Journal of Periodontology. 2004;75:292-6. [74] Frencken JE, Imazato S, Toi C, Mulder J, Mickenautsch S, Takahashi Y, et al. Antibacterial effect of chlorhexidine- containing glass ionomer cement in vivo: a pilot study. Caries Research. 2007;41:102-7. [75] Imazato S. Bio-active restorative materials with antibacterial effects: new dimension of innovation in restorative dentistry. Dental Materials Journal. 2009;28:11-9. [76] Beyth N, Yudovin-Farber I, Perez-Davidi M, Domb AJ, Weiss EI. Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo. Proceedings of the National Academy of Sciences of the United States of America. 2010;107:22038-43. [77] Gong SQ, Epasinghe J, Rueggeberg FA, Niu LN, Mettenberg D, Yiu CK, et al. An ORMOSIL-containing orthodontic acrylic resin with concomitant improvements in antimicrobial and fracture toughness properties. PLoS ONE. 2012;7:e42355. [78] Berridge MV, Herst PM, Tan AS. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnology Annual Review. 2005;11:127-52. [79] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods. 1983;65:55-63. [80] Hurwitz G, Guillen GR, Hoek EMV. Probing polyamide membrane surface charge, zeta potential, wettability, and hydrophilicity with contact angle measurements. Journal of Membrane Science. 2010;349:349-57. [81] Temmel S, Kern W, Luxbacher T. Zeta potential of photochemically modified polymer surfaces. Characterization of polymer surfaces and thin films. Polymer Science. 2006;132: 54-61. [82] Carpenter G, Cotroneo E, Moazzez R, Rojas-Serrano M, Donaldson N, Austin R, et al. Composition of enamel pellicle from dental erosion patients. Caries Research. 2014;48:361-7. [83] Liu S, Zhao J, Ruan H, Wang W, Wu T, Cui W, et al. Antibacterial and anti-adhesion effects of the silver nanoparticles-loaded poly (l-lactide) fibrous membrane. Materials Science and Engineering C. 2013;33:1176-82. [84] Azmeera V, Adhikary P, Krishnamoorthi S. Synthesis and characterization of graft copolymer of dextran and 2-acrylamido-2-methylpropane sulphonic acid. International Journal of Carbohydrate Chemistry. 2012;2012:7. [85] Yoshikawa C, Goto A, Tsujii Y, Ishizuka N, Nakanishi K, Fukuda T. Surface interaction of well-defined, concentrated poly(2-hydroxyethyl methacrylate) brushes with proteins. Journal of Polymer Science Part A: Polymer Chemistry. 2007;45:4795-803. [86] Schwender N, Huber K, Marrawi FA, Hannig M, Ziegler C. Initial bioadhesion on surfaces in the oral cavity investigated by scanning force microscopy. Applied Surface Science. 2005;252:117-22. [87] Dickson JS, Koohmaraie M. Cell surface charge characteristics and their relationship to bacterial attachment to meat surfaces. Applied and Environmental Microbiology. 1989;55:832-6. [88] Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology. 2010;2:1-16. [89] Rzhepishevska O, Hakobyan S, Ruhal R, Gautrot J, Barbero D, Ramstedt M. The surface charge of anti-bacterial coatings alters motility and biofilm architecture. Biomaterials Science. 2013;1:589-602. [90] Park SE, Periathamby AR, Loza JC. Effect of surface-charged poly(methyl methacrylate) on the adhesion of candida albicans. Journal of Prosthodontics. 2003;12:249-54. [91] Rendueles O, Kaplan JB, Ghigo JM. Antibiofilm polysaccharides. Enviroment Microbiology. 2012;15:334-46. [92] Totani M, Ando T, Terada K, Terashima T, Kim IY, Ohtsuki C, et al. Utilization of star-shaped polymer architecture in the creation of high-density polymer brush coatings for the prevention of platelet and bacteria adhesion. Biomaterials Science. 2014;2:1172-85. [93] Zhao C, Li L, Wang Q, Yu Q, Zheng J. Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces. Langmuir. 2011;27:4906-13. [94] Bello A, Quinn MM, Perry MJ, Milton DK. Characterization of occupational exposures to cleaning products used for common cleaning tasks--a pilot study of hospital cleaners. Environmental Health : A Global Access Science Source. 2009;8:11. [95] Warshaw EM, Ahmed RL, Belsito DV, DeLeo VA, Fowler JF, Jr., Maibach HI, et al. Contact dermatitis of the hands: cross-sectional analyses of North American contact dermatitis group data, 1994-2004. Journal of the American Academy of Dermatology. 2007;57:301-14. [96] Mason DW, Dallman MJ, Arthur RP, Morris PJ. Mechanisms of Allograft Rejection: the roles of cytotoxic T-cells and delayed-type hypersensitivity. Immunological Reviews. 1984;77:167-84. [97] Donlan RM. Biofilm Formation: A clinically relevant microbiological process. Clinical Infectious Diseases. 2001;33:1387-92. [98] D'Ercole S, Di Giulio M, Grande R, Di Campli E, Di Bartolomeo S, Piccolomini R, et al. Effect of 2-hydroxyethyl methacrylate on Streptococcus spp. biofilms. Letters in Applied Microbiology. 2011;52:193-200. [99] Lindstedt M, Allenmark S, Thompson RA, Edebo L. Antimicrobial activity of betaine esters, quaternary ammonium amphiphiles which spontaneously hydrolyze into nontoxic components. Antimicrobial Agents Chemotherapy. 1990;34:1949-54. [100] Kugler R, Bouloussa O, Rondelez F. Evidence of a charge-density threshold for optimum efficiency of biocidal cationic surfaces. Microbiology. 2005;151:1341-8. [101] Nikitkova AE, Haase EM, Scannapieco FA. Taking the Starch out of Oral Biofilm Formation: Molecular Basis and Functional Significance of Salivary α-Amylase Binding to Oral Streptococci. Applied and Environmental Microbiology. 2013;79:416-23. [102] Black JG. Microbiology: principles and explorations. 7th ed: John Wiley Sons, Inc.; 2008. p. 81-2. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52459 | - |
| dc.description.abstract | 聚甲基丙烯酸甲酯主要應用於牙科矯正維持器及假牙基底樹酯,因口內微生物環境複雜,易使微生物貼附於聚甲基丙烯酸甲酯形成生物膜,造成齲齒及牙周病,故其表面的改質為學者們所致力的目標。我們發現將2-甲基丙烯酸羥基乙酯以熱處理方式接枝於聚甲基丙烯酸甲酯可抗細菌貼附且具生物相容性,但其抗貼附機制和真正應用於人類口腔內是否有效仍不明確。 本論文我們將藉由薄膜界面電位分析儀和胞外多醣體酚-硫酸法探討聚甲基丙烯酸甲酯(PMMA)以及表面接枝2-甲基丙烯酸羥基乙酯之聚甲基丙烯酸甲酯(PMMA-HEMA)表面電位影響細菌貼附情形以及細菌貼附於表面上所必需分泌的胞外多醣體多寡,並且也將PMMA和PMMA-HEMA進行臨床試驗,藉由共軛焦顯微鏡和電子顯微鏡去觀察口腔內細菌貼附於試片表面上的情況以及活菌和死菌的比例。 結果顯示PMMA-HEMA的表面電位比PMMA較為帶負電,且因細菌的胞外膜為負電,能使其表面與細菌外膜有相斥的作用。此外經過細菌培養後萃取PMMA-HEMA表面細菌所分泌的胞外多醣體,測得的量也微乎其微。顯示其表面可抗細菌貼附而無胞外多醣體沾黏於表面上,所以細菌無法彼此聚集形成生物膜。臨床試驗中也發現PMMA-HEMA表面的細菌貼附量比PMMA少,故使用熱處理接枝HEMA於PMMA表面上應用於人體口腔內仍有抗細菌貼附的效果。 | zh_TW |
| dc.description.abstract | Polymethyl methacrylate (PMMA) is mainly used in orthodontic removable retainer and denture base resin. Because intraoral microorganism environment is complex, microorganisms easily attach to PMMA and form biofilm. Uncontrolled accumulation of bacteria and fungal biofilms on or surrounding dental devices may contribute to dental caries and periodontal disease. Surface modification on polymeric materials and control of microbial infections are a very important issue in modern society. We found that 2-hydroxyethyl methacrylate (HEMA) grafted onto heat-treated PMMA could decrease bacteria adhesion and possess biocompatibility. However, it is still unclear about PMMA-HEMA’s antiadhesion mechanism and application in human oral cavity. In this study, the zeta potential of PMMA and PMMA-HEMA surfaces and extracellular polysaccharides produced by bacteria were evaluated by electro-kinetic analyzer (EKA) and phenol-sulfuric acid method. Furthermore, the PMMA and PMMA-HEMA antibacterial adhesion clinical trial was observed by confocal laser scanning microscope and scanning electron microscopy. We analyzed the circumstances of oral bacterial attachment as well as the proportion of live bacteria and dead bacteria. Results of the PMMA and PMMA-HEMA surface zeta potential showed that PMMA-HEMA carried more negative charge compared to PMMA. Therefore, PMMA-HEMA exhibited ability to repel bacterium which had negative charge on cell wall. Moreover, we measured scanty extracellular polysaccharides on PMMA-HEMA surface which demonstrated that PMMA-HEMA inhibited biofilm formatin by antiadhesion of bacterial extracellular polysaccharides. In clinical trial, PMMA-HEMA prevented the adhesion of oral bacterium than PMMA. Therefore, the heat-treated PMMA-HEMA has antibiofilm activity and exhibits a potent broad spectrum antibacterial activity against salivary bacteria. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:15:23Z (GMT). No. of bitstreams: 1 ntu-104-R02450005-1.pdf: 3180764 bytes, checksum: 5816ced6bfd10f2691af33cc3de391fa (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 摘要 i Abstract ii 目錄 iv 圖目錄 viii 表目錄 xi 1 第一章 前言 1 2 第二章 文獻回顧 2 2.1 聚甲基丙烯酸甲酯(PMMA) 2 2.1.1 聚甲基丙烯酸甲酯在生物醫材及牙科的應用 2 2.1.2 聚甲基丙烯酸甲酯缺點 3 2.2 生物膜(biofilm) 4 2.2.1 生物膜的定義 4 2.2.2 生物膜的形成 4 2.3 2-甲基丙烯酸羥基乙酯(HEMA) 5 2.4 唾液(saliva)與細菌貼附之作用 6 2.5 聚合物抗菌機制 8 2.6 細菌之胞外多醣體(bacterial EPS) 9 2.7 醫療器材生物相容性評估 11 2.7.1 評估局部與全身風險 11 2.7.2 體外細胞毒性(cell cultures for toxicity testing) 12 2.7.3 致敏性 14 2.7.4 刺激性 14 2.8 臨床試驗 15 3 第三章 實驗動機與目的 18 3.1 研究動機 18 3.2 研究目的 18 4 第四章 實驗材料與方法 19 4.1 實驗材料 19 4.2 實驗儀器 28 4.3 實驗流程圖 30 4.4 試片製作 31 4.4.1 製備聚甲基丙烯酸甲酯(PMMA) 31 4.4.2 試片接枝(HEMA、PEGMA) 31 4.5 細菌實驗 33 4.5.1 菌株特性、來源資料與培養保存方法 33 4.5.2 細菌貼附實驗 34 4.5.3 Bradford蛋白質分析法 35 4.6 細胞實驗 36 4.6.1 細胞解凍、培養、計數與保存方法 36 4.6.2 細胞存活率分析(MTT assay) 38 4.7 表面電位分析 41 4.8 胞外多醣體分析 41 4.8.1 胞外多醣萃取 41 4.8.2 總醣測定 42 4.8.3 傅立葉轉換紅外線光譜儀(FT-IR) 43 4.9 臨床前有毒物質釋放分析及動物試驗 43 4.9.1 傅立葉轉換紅外線光譜儀(FT-IR) 43 4.9.2 天竺鼠皮膚敏感性試驗(極大化法) 44 4.9.3 倉鼠口腔黏膜刺激試驗 47 4.10 臨床試驗 50 4.10.1 研究目的 50 4.10.2 個人維持器製作 51 4.10.3 雷射共軛焦顯微鏡(CLSM) 51 4.10.4 場發射掃描式電子顯微鏡(FE-SEM) 52 4.11 統計分析 53 5 第五章 實驗結果 54 5.1 細菌實驗 54 5.1.1 蛋白質貼附之細菌實驗 54 5.1.2 細菌貼附1、3、6小時實驗 56 5.2 表面電位分析(Zata Potential analysis) 59 5.3 胞外多醣體分析 60 5.4 細胞存活率分析(MTT assay) 63 5.5 臨床前有毒物質釋放分析及動物試驗 65 5.5.1 傅立葉轉換紅外線光譜儀(FT-IR) 65 5.5.2 天竺鼠皮膚敏感性試驗(極大化法) 65 5.5.1 倉鼠口腔黏膜刺激試驗 68 5.6 臨床試驗 72 5.6.1 個人維持器製作 72 5.6.2 雷射共軛焦顯微鏡(CLSM) 72 5.6.3 場發射掃描式電子顯微鏡(FE-SEM) 77 6 第六章 討論 80 6.1 細菌實驗 80 6.1.1 蛋白質貼附之細菌實驗 80 6.1.2 細菌貼附1、3、6小時實驗 80 6.2 表面電位分析 82 6.3 胞外多醣體分析 82 6.4 細胞存活率分析(MTT assay) 83 6.5 臨床前有毒物質釋放分析及動物試驗 84 6.5.1 傅立葉轉換紅外線光譜儀(FT-IR) 84 6.5.2 天竺鼠皮膚敏感性試驗(極大化法) 84 6.5.3 倉鼠口腔黏膜刺激試驗 85 6.6 臨床試驗 86 6.6.1 雷射共軛焦顯微鏡(CLSM) 86 6.6.2 場發射掃描式電子顯微鏡(FE-SEM) 87 7 第七章 結論 88 8 參考文獻 89 | |
| dc.language.iso | zh-TW | |
| dc.subject | 聚甲基丙烯酸甲酯 | zh_TW |
| dc.subject | 2-甲基丙烯酸羥基乙酯 | zh_TW |
| dc.subject | 表面電位 | zh_TW |
| dc.subject | 胞外多醣體 | zh_TW |
| dc.subject | 臨床試驗 | zh_TW |
| dc.subject | 2-hydroxyethyl methacrylate | en |
| dc.subject | polymethyl methacrylate | en |
| dc.subject | zeta potential | en |
| dc.subject | extracellular polysaccharides | en |
| dc.subject | clinical trial | en |
| dc.title | 2-甲基丙烯酸羥基乙酯表面接枝於聚甲基丙烯酸甲酯其抗菌貼附之機制研究暨臨床試驗 | zh_TW |
| dc.title | Mechanism and Clinical Trial of 2-Hydroxyethyl Methacrylate Grafting on Poly(methyl methacrylate) to Prevent Bacteria Adhesion | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃國皓,張哲政 | |
| dc.subject.keyword | 聚甲基丙烯酸甲酯,2-甲基丙烯酸羥基乙酯,表面電位,胞外多醣體,臨床試驗, | zh_TW |
| dc.subject.keyword | polymethyl methacrylate,2-hydroxyethyl methacrylate,zeta potential,extracellular polysaccharides,clinical trial, | en |
| dc.relation.page | 96 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-18 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
