請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52456完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 傅立成(Li-Chen Fu) | |
| dc.contributor.author | Yu-Ting Lo | en |
| dc.contributor.author | 羅宇廷 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:15:19Z | - |
| dc.date.available | 2018-08-25 | |
| dc.date.copyright | 2015-08-25 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2015-08-17 | |
| dc.identifier.citation | G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, 'Surface Studies by Scanning Tunneling Microscopy,' Physical Review Letters, vol. 49, pp.57-61, 1982.
G. Binnig, C.F. Quate, and C. Gerber, 'Atomic Force Microscope,' Physical Review Letters, vol. 56, pp. 930-933, 1986. N. Jalili, and L. Karthik, 'A review of atomic force microscopy imaging system: applications to molecular metrology and biological sciences,' Mechatronics, vol. 14, pp. 907-945, 2004. Y. T. Lin, Y. T. Lo, J. W. Wu, W. C. Liu, and L. C. Fu, 'A Dual Probes AFM System with Effective Tilting Angles to Achieve High-Precision Scanning,' in Conference on Decision and Control (CDC), Los Angeles, U.S.A., 2014. B. Bharat, F. Harald, and T. Masahiko, 'Critical Dimension Atomic Force Microscopy for sub-50-nm Microelectronics Technology Nodes,' Applied Scanning Probe Methods VIII, Springer, pp.31-75, 2008. B. F. Ju, Y. L. Chen, and W. Zhang, 'Rapid Measurement of a High Step Microstructure with 〖90〗^∘ steep sidewall,' Review of Scientific Instrument, vol. 83, no. 1, 013706, 2012. Y. Hua, C. Buenviaje-Coggins, Y. H. Lee, J. M. Lee, K. D. Ryang, and S. I. Park, 'New three-dimension AFM for CD measurement and sidewall characterization,' SPIE Advanced Lithogrophy. International Society for Optics and Photonics, 2011 S. J. Cho, B. W. Ahn, J.M. Lee, Y. Hua, Y. K. Yoo, and S. I. Park, 'Three-dimension imaging of undercut and sidewall structures by atomic force microscopy,' Review of Scientific Instrument, vol. 82, 023707, 2011. M. Fouchier, E. Pargon, and B. Bardet, 'An atomic force microscopy-based method for line egde roughness measurement,' Journal of Applied Physics, vol. 113, 104903, 2013. G. Dai, W. Häßler-Grohne, D. Hüser, H. Wolff, H. U. Danzebrink, L. Koenders, and H. Bosse, 'Development of a 3D-AFM for true 3D measurement of nanostructure,' Measurement Science and Technology, vol. 22, 094009, 2011. G. R. Jayanth, and C. H. Menq, 'Two-axis Force Sensing and Control of a Reorientable Scanning Probe,' IEEE/ASME Transactions on Mechatronics, vol. 18, no. 2, April, 2013. N. Satoh, E. Tsunemi, Y. Miyato, K. Kobayashi, S. Watanabe, T. Fujii, K. Matsushige, and H. Yamada, 'Multi-Probe Atomic Force Microscopy Using Piezoelectric Cantilevers,' Japanese Journal of Applied Physics, vol. 46, No. 8B, pp. 5543-5547, 2007 V. Mancecski, P. F. McClure, 'Development of a dual-probe CaliperTM CD-AFM for near model-independent nanometrology,' SPIE's 27th Annual International Symposium on Microlithography. International Society for Optics and Photonics, 2002. E. Tsunemi, K. Kobayashi, K. Matsushige, and H. Yamada, 'Development of dual-probe atomic force microscopy system using optical been deflectopn sensors with obliquely incudent laser bean,' Review of Scientific Instrument, vol. 82, 033708, 2011. H. Xie, D. S. Haliyo, and S. Régnier, 'A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly,' Nanotechnology, vol. 20, pp. 215301, 2009. J. Curie, and P. Curie, 'Développement, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclinées,' Comptes rendus, 1880. P. J. Chen, and S. T. Montgomery, 'A macroscopic theory for the exsitence of the hysteresis and butterfly loops in ferroelectricity,' Ferroelectrics, vol. 23, pp. 199-207, 1980. Y. K. Wen, 'Method for Random Vibration of Hysteretic Systems,' Journal of the Engineering Mechanics Division, vol. 102, pp. 249-263, 1976. M. J. Todd, and K. L. Johnson, 'A model for coulomb torque hysteresis in ball bearings,' International Journal of Mechanical Sciences, vol. 29, pp. 2339-2354, 1987. B. D. Coleman, and M. L. Hodgdon, 'A constitutive relation for rate-independent hysteresis in ferromagnetically soft materials,' International Journal of Engineering Sciences, vol. 24, pp.897-919, 1986. F. Preisach, 'Über die magnetusche Nachwirkung,' Zeitschrift für Physik A Hadrons and Nuclei, vol. 94, pp. 277-302, 1935. M. Goldfarb, and N. Celanovic, 'Modeling piezoelectric stack actuators for control of micromanipulation,' IEEE Control Systems, vol. 17, pp. 66-79, 1997. P. K. Hansma, J. P. Cleveland, M. Radmacher, D. A. Walters, P. E. Hillner, M. Bezanilla, M. Fritz, D. Vie, H. G. Hansma, C. B. Prater, J. Massie, L. Fukunaga, J. Gurley, and V. Elings, 'Tapping mode atomic force microscopy in liquids,' Applied Physical Letters, vol. 64, pp. 1738-1740, 1994. T. R. Rodriguez and R. Garcia, 'Theory of Q control in atomic force microscopy,' Applied Physical Letters, vol. 82, pp. 4821-4823, 2003. H. Edwards, L. Taylor, W. Duncan, and A. J. Melmed, 'Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor,' Journal of Applied Physics, vol. 82, pp. 980-984, 1997. T. Akiyama, U.S. Patent No. 7,051,582. Washington, DC: U.S. Patent and Trademark Office, 2006. T. Akiyama, U. Staufer, N. F. de Rooji, P. L. T. M. Frederix, A. Engel, 'Symmetrically arranged quartz tuning fork with soft cantilever for intermittent constant mode atomic force microscopy,' Review of Scientific Instrument,vol. 74, pp. 112-117, 2003. D. Bayat, T. Akiyama, N. F. de Rooji, and U. Staufer, 'Dynamic behavior of the tuning fork AFM probe,' Microelectronic Engineering, vol. 85, pp. 1018-1021, 2008. J. W. Wu, K. C. Huang, M. L. Chiang, M. Y. Chen, and L. C. Fu, 'Modeling and Controller Design of a Precision Hybrid Scanner for Application in Large Measurement-Range Atomic Force Microscopy,' IEEE Transactions on Industrial Electronic, vol. 61, no. 7, pp. 3704-3712, 2014. K. Kaur and A. Kaur, 'Fish Erythrocytes as Biomarkers for the Toxicity of Sublethal Doses of an Azo Dye, Basic Violet-1 (CI: 42535),' Microscopy and Microanalysis, vol. 21, pp. 264-273, 2015. T. Imagawa, T. Hashimoto, H. Kitagawa, Y. Kon, N. Kudo, and M. Sugimura, 'Morphology of blood cells in carp (Cyprinus carpio L.),' The japanese Journal of Veterinary Science, vol. 51, no. 6, pp. 1163-1172, 1989. C. L. Chen, J. W. Wu, Y. T. Lin, L. C. Fu, and M. Y. Chen, 'Precision Sinusoidal Local Scan for Large-Range Atomic Force Microscopy with Auxiliary Optical Microscopy,' IEEE/ASME Transactions on Mechatronic, vol. 20, no. 1, 2015. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52456 | - |
| dc.description.abstract | 隨著奈米科技的進步,一些微結構的尺寸也不斷的縮小,因此如何精確的對這些微小結構或特徵進行量測已成為一個相當重要的議題,原子力顯微鏡是一種具有奈米級解析能力的量測儀器,近年來已廣泛應用於微奈米結構的輪廓量測,然而,由於傳統原子力顯微鏡的單一探針傾角設計,在量測時探針和樣本的存在相對角度的誤差,進而造成掃描結果在樣本側邊和邊角的影像扭曲。
為了改善上述的問題,在本研究中,我們提出自主適應性傾角演算法結合自主開發之雙探針原子力顯微鏡系統,藉此達到對未知樣本的線上樣本側邊角度估測,經由所提出的演算法,我們能決定兩根探針在每一條掃描線所應該具有的傾角角度;再者,經由我們所設計的探針旋轉機構,探針的傾角能夠在掃描期間改變,結合雙探針架構,我們的原子力顯微鏡系統只需一次掃描就能獲得高精確的樣本輪廓影像。從一系列的實驗結果能證實本研究所提出的方法能有效消除樣本側邊的失真現象。 | zh_TW |
| dc.description.abstract | With the deep development of micro- and nano- frabricated techniques, the feature size of the sample has become smaller and smaller. There is an important issue to measure this kind of small object in nano-scale. Atomic force microscopy (AFM) is a powerful measurement tool which has been wildly used in micro-fabricated structure inspection recently. However, since the fixed tilting angle of the probe employed in traditional AFM, the corner and sidewall of the scanned sample image would be distorted.
To overcome the problem, in this works, an adaptive tilting angle algorithm operated on a self-designed dual-probe AFM system is presented to achieve on-line sidewall estimation for general sample profile. Through the use of adaptive tilting angle algorithm, the tilting angles of dual probes for each scan line can be determined. Above all, the probe-tilt mechanism is designed which allows the AFM system to change the tilting angles of the probe during the scanning process such that the dual-probe structure can acquire a complete high precise image in a single scan. The experimental results show outstanding performance of sidewall measurement and the high-precision image obtained by the proposed method. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:15:19Z (GMT). No. of bitstreams: 1 ntu-103-R02921004-1.pdf: 11809068 bytes, checksum: 0c3921bd4ab613467e9d5c1b19630234 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii Table of content iv Table of Acronyms vii List of Figures viii List of Table xii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Survey 3 1.2.1 3D-AFM 3 1.2.2 Dual-Probe AFM 6 1.3 Contributions 9 1.4 Thesis Organization 10 Chapter 2 Preliminary 11 2.1 Fundamentals of Piezoelectric Actuation 11 2.1.1 Piezoelectric Effect 12 2.1.2 Hysteresis Phenomenon 13 2.2 Operation Principle of AFM System 15 2.2.1 Tip-sample Interaction Modes 16 2.2.2 AFM Scanning Schemes 18 2.3 Akiyama Probe 20 Chapter 3 System Design and Dynamics 23 3.1 Dual-Probe AFM System 25 3.2 Probe-Tilt Mechanism 31 3.3 Alignment Unit 32 3.4 Hardware Equipment 33 Chapter 4 Dual-Probe Scan Method 35 4.1 System Calibration 36 4.1.1 Motor Axis Calibration 36 4.1.2 Probe Alignment 38 4.2 Probe Position Compensation at Different Tilting Angles 40 4.3 Adaptive Tilting Angle Algorithm (ATAA) 42 4.3.1 Convergence of ATAA 48 4.3.2 ATAA for Symmetric Samples 51 4.4 Scan Trajectory 52 4.5 Scan Result Merging Method 53 Chapter 5 Experiments 58 5.1 Experimental Setup 58 5.2 System Controller 60 5.3 AFM Scanning Application 61 5.3.1 Standard Grating with Traditional Scan Method 61 5.3.2 Standard Grating with Proposed Scan Method 63 5.3.3 Triangular Waveform Grating with Proposed Scan Method 66 5.3.4 Fish Red Blood Cells with Proposed Scan Method 68 Chapter 6 Conclusions 73 Reference 74 | |
| dc.language.iso | en | |
| dc.subject | 適應性演算法 | zh_TW |
| dc.subject | 探針傾角 | zh_TW |
| dc.subject | 側邊掃描 | zh_TW |
| dc.subject | 雙探針掃描 | zh_TW |
| dc.subject | 原子力顯微鏡 | zh_TW |
| dc.subject | 高精確掃描 | zh_TW |
| dc.subject | high precision scan | en |
| dc.subject | dual-probe scan | en |
| dc.subject | sidewall scan | en |
| dc.subject | tilting angle | en |
| dc.subject | adaptive algorithm | en |
| dc.subject | Atomic force microscopy | en |
| dc.title | 自適傾角演算法於高精確雙探針原子力顯微鏡 | zh_TW |
| dc.title | Adaptive Tilting Angles to Achieve High-Precision Scanning of a Dual-Probe AFM | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 范光照(Kuang-Chao Fan),顏家鈺(Jia-Yush Yen),陳美勇(Mei-Yung Chan),練光祐(Kuang-Yow Lian) | |
| dc.subject.keyword | 原子力顯微鏡,雙探針掃描,探針傾角,適應性演算法,側邊掃描,高精確掃描, | zh_TW |
| dc.subject.keyword | Atomic force microscopy,dual-probe scan,sidewall scan,tilting angle,adaptive algorithm,high precision scan, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 11.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
