Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52455
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王安邦(An-Bang Wang)
dc.contributor.authorYi-Ting Chenen
dc.contributor.author陳怡婷zh_TW
dc.date.accessioned2021-06-15T16:15:17Z-
dc.date.available2020-08-25
dc.date.copyright2015-08-25
dc.date.issued2015
dc.date.submitted2015-08-17
dc.identifier.citation[1] Whitesides G M. The origins and the future of microfluidics [J]. Nature, 2006, 442(27): 368-373.
[2] Huebner A, Sharma S, Srisa-Art M, et al. Microdroplets: A sea of applications? [J]. Lab Chip, 2008, 8:1244-1254.
[3] Dendukuri D, Doyle P S. The synthesis and assembly of polymeric microparticles using microfluidics [J].Adv Mater, 2009, 21(41): 4071-4086.
[4] Yang S M, Kim S H, Lim J M, et al. Synthesis and assembly of structured colloidal particles [J]. J Mater Chem, 2008, 18: 2177-2190.
[5] Wang-PH, Pan CY, Colloid Polym Sci, 2000, Vol.278, pp245.
[6] Song, J. S.; Winnik, M. A. Macromolecules, 2005, 38, 8300
[7] Christopher G F, Anna S L. Microfluidic methods for generating continuous droplet streams [J]. J Phys D-Appl Phys, 2007, 40(19): 319-336.
[8] Nisisako, T.; Torii, T.; Higuchi, T. Chem. Eng. J. 2004, 101, 23-29.
[9] Jeong, W. J.; Kim, J. Y.; Choo, J.; Lee, E. K.; Han, C. S.; Beebe, D. J.; Seong, G. H.; Lee, S. H. Langmuir, 2005, 21, 3738-3741
[10] Manz A, Graber N, Widmer H M. Miniaturized Total Chemical Analysis Systems: A Novel Concept for Chemical Sening [J]. Sens. Actuators B, 1990, 1: 244−248.
[11] Harrison D J, Manz A, Fan Z H, et al. Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip [J]. Anal. Chem., 1992, 64(17): 1926−1932.
[12] Woolley A T, Mathies R A. Ultra-high-speed DNA-sequencing Using Capillary Electrophoresis Chips [J]. Anal. Chem., 1995, 67(20): 3676−3680.
[13] Song, H., J.D. Tice, and R.F. Ismagilov, A microfluidic system for controlling reaction networks in time. Angewandte Chemie-International Edition, 2003. 42(7): p. 768-772.
[14] Bartsch, J.W., et al., An investigation of liquid carryover and sample residual for a high-throughput flow cytometer sample delivery system. Analytical Chemistry, 2004. 76(13): p. 3810-3817.
[15] Song, H., D.L. Chen, and R.F. Ismagilov, Reactions in droplets in microflulidic channels. Angewandte Chemie-International Edition, 2006. 45(44): p. 7336-7356.
[16] Curcio, M. and J. Roeraade, Continuous segmented-flow polymerase chain reaction for high-throughput miniaturized DNA amplification. Analytical Chemistry, 2003. 75(1): p. 1-7.
[17] T. Kawakatsu, Y. Kikuchi, M. Nakajima, J. Am. Oil Chem. Soc. 1997, 74, 317.
[18] Fuerstman M J, Garstecki P, Whitesides G M. Coding/Decoding and Reversibility of Droplet Trains in Microfluidic Networks [J]. Science, 2007, 315(5813): 828−832
[19] Nisisako T, Torii T, Higuchi T. Droplet Formation in a Microchannel Network [J]. Lab Chip, 2002, 2: 24−26.
[20] Chu L Y, Utada A S, Shah R K, et al. Controllable Monodisperse Multiple Emulsions [J]. Angew. Chem. Int. Ed., 2007, 46(47): 8970−8974.
[21] Utada A S, Chu L Y, Weitz D A, et al. Dripping, Jetting, Drops and Wetting: The Magic of Microfluidics [J]. MRS Bulletin, 2007, 32(9): 702−708.
[22] Y. Hennequin, N. Pannacci, C. P. de Torres, G. Tetradis-Meris, S. Chapuliot, E. Bouchaud and P. Tabeling, Langmuir, 2009, 25, 7857–7861. S. H. Kim, S. J. Jeon and S. M. Yang, J. Am. Chem. Soc., 2008, 130, 6040–6046.
[23] Z. H. Nie, S. Q. Xu, M. Seo, P. C. Lewis and E. Kumacheva, J. Am. Chem. Soc., 2005, 127, 8058–8063.
[24] S. W. Choi, Y. Zhang and Y. N. Xia, Adv. Funct. Mater., 2009, 19, 2943–2949.
[25] D. Lee and D. A. Weitz, Adv. Mater., 2008, 20, 3498–3503.
[26] R. C. Hayward, A. S. Utada, N. Dan and D. A. Weitz, Langmuir, 2006, 22, 4457–4461.
[27] E. Lorenceau, A. S. Utada, D. R. Link, G. Cristobal, M. Joanicot and D. A. Weitz, Langmuir, 2005, 21, 9183–9186.
[28] H. C. Shum, J. W. Kim and D. A. Weitz, J. Am. Chem. Soc., 2008, 130, 9543–9549.
[29] Christopher, G.F. and S.L. Anna, Microfluidic methods for generating continuous droplet streams. Journal of Physics D-Applied Physics, 2007. 40(19): p. R319-R336.
[30] Rhutesh K. Shah, Ho Cheung Shum, Amy C. Rowat, Daeyeon Lee, Jeremy J. Agresti, Andrew S. Utada, Liang-Yin Chua, Jin-Woong Kima, Alberto Fernandez-Nievesa, Carlos J. Martinez, David A. Weitz.Materials Today, Volume 11, Issue 4, April 2008, Pages 18-27.
[31] Vasiljevic D, Parojcic J, Primorac M, Vuleta G. An investigation into the characteristics and drug release properties of multiple W/O/W emulsion systems contain in glow concentration of lipophilic polymeric emulsifier. International Journal of Pharmaceutics, 2006, 309(1) : 171-177.
[32] Onuki Y, Morishita M, Takayama K. Formulation optimization of water-in-oil-water multiple emulsion for intestinal insulin delivery. Journal of Controlled Release, 2004, 97(1) : 91-991.
[33] Nakano M. Places of emulsions in drug delivery. Advanced Drug Delivery Reviews, 2000, 45(1) : 1-4.
[34] Davis S. S, Walker I. Multiple emulsions as targetable delivery systems. Methods in Enzymology, 1987, 149:51-641.
[35] Choi C H, Jung C J, Rhee Y W, et al. Generation of Monodisperse Alginate Microbeads and in situ Encapsulation of Cell in Microfluidic Device. Biomed Microdevices, 2007, 9(6): 855−862.
[36] Sugiura S, Oda T, Izumida Y, et al. Size Control of Calcium Alginate Beads Containing Living Cells Using Micro-nozzle Array. Biomaterials, 2005, 26(16): 3327−3331.
[37] Niu X, Lee Y K. Efficient Spatial-temporal Chaotic Mixing in Microchannels. Micromech. Microeng., 2003, 13: 454−462.
[38] Skurtys O, Aguilera J M. Applications of Microfluidic Devices in Food Engineering. Food Biophysics, 2008, 3: 1−15.
[39] Okushima S, Nisisako T, Torii T, et al. Controlled Production of Monodisperse Double Emulsions by Two-step Droplet Breakup in Microfluidic Devices [J]. Langmuir, 2004, 20(23): 9905−9908.
[40] Xiuqing Gong, Weijia Wen, and Ping Sheng, Langmuir, 2009, 25(12), 7072−7077.
[41] H. G. Bungenberg de Jong, Complex colloid systems, in Colloid Science, Kruyt, H. R.(ed), Vol.II, elservier Publishing Co., New York, NY, 1949, 335-432.
[42] R. T. Maleeny, Spray dried perfumes, Soap & Chemical Specialties, 1958, 34, 137, 139, 141, 145.
[43] Gibbs BF, Kermasha S, Alli I, Mulligan CN. Encapsulation in the food industry: a review. International Journal of Food Sciences and Nutrition 1999;50:213–4.
[44] D.Dendukuri, and Patrick S. Doyle. The Synthesis and Assembly of Polymeric. Adv. Mater. 2009, 21, 1–16.
[45] Bryant YG. Melt spun fibers containing microencapsulated phase change material proceedings. ASME Symposium 1999;44:225–34.
[46] Zhang H, Wang X. Fabrication and performances of microencapsulated phase change materials based on n-octadecane core and resorcinol-modified melamine–formaldehyde shell. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009;332:129–38.
[47] S. Okushima, T. Nisisako, T. Torii, T. Higuchi, Langmuir 2004, 20, 9905.
[48] Z. Nie, S. Xu, M. Seo, P. C. Lewis, E. Kumacheva, J. Am. Chem. Soc. 2005,127, 8058.
[49] A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, D. A. Weitz, Science 2005, 308, 537.
[50] A. B. Jiandi Wan, M. Sullivan, H. A. Stone, Adv. Mater. 2008, 20, 3314.
[51] Sharma A, Tyagi VV, Chen CR, Buddhi D: Review on thermal energy storage with phase change materials and applications. Renew Sust Energ Rev 2009, 13(2):318-345.
[52] Lane GA: In: Proceedings of 2nd Southeastern Conference on. Application of Solar Energy 1976, 442-450
[53] Stark P: PCM-impregnated polymer microcomposites for thermal energy storage. SAE (Soc Automotive Eng). Trans 1990,99:571–88.
[54] Fan YF, Zhang XX, Wu SZ, Wang XC: Thermal stability and permeability of microencapsulated n-octadecane and cyclohexane. Thermochim Acta 2005, 429(1):25-29.
[55] Zhang XX, Fan YF, Tao XM, Yick KL: Crystallization and prevention of supercooling of microencapsulated n-alkanes. J Colloid Interf Sci 2005, 281(2):299-306.
[56] Su JF, Wang LX, Ren L, Huang Z, Meng XW: Preparation and characterization of polyurethane microcapsules containing n-octadecane with styrene-maleic anhydride as a surfactant by interfacial polycondensation. J Appl Polym Sci 2006, 102(5):4996-5006.
[57] Baek KH, Lee JY, Kim JH: Core/Shell structured PCM nanocapsules obtained by resin fortified emulsion process. J Disper Sci Technol 2007, 28(7):1059-1065.
[58] Sanchez L, Sanchez P, de Lucas A, Carmona M, Rodriguez JF: Micro encapsulation of PCMs with a polystyrene shell. Colloid Polym Sci 2007, 285(12):1377-1385.
[59] Su JF, Wang LX, Ren L: Synthesis of polyurethane microPCMs containing n-octadecane by interfacial polycondensation: Influence of styrene-maleic anhydride as a surfactant. Colloid Surface A 2007, 299(1-3):268-275.
[60] Taguchi Y, Yokoyama H, Kado H, Tanaka M: Preparation of PCM microcapsules by using oil absorbable polymer particles. Colloid Surface A 2007, 301(1-3):41-47.
[61] Fang YT, Kuang SY, Gao XN, Mang ZG: Preparation and characterization of novel nanoencapsulated phase change materials. Energ Convers Manage 2008, 49(12):3704-3707.
[62] Sanchez L, Sanchez P, Carmona M, de Lucas A, Rodriguez JF: Influenceof operation conditions on the microencapsulation of PCMs by means of suspension-like polymerization. Colloid Polym Sci 2008, 286(8-9):1019-1027.
[63] Alkan C, Sari A, Karaipekli A, Uzun O: Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Sol Energ Mat Sol C 2009, 93(1):143-147.
[64] Fang GY, Li H, Yang F, Liu X, Wu SM: Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage. Chem Eng J 2009, 153(1-3):217-221.
[65] Salaün F, Devaux E, Bourbigot S, Rumeau P: Influence of process parameters on microcapsules loaded with n-hexadecane prepared by in situ polymerization. Chem Eng J 2009, 155(1-2):457-465.
[66] Zhang HZ, Wang XD: Fabrication and performances of microencapsulated phase change materials based on n-octadecane core and resorcinol-modified melamine-formaldehyde shell. Colloid Surface A 2009, 332(2-3):129-138.
[67] Fang GY, Li H, Liu X, Wu SM: Experimental Investigation of Performances of Microcapsule Phase Change Material for Thermal Energy Storage. Chem Eng Technol 2010, 33(2):227-230.
[68] Gao GB, Qian CX, Gao MJ: Preparation and characterization of hexadecane microcapsule with polyurea-melamine formaldehyde resin shell materials. Chinese Chem Lett 2010, 21(5):533-537.
[69] Zhang SO, Niu JL: Experimental investigation of effects of supercooling on microencapsulated phase-change material (MPCM) slurry thermal storage capacities. Sol Energ Mat Sol C 2010, 94(6):1038-1048.
[70] Jin Y, Lee WP, Musina Z, Ding YL: A one-step method for producing microencapsulated phase change materials. Particuology 2010, 8(6):588-590.
[71] Zhang HZ, Wang XD, Wu DZ: Silica encapsulation of n-octadecane via sol-gel process: A novel microencapsulated phase-change material with enhanced thermal conductivity and performance. J Colloid Interf Sci 2010, 343(1):246-255.
[72] Ma SD, Song GL, Li W, Fan PF, Tang GY: UV irradiation-initiated MMA polymerization to prepare microcapsules containing phase change paraffin. Sol Energ Mat Sol C 2010, 94(10):1643-1647.
[73] Sanchez-Silva L, Rodriguez JF, Romero A, Borreguero AM, Carmona M, Sanchez P: Microencapsulation of PCMs with a styrene-methyl methacrylate copolymer shell by suspension-like polymerisation. Chem Eng J 2010, 157(1):216-222.
[74] Alkan C, Sari A, Karaipekli A: Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage. Energ Convers Manage 2011, 52(1):687-692.
[75] Li W, Song GL, Tang GY, Chu XD, Ma SD, Liu CF: Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell. Energy 2011, 36(2):785-791.
[76] Sanchez-Silva L, Rodriguez JF, Carmona M, Romero A, Sanchez P: Thermal and morphological stability of polystyrene microcapsules containing phase-change materials. J Appl Polym Sci 2011, 120(1):291-297.
[77] Schossig P, Henning H-M, Gschwander S, Haussmann T. Micro- encapsulated phase-change materials integrated into construction materials. Solar Energy Mater Solar Cells 2005;89:297–306.
[78] Kaul. Thermal insulating coating for spacecrafts: United States Patent, 6939610[P]. 2005-09-06.
[79] Davis. As thermal energy storage composition; use in clothing, furniture, building materials, automobile upholstery; heat transfer. US 20020061954[P]. 2002-05-23.
[80] Peter Grynaeus, Thermal control nonwoven material. US 20040043212[P].2004-03-04.
[81] Kasza K E, Chen M M. Improvement of the performance of solar energy or waste heat utilization systems by using phase-change slurry as an enhanced heat-transfer storage fluid, J. Sol. Energy Eng. 107(3), 229-236
[82] Sabbah R, Farid M M, Al-Hallaj S, Micro-channel heat sink with slurry of water with microencapsulated phase change materials: 3D Numerical Study. Applied Thermal Engineering 29(2-3):445-454 2009.
[83] Richard A. McKinney, Yvonne G. Bryant, David P. Colvin, Method of reducing infrared viewability of objects. US6373058[P].2002-04-16.
[84] 陳宏恩,新時代的溫控興紡織品,化工技術,第十三卷,第三期, 205-213(2005)
[85] Medrano M, Yilmaz MO, Nogues M, Martorell I, Roca J, Cabeza LF: Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems. Appl Energ 2009, 86(10):2047-2055.
[86] Ismail KAR, Henriquez JR: Thermally effective windows with moving phase change material curtains. Appl Therm Eng 2001, 21(18):1909-1923.
[87] Yang Jun Kanga and Sung Yang, Lab Chip, 2012, 12, 1881
[88] Jan Guzowski, Piotr M. Korczyk, Slawomir Jakiela and Piotr Garstecki, Soft Matter, 2012, 8, 7269
[89] CHIEN-YU LI, WEN-YEN CHIU, TRONG-MING DON, Polymer Science Part A: Polymer Chemistry, 2007, Volume 45, Issue 15, pages 3359–3369.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52455-
dc.description.abstract以雙乳化液滴產生微球膠囊的方法主要分為化學法及物理法兩種。前者以批次合成產生,可大量製備;但有尺寸均勻性較差、製作程序較複雜之缺點;後者則於微流道中以不同流體間之剪切力來產生,在尺寸均勻性及可調變性上皆優於前者,但產生之微球尺寸偏大尚無法達到奈米等級,且在學界尚無法進入量產。受限於微製程技術,目前學界以物理法產生微膠囊仍以平面微流道為主,其有黏壁與不易操作之缺點,故本研究開發了方法以克服上述技術瓶頸。近年來在改善能源運用效率與開發綠色儲能議題中,相轉移材料的可能應用研究備受矚目,本研究將新式同心毛細管微流道及其下游固化與收集系統垂直整合,可成功製備高包覆率及產率的相變微膠囊。
本研究藉由光起始方法將雙乳化液滴快速在流道內固化,以產線式製備相變微膠囊,並提出了兩套同心毛細管微流道製備相變微膠囊技術:1.微二相流同心毛細管流道系統-結合物理的流道產生單乳化液滴並藉由化學的相分離來製備;2. 微三相流同心毛細管流道系統-全物理法,藉由流道產生雙乳化液滴直接製備核殼式包覆的微膠囊。本研究分三個階段來達成,階段一:新式微二相流同心毛細管流道系統開發,可產生尺寸範圍20-500μm且粒徑均一(CV < 3%)之單乳化液滴,並建立一力學模型來描述流量與幾何參數對液滴尺寸之影響,推導出線性回歸方程式可用於預測液滴尺寸與設計微流道幾何尺寸,免去一般微流實驗慣用之耗時耗工的試驗法。階段二:高功率面式UV燈及固化系統開發並將其與同心微流道垂直整合,可將同心微流道產生之MMA液滴於5秒內快速固化成MMA微球。此外也找到與正十六烷相溶程度不同之架橋劑,應用於階段三兩種製備相變微膠囊的系統(方法一使用EGDMA為架橋劑,可使殼材與核材互溶;方法二使用DPHA為架橋劑,可使殼材與核材不相溶)。階段三:(方法一)建立了一新穎的概念,結合化學與物理法以微二相流同心毛細管微流道製備相變微膠囊,可連續式生產最高包覆率達50%之相變微膠囊,且可即時調整微膠囊尺寸範圍由20-500μm(CV< 3%);(方法二)將微二相流同心流道串聯兩組開發出微三相同心流道,此系統為首例成功以三相流同心流道一次性產生雙乳化液滴來製備相變微膠囊。藉由內中相流量比,可即時調整核殼比製備出不同包覆率之微膠囊;而調整外相流量可即時控制微膠囊尺寸範圍從60-500μm 且均勻度CV ≤ 1.5%。
總結而論本研究所開發之同心毛細管微流道整合系統具有下列特色與優勢:可即時調變微膠囊尺寸(20μm-500μm)且尺寸均勻度(方法一CV < 3%;方法二CV ≤ 1.5%)、可即時調變微膠囊包覆率且包覆率> 70%、流道不需表面改質、流道尺寸不受限於市售套管而可任意製作所需尺寸、不需特定之介面活性劑(所需濃度低)來穩定系統、同心毛細管流道可多組串聯推廣至多乳化液滴製備,最後更可推廣至因應不同材料之包覆,製備出殼層極薄的微膠囊,並應用在各工程領域上。
zh_TW
dc.description.abstractThere are mainly two methods to generate double emulsion micro-capsules, i.e.,chemical and physical method. Most micro-capsules were produced by the former method, which is batch-based production by chemical synthesis. Wide size-distributions of micro-capsules and complicated operation processes are the main issues in this traditional synthesis process. By the latter, double-emulsion can be generated in a microfluidic channel based on the separation mechanisms of flow shearing and brought significant advantages of size uniformity and operation flexibility than the chemical one. However, few studies were focusing on the processes of double emulsion; moreover, most of them used the two-dimensional plane-channels due to the difficulties of traditional micro-manufacturing. By using the plane channel to produce emulsion droplets, it commonly suffers the interactions between the dispersed liquid and wall surfaces and also the complexity of treatments for channel surface. Recently, the phase change materials have drawn significant attentions for the improvement of energy efficiency and the green energy storage. Nevertheless, there is still no study on the fabrication of microencapsulated phase change materials (MPCMs) by microfluidics. Here, in this study is going to develop a new technique for producing micro-capsules of double-emulsions by using non-planar axisymmetric concentric micro-channels with capillary tube .
In this study, a new MPCMs fabrication process is developed by microfluidic. The MPCMs of n-hexadecane covered by PMMA shell is fabricated by micro two phase flow for generating microdroplets. This research will control the size of MPCMs by changing flow rate ratio of continuous phase and dispersed phase and control the core/shell ratio by changing the weight ratio of n-octadecane and MMA for dispersed phase. The co-flow geometry is used in the micro two phase flow chip design and a new co-flow chip fabrication is developed.co-flow can avoid wetting problem due to hydrophilic/hydrophobic chip materials. Traditionally, commercial tubes and connectors are used for co-flow chip, but the dimension of channel size and droplets size are limited. The new fabrication can adjust channel size easily and can generate 20-30μm droplets。This study will build a complete and new micro-two phase flow generation and curing system for MPCMs which is different from traditional chemical fabrication. The disadvantages of chemical fabrication are complex operating parameters, time consuming and higher cost. And the new MPCMs fabrication by microfluidic is easy operating parameters, uniform MPCMs size and lower cost for the need of different size and absorb/release ability MPCMs in applications.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:15:17Z (GMT). No. of bitstreams: 1
ntu-104-R01543019-1.pdf: 5463832 bytes, checksum: 01115f38d96974d2c74be62225b407cb (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents論文口試委員審定書.....i
致謝.....ii
中文摘要.....iv
Abstract.....vi
目錄.....viii
圖目錄.....xi
表目錄.....xvi
符號說明 xvii
第1章 緒論.....1
1.1 前言.....1
1.2 文獻回顧.....2
1.2.1 微流體技術與乳化微球.....2
1.2.2 微流體技術製備微球原理與裝置.....3
1.2.2.1 二相流法.....4
1.2.2.2 二相流產生微球之流道裝置.....5
1.2.3 微流體技術製備乳化微球之應用.....6
1.2.4 乳化微膠囊技術.....9
1.2.4.1 微膠囊製備方法.....10
1.2.5 相轉移材料與相轉移微膠囊.....16
1.2.5.1 相轉移材料.....16
1.2.5.2 相轉移微膠囊及其發展與應用.....19
1.3 研究動機與目標.....23
第2章 實驗儀器與方法.....25
2.1 實驗架設.....25
2.2 實驗藥品 .....26
2.3 多相流產生之同心毛細管微流道系統 .....26
2.3.1 實驗儀器 27
2.3.2 微二相流同心毛細管微流道製作.....28
2.3.3 微三相流同心毛細管微流道製作.....33
2.4 流體運輸系統.....34
2.4.1 實驗儀器 .....34
2.4.2 改善流量穩定性裝置.....35
2.5 影像處理與自動化量測系統..... 37
2.5.1 實驗儀器 .....37
2.5.2 影像數位化量測.....38
2.6 微膠囊固化系統.....39
2.6.1 方法一固化系統(微二相流同心毛細管微流道).....39
2.6.2 方法二固化系統(微三相流同心毛細管微流道).....43
2.7 相轉移微膠囊物性測試系統.....44
2.7.1 實驗儀器 .....45
2.7.2 測試項目.....45
2.8 實驗步驟與方法.....46
第3章 實驗結果與討論.....48
3.1 階段一.....48
3.1.1 微二相流同心毛細管微流道製程開發結果.....48
3.1.2 影像數位化量測結果.....49
3.1.3 同心毛細管流道在相同流量實驗重複性探討.....50
3.1.4 毛細針外徑尺寸對產生乳化液滴的影響.....51
3.1.5 毛細管尺寸對所產生乳化液滴的影響 .....53
3.1.6 力學模型分析與液滴尺寸預測.....55
3.2 階段二.....59
3.2.1 不同固化時間與架橋劑對之PMMA微球之影響.....61
3.3 階段三.....64
3.3.1 相轉移材料之基本物性.....64
3.3.2 方法一製備相轉移微膠囊(微二相流同心毛細管微流道)..... 66
3.3.3 方法二製備相轉移微膠囊(微三相流同心毛細管微流道)..... 70
3.3.3.1 微三相流同心毛細管微流道製程開發結果.....70
3.3.3.2 微三流穩定產生雙乳化液滴機制.....71
3.3.3.3 核殼比與流量之關係.....76
3.3.3.4 固定Qi與Qm改變Qo對雙乳化液滴尺寸之影響.....77
3.3.3.5 固定Qm與Qo改變Qi對雙乳化液滴尺寸之影響.....80
3.3.3.6 製備相變微膠囊之結果.....81
3.3.4 相變微膠囊製備結果比較.....87
第4章 結論與未來展望.....90
4.1 結論.....90
4.2 未來展望.....91
參考資料 .....92
dc.language.isozh-TW
dc.subject微多相流zh_TW
dc.subject微流道及固化整合系統zh_TW
dc.subject微球膠囊zh_TW
dc.subject雙乳化液滴zh_TW
dc.subject相變微膠囊zh_TW
dc.subject同心毛細管微流道zh_TW
dc.subjectintegrated microfluidic deviceen
dc.subjectdouble-emulsionsen
dc.subjectmicroencapsulationen
dc.subjectmicroPCMsen
dc.subjectconcentric capillary microfluidic Systemen
dc.subjectmultiple phase flowen
dc.title整合製備相轉移材料微膠囊之同心毛細管微流道系統開發研究zh_TW
dc.titleOn the Microencapsulation for Phase Change Material by Concentric Capillary Microfluidic Systemen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱文英(Wen-Yen Chiu),陳暉(Hui Chen),林岩錫
dc.subject.keyword微多相流,同心毛細管微流道,微流道及固化整合系統,雙乳化液滴,微球膠囊,相變微膠囊,zh_TW
dc.subject.keywordmultiple phase flow,concentric capillary microfluidic System,integrated microfluidic device,double-emulsions,microencapsulation,microPCMs,en
dc.relation.page101
dc.rights.note有償授權
dc.date.accepted2015-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
5.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved