Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52452
標題: 利用分層俯視角深度特徵應用於日常活動辨識
Daily Activity Recognition Using Features from Layered Top-View Depth Information
作者: Shu-Chun Lin
林叔君
指導教授: 傅立成(Li-Chen Fu)
關鍵字: 活動辨識,俯視角,深度,動態時間校正,
Top-view,activity recognition,depth,dynamic time warping,
出版年 : 2015
學位: 碩士
摘要: In this thesis, two novel features for activity recognition from top-view depth image sequences are firstly proposed. Most of previous works are focusing mainly on dealing with the side-view depth image sequences, which unfortunately may encounter occlusion problems. Therefore, top-view camera setting is adopted in our thesis. Based on the notion of computed tomography, the top-view depth images are segmented to different layer along z-axis. Then, the representative body points which are found on each layered image will be a meaningful feature as the substitute of body parts for the activity postures. Besides, a discriminative shape descriptor is also proposed to describe the human shape for different activity postures. Based on the occupancy value of small region, the cylinders-sector occupancy grid with saturation function is proposed to capture special characteristic of top-view human shape. To make our proposed features invariant to orientation, the human orientation is also calculated by extracting the regions of head and shoulders, and then refines the above two features according to the orientation. Finally, dynamic time warping algorithm is applied to address the problem with different sequence lengths and the SVM classifier is trained to classify our activities. To verify our performance, 2 new top-view datasets are constructed. In our experiments, challenging cross-subject tests are conducted, and the effectiveness of our representative body points and layered sector-based shape descriptor are demonstrated. The result shows that the accuracy can achieve up to 96%, which is quite promising while being compared with those from the state-of-the-art methods in the literature.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52452
全文授權: 有償授權
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.58 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved