Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52421
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林長平(Chan-Pin Lin)
dc.contributor.authorWei-Chun Changen
dc.contributor.author張偉俊zh_TW
dc.date.accessioned2021-06-15T16:14:21Z-
dc.date.available2020-08-01
dc.date.copyright2015-08-28
dc.date.issued2015
dc.date.submitted2015-08-17
dc.identifier.citation1. Bent, A. F. Mackey, D. 2007. Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Ann. Rev. Phytopathol. 45:399-436.
2. Bressan, A. Purcell, A. H. 2005. Effect of benzothiadiazole on transmission of X-disease phytoplasma by the vector Colladonus montanus to Arabidopsis thaliana, a new experimental host plant. Plant Dis. 89:1121-1124.
3. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K. Madden, T. L. 2009. BLAST+: architecture and applications. BMC Bioinformatics. 10:421.
4. Champigny, M. J., Isaacs, M., Carella, P., Faubert, J., Fobert, P. R. Cameron, R. K. 2013. Long distance movement of DIR1 and investigation of the role of DIR1-like during systemic acquired resistance in Arabidopsis. Front. Plant Sci. 4:230.
5. Chisholm, S. T., Coaker, G., Day, B. Staskawicz, B. J. 2006. Host-microbe interactions: Shaping the evolution of the plant immune response. Cell. 124:803-814.
6. Christensen, N. M., Axelsen, K. B., Nicolaisen, M. Schulz, A. 2005. Phytoplasmas and their interactions with hosts. Trends Plant Sci. 10:526-535.
7. Chu, H. T., Hsiao, W. W., Chen, J. C., Yeh, T. J., Tsai, M. H., Lin, H., Liu, Y. W., Lee, S. A., Chen, C. C., Tsao, T. T. Kao, C. Y. 2013. EBARDenovo: highly accurate de novo assembly of RNA-Seq with efficient chimera-detection. Bioinformatics. 29:1004-1010.
8. Conesa, A. Gotz, S. 2008. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics. 2008:619832.
9. Curkovic Perica, M. 2008. Auxin-treatment induces recovery of phytoplasma-infected periwinkle. J. Appl. Microbiol. 105:1826-1834.
10. De Vleesschauwer, D., Gheysen, G. Hofte, M. 2013. Hormone defense networking in rice: tales from a different world. Trends Plant Sci. 18:555-565.
11. Ding, Y., Wei, W., Wu, W., Davis, R. E., Jiang, Y., Lee, I. M., Hammond, R. W., Shen, L., Sheng, J. P. Zhao, Y. 2013a. Role of gibberellic acid in tomato defence against potato purple top phytoplasma infection. Ann. Appl. Biol. 162:191-199.
12. Ding, Y., Wu, W., Wei, W., Davis, R. E., Lee, I. M., Hammond, R. W., Sheng, J. P., Shen, L., Jiang, Y. Zhao, Y. 2013b. Potato purple top phytoplasma-induced disruption of gibberellin homeostasis in tomato plants. Ann. Appl. Biol. 162:131-139.
13. Doi, Y., Teranaka, M., Tora, K. Asuyama, H. 1967. Mycoplasma-or PLT group like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches' broom, aster yellows, or paulownia witches' broom. Ann. Rev. Phytopathol. 42:185-209.
14. Feys, B. J. F., Benedetti, C. E., Penfold, C. N. Turner, J. G. 1994. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male-sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell. 6:751-759.
15. Giorno, F., Guerriero, G., Biagetti, M., Ciccotti, A. M. Baric, S. 2013. Gene expression and biochemical changes of carbohydrate metabolism in in vitro micro-propagated apple plantlets infected by 'Candidatus Phytoplasma mali'. Plant Physiol. Biochem. 70:311-317.
16. Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., Couger, M. B., Eccles, D., Li, B., Lieber, M., Macmanes, M. D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks, N., Westerman, R., William, T., Dewey, C. N., Henschel, R., Leduc, R. D., Friedman, N. Regev, A. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8:1494-1512.
17. Hancock-Hanser, B. L., Frey, A., Leslie, M. S., Dutton, P. H., Archer, F. I. Morin, P. A. 2013. Targeted multiplex next-generation sequencing: advances in techniques of mitochondrial and nuclear DNA sequencing for population genomics. Mol. Ecol. Resour. 13:254-268.
18. Hogenhout, S. A., Oshima, K., Ammar, E. D., Kakizawa, S., Kingdom, H. N. Namba, S. 2008. Phytoplasmas: bacteria that manipulate plants and insects. Mol. Plant Pathol. 9:403-423.
19. Huang, T. J. Lin, C. P. 2011. Current status on important crop diseases induced by phytoplasmas in Taiwan. Proceedings of the symposium on integrated management technology of insect vectors and insect-borne diseases. 152:63-71.
20. Huang, X. Madan, A. 1999. CAP3: a DNA sequence assembly program. Genome Res. 9:868-877.
21. Ishiie, T., Doi, Y., Yora, K. Asuyama, H. 1967. Suppressive effects of antibiotics of tetracycline group on symptom development in mulberry dwarf disease. Ann. Phytopathol. Soc. Jpn. 33:267-275.
22. Jones, J. D. Dangl, J. L. 2006. The plant immune system. Nature. 444:323-329.
23. Kazan, K. Lyons, R. 2014. Intervention of phytohormone pathways by pathogen effectors. Plant Cell. 26:2285-2309.
24. Landi, L. Romanazzi, G. 2011. Seasonal variation of defense-related gene expression in leaves from bois noir affected and recovered grapevines. J. Agr. Food Chem. 59:6628-6637.
25. Leng, N., Dawson, J. A., Thomson, J. A., Ruotti, V., Rissman, A. I., Smits, B. M. Kendziorski, C. 2013. EBSeq an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics. 29:1035-1043.
26. Lepka, P., Stitt, M., Moll, E. Seemuller, E. 1999. Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiol. Mol. Plant Pathol. 55:59-68.
27. Li, B. Dewey, C. N. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 12:323.
28. Lichtenthaler, H. K. Wellburn, A. R. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 11:149-156.
29. Liu, R., Dong, Y., Fan, G., Zhao, Z., Deng, M., Cao, X. Niu, S. 2013. Discovery of genes related to witches broom disease in Paulownia tomentosa x Paulownia fortunei by a de novo assembled transcriptome. PLoS One. 8:e80238.
30. Luge, T., Kube, M., Freiwald, A., Meierhofer, D., Seemuller, E. Sauer, S. 2014. Transcriptomics assisted proteomic analysis of Nicotiana occidentalis infected by Candidatus Phytoplasma mali strain AT. Proteomics. 14:1882-1889.
31. Maldonado, A. M., Doerner, P., Dixon, R. A., Lamb, C. J. Cameron, R. K. 2002. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature. 419:399-402.
32. Mardi, M., Karimi Farsad, L., Gharechahi, J. Salekdeh, G. H. 2015. In-depth transcriptome sequencing of mexican lime trees infected with Candidatus phytoplasma aurantifolia. PLoS One. 10:e0130425.
33. Maust, B. E., Espadas, F., Talavera, C., Aguilar, M., Santamaría, J. M. Oropeza, C. 2003. Changes in carbohydrate metabolism in coconut palms infected with the lethal yellowing phytoplasma. Biochem.Cell Biol. 93:976-981.
34. Metzker, M. L. 2010. Sequencing technologies - the next generation. Nat. Rev. Genet. 11:31-46.
35. Mou, H. Q., Lu, J., Zhu, S. F., Lin, C. L., Tian, G. Z., Xu, X. Zhao, W. J. 2013. Transcriptomic analysis of paulownia infected by paulownia witches'-broom phytoplasma. PLoS One. 8:e77217.
36. Musetti, R., Di Toppi, L. S., Ermacora, P. Favali, M. A. 2004. Recovery in apple trees infected with the apple proliferation phytoplasma: an ultrastructural and biochemical study. Phytopathol. 94:203-208.
37. Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M. Snyder, M. 2008. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 320:1344-1349.
38. Pan, X. Q., Welti, R. Wang, X. M. 2010. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nat. Protoc. 5:986-992.
39. Patui, S., Bertolini, A., Clincon, L., Ermacora, P., Braidot, E., Vianello, A. Zancani, M. 2013. Involvement of plasma membrane peroxidases and oxylipin pathway in the recovery from phytoplasma disease in apple (Malus domestica). Physiol. Plantarum. 148:200-213.
40. Pieterse, C. M. Van Loon, L. 2004. NPR1: the spider in the web of induced resistance signaling pathways. Curr. Opin. Plant Biol. 7:456-464.
41. Pieterse, C. M. J., Leon-Reyes, A., Van der Ent, S. Van Wees, S. C. M. 2009. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5:308-316.
42. Porra, R. J. 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis research. 73:149-156.
43. Romanazzi, G., D'Ascenzo, D. Murolo, S. 2009. Field treatment with resistance inducers for the control of grapevine bois noir. J. Plant Pathol. 91:677-682.
44. Ross, A. F. 1961. Systemic acquired resistance induced by localized virus infection in plants. Virology. 14:340-358.
45. Spoel, S. H., Koornneef, A., Claessens, S. M. C., Korzelius, J. P., Van Pelt, J. A., Mueller, M. J., Buchala, A. J., Metraux, J. P., Brown, R., Kazan, K., Van Loon, L. C., Dong, X. N. Pieterse, C. M. J. 2003. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell. 15:760-770.
46. Sugio, A., Kingdom, H. N., MacLean, A. M., Grieve, V. M. Hogenhout, S. A. 2011. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc. Natl. Acad. Sci. USA 108:1254-1263.
47. Sung, Y. C., Lin, C. P. Chen, J. C. 2014. Optimization of virus-induced gene silencing in Catharanthus roseus. Plant Pathol. 63:1159-1167.
48. Tai, C. F., Lin, C. P., Sung, Y. C. Chen, J. C. 2013. Auxin influences symptom expression and phytoplasma colonisation in periwinkle infected with periwinkle leaf yellowing phytoplasma. Ann. Appl. Biol. 163:420-429
49. Wang, Z., Gerstein, M. Snyder, M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57-63.
50. Wu, C. T. Bradford, K. J. 2003. Class I chitinase and β-1,3-glucanase are differentially regulated by wounding, methyl jasmonate, ethylene, and gibberellin in tomato seeds and leaves. Plant Physiol. 133:263-273.
51. Zafari, S., Niknam, V., Musetti, R. Noorbakhsh, S. N. 2011. Effect of phytoplasma infection on metabolite content and antioxidant enzyme activity in lime (Citrus aurantifolia). Acta Physiol. Plant. 34:561-568.
52. Zipfel, C. Felix, G. 2005. Plants and animals: a different taste for microbes? Curr. Opin. Plant Biol. 8:353-360.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52421-
dc.description.abstract植物菌質體 (phytoplasma) 為寄生於植物篩管細胞中之無細胞壁細菌。在自然界中主要透過媒介昆蟲進行傳播,可引起葉片黃化、簇葉、花器綠化等病徵,造成多種經濟作物損失。因接種日日春葉片黃化病植物菌質體之日日春有低機率產生無病徵枝條,其外觀與健康枝條並無差異,而初步接菌試驗中顯示無病徵枝條對日日春葉片黃化病植物菌質體具有相當高之抗性,我們推測在無病徵枝條中可能有某種系統性抗病反應被啟動。本研究利用次世代定序對罹病及健康日日春進行全轉錄體分析,比較罹病株有病徵枝條、罹病株無病徵枝條及健康株枝條之間的基因表現量差異,試著找出無病徵枝條對植物菌質體產生抗病性的可能原因。將次世代定序所得之序列資訊進行de novo assembly,得到64607條平均長度為762 bp的轉錄體序列,並與NCBI non-redundant、Gene Ontology (GO) 以及Kyoto Encyclopedia of Genes and Genomes (KEGG) 等資料庫進行比對及註解,從中得知各個序列與其他物種的關聯性及功能性為何。在植物菌質體病害中,植物激素的失衡被認為是引起病徵的原因之一,同時植物激素在系統性抗病路徑中也扮演著重要角色,透過GO enrichment analysis,發現有病徵枝條對吉貝素的反應下降,對於水楊酸的反應則是兩者皆較健康株有所提升。而在實際測量植物激素的結果中,有病徵枝條中的吉貝素些微下降而水楊酸顯著提升,無病徵枝條中的水楊酸則是些微提升。另外在無病徵枝條中,有較多與葉綠體、醣類和肌醇的新陳代謝以及幾丁質分解相關的基因被提升表現,反之有病徵枝條卻有許多和葉綠體、光合作用相關的基因表現受到抑制。除此之外,有較多與逆境、抗性相關的基因在有病徵枝條中被提高表現,無病徵枝條則和健康植株較為相似。其中也發現協助SA訊息傳導之DIR1 (Defective in Induced Resistance1)及DIR1-like之基因表現量在無病徵枝條與有病徵枝條間有極端差異,這可能與無病徵枝條之形成有所關連。同時在本篇所討論到之部分基因皆以real-time RT-PCR對基因表現量作驗證,與次世代定序獲得的表現量結果具良好的一致性。為了能更進一步了解日日春之基因功能性,本研究嘗試在日日春上建立一個過量表現系統以利後續研究。根據前人及本篇研究獲得的結果顯示,日日春接種植物菌質體產生之無病徵枝條應與水楊酸誘導之抗性反應有所關聯,但這樣的抗性反應並不是每次都能成功抵禦植物菌質體之入侵,須更進一步地釐清其細節。期望在本研究中建立之日日春轉錄體資料庫及對於無病徵枝條系統性抗病之線索,可以提供未來更進一步研究植物對抗植物菌質體病害之方向。zh_TW
dc.description.abstractPhytoplasmas are wall-less prokaryotic plant pathogens that are restricted in phloem. They are transmitted by insect vectors, and can cause severe symptoms including yellows, witches’ broom and virescence on many economically important crops, therefore result in yield loss worldwide. Periwinkle leaf yellowing (PLY) phytoplasma induce witches’ broom symptoms on infected periwinkle plants. Interestingly, there are low probability of developing non-symptomatic shoots on infected plants. Previous data showed that these shoots were highly resistant to PLY phytoplasma, which we presumed systemic resistance might be induced in these shoots. To understand the mechanism of this potential systemic resistance, we compared transcriptome differences among healthy, symptomatic and non-symptomatic shoots using RNA-seq. A de novo assembly was performed to assemble pair-end reads from all conditions, and finally, 64607 unigenes were obtained with average length of 762 bp. These unigenes were annotated by comparing these unigenes with the NCBI non-redundant (nr), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases using BLAST and Blast2GO program. Phytohormone imbalance has been considered to be one of the main causes of the disease symptoms, it has also been demonstrated to play important roles in plant systemic resistances. Accordingly, we focused on phytohormone-related genes and found those genes related to the response to gibberellin stimulus were mostly down-regulated in symptomatic group. On the other hand, genes related to the response to salicylic acid stimulus were mostly induced in both symptomatic and non-symptomatic group. In the measurement results of GA and SA content in leave tissues, the GA content was decreased in symptomatic group and SA content was increased both in non-symptomatic and symptomatic group. After performing GO enrichment analysis by Fisher’s exact test, there were more up-regulated genes related to chloroplast, inositol and carbohydrate metabolic, chitin catabolic in non-symptomatic group. But in the down-regulated genes from symptomatic group, gene related to chloroplast and photosynthesis. Furthermore, the expressions of stress-related genes were mostly up-regulated in symptomatic group; in contrast, the expression levels of these genes in non-symptomatic group were more similar with healthy group. We found DIR1 (Defective in Induced Resistance1) and DIR1-like, which were related to SAR signal transportation, expressed differently between non-symptomatic shoot and symptomatic shoot. This difference may relate to non-symptomatic shoots formation. The expression values of these key genes that we discussed in this study were confirmed using real-time RT-PCR, the tendency between RSEM and real-time RT-PCR were consistent in most genes. For more realizing the gene functions of periwinkle, we also attempted to construct a transient overexpression system in periwinkle for further experiments. According to the results from previous and this studies, the formation of non-symptomatic shoots may relate to SA dependent defense pathway, but this defense response was not always defense successfully against phytoplasma and we need more information to dissect the details of this systemic resistance in periwinkle. Expecting the transcriptome database and our discoveries in periwinkle defense against PLY phytoplasma could provide novel insights for further research in defense to phytoplasma and other plant pathogens.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:14:21Z (GMT). No. of bitstreams: 1
ntu-104-R02633025-1.pdf: 1958589 bytes, checksum: b7af0e3c50bdf73dff8f7ebe15eedfda (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員審定書 I
致謝 II
摘要 IV
Abstract VI
Introduction 1
Materials and Methods 7
Plant materials and phytoplasma inoculation 7
RNA extraction and RNA-seq 7
De novo sequence assembly 8
Gene annotation 8
Gene expression calculation and differential expression analysis 9
GO enrichment analysis 9
Phytohormone measurement 11
Photosynthesis efficiency and chlorophyll content measurement 12
Cloning of DIR1 and DIR1-like cDNA for transient transformation to periwinkle 13
Transient overexpression system 13
cDNA synthesis 14
Real-time RT-PCR 14
Results 16
Sequence de novo assembly and annotation 16
Differential expression analysis 16
GO term enrichment analysis 17
GA biosynthesis influenced in non-symptomatic and symptomatic groups 18
SA biosynthesis influenced in non-symptomatic and symptomatic groups 20
Influences of other phytohormones 20
Suppression of photosynthesis in symptomatic leaves 21
Influences on carbohydrate metabolism pathway 22
Altered expressions of defense-related genes in non-symptomatic and symptomatic shoots 22
Transient overexpression of DIR1 in periwinkle 23
Discussion 25
References 32
Tables and Figures 41
Supplementary Tables and Figures 60
dc.language.isoen
dc.subject植物菌質體zh_TW
dc.subject日日春葉片黃化病zh_TW
dc.subject次世代定序zh_TW
dc.subject轉錄體zh_TW
dc.subject植物激素zh_TW
dc.subject系統性抗病zh_TW
dc.subjectRNA-seqen
dc.subjectphytoplasmaen
dc.subjectperiwinkle leaf yellowingen
dc.subjectsystemic resistanceen
dc.subjecttranscriptomeen
dc.subjectphytohormoneen
dc.title利用次世代定序對具病徵表現差異性之葉片黃化病罹病日日春進行轉錄體分析zh_TW
dc.titleTranscriptomic analysis using RNA-seq to dissect symptom variations in Catharanthus roseus infected by periwinkle leaf yellowing phytoplasmaen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.coadvisor陳仁治(Jen-Chih Chen)
dc.contributor.oralexamcommittee王淑珍(Shu-Jen Wang),鍾嘉綾(Chia-Lin Chung),郭志鴻(Chih-Horng Kuo)
dc.subject.keyword植物菌質體,日日春葉片黃化病,次世代定序,轉錄體,植物激素,系統性抗病,zh_TW
dc.subject.keywordphytoplasma,periwinkle leaf yellowing,RNA-seq,transcriptome,phytohormone,systemic resistance,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2015-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
1.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved