請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52407
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林博雄(Po-Hsiung Lin) | |
dc.contributor.author | Chia-Ying Lu | en |
dc.contributor.author | 呂佳穎 | zh_TW |
dc.date.accessioned | 2021-06-15T16:13:59Z | - |
dc.date.available | 2015-08-25 | |
dc.date.copyright | 2015-08-25 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-18 | |
dc.identifier.citation | 洪逸文,1994:台北混合層高度之氣候研究。國立台灣師範大學碩士論文。
pp91. 陳泰然、周鴻祺、廖珮娟及楊進賢,2009:暖季弱綜觀強迫下中北台灣午後對 流的氣候特徵。大氣科學,37,No.2,69-108。 彭啟明,1994:台灣北部地區混合層高度的觀測與模擬。國立中央大學碩士論 文,pp94。 黃隆明、張台聖,2012:混合層高度簡易估算法之探討。水土保持學報 44(3) ,231–250。 劉沛滕,2013:臺北盆地東北季風時期之低空風切研究。國立台灣大學碩士論 文。pp112. 薛湘畬,2000:台灣北部地區大氣折射率之分析與應用,國立中央大學太空科 學研究所碩士論文。pp38. Aron, R., 1983. Mixing height - an inconsistent indicator of potential air pollution concentrations. Atmospheric Environment 17, 2193 - 2197. Bolton, D., 1980: The computation of equivalent potential temperature.Mon. Wea. Rev.,108, 1046–1053. Chou C.C.-K., C.-T. Lee, W.-N. Chen, S.-Y. Chang, T.-K. Chen, C.-Y. Lin, J.-P. Chen, 2007: Lidar observations of the diurnal variations in the depth of urban mixing layer: a case study on the air quality deterioration in Taipei, Taiwan Science of the Total Environment, 374, pp. 156–166 Chan, P. W. and C. M. Li, 2012:Comparison of Total Cloud Amount Determined by a Ceilometer and a Microwave Radiometer. 8 th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, 19 - 23 October 2009, Delft, The Netherlands. Costa-Surós, M., Calbó, J., González, J. A., and Long, C. N., 2013: Comparing the cloud vertical structure derived from several methods based on measured atmospheric profiles and active surface measurements, Atmos. Chem. Phys. Discuss., 13, 14405-14445, doi:10.5194/acpd-13-14405-2013. Eresmaa, N., A. Karppinen, S. M. Joffre, J. Räsänen,and H. Talvitie, 2006: Mixing height determination by ceilometer. Atmos. Chem. Phys., 6, 1485–1493. Garratt, J. R. (1992), The Atmospheric Boundary Layer, 335 pp., Cambridge Atmospheric and Space Science Series, Cambridge Univ. Press. Haeffelin, M., and Coauthors, 2011: Evaluation of mixing-height retrievals from automatic profiling lidars and ceilometers in view of future integrated networks in Europe. Bound.-Layer Meteor., 143, 49–75. Holtslag, A. A. M., Svensson, G., Baas, P., Basu, S., Beare, B., Beljaars, A. C. M., et al., 2013: Stable atmospheric boundary layers and diurnal cycles: challenges for weather and climate models. Bull. Am. Meteorol. Soc. 94, 1691–1706. doi: 10.1175/BAMS-D-11-00187.1 Hicks M., D. Atkinson, B. B. Demoz, K. C. Vermeesch and R. Delgado, 2015: The National Weather Service’s Ceilometer Planetary Boundary Layer Project. Seventh Symposium on Lidar Atmospheric Applications. 4-8 Jan., Phonex, Arizona. Holzworth, C. G., 1964: Estimates of mean maximum mixing depths in the contiguous United States. Mon. Wea. Rev., 92, 235–242. Ioana, U., S. Stefan, D. Nicolae, 2010:Investigation of the cloud cover and planetary boundary layer (PBL) characteristics using ceilometer CL-31, Romanian Reports in Physics, 62, 396–404. Johns, R. H., J. M. Davies, and P. W. Leftwich, 1993: Some wind and instability parameters associated with strong and violent tornadoes. 2. Variations in the combinations of wind and instability parameters. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., 79, Amer. Geophys. Union, 583-590. Jones, D.E., 1985. Mixing depth in La Trobe Valley. Clean Air in Australia 19, 49 - 51. Liu, Y.Q., Goodrick, S.A., Achtemeier, G.L., Forbus, K., Combs, D., 2011:Smoke plume height measurements of prescribed burns in the southeastern United States. Int. J. Wildland Fire . Lokoshchenko M.A., 2002: A new approach to the height determination of the mixing layer. In: Proceedings of the 11thISARS, Rome, Italy, pp.235-238. McKendry, I., D. Van der Kamp, K. Strawbridge, A. Christen and B. Crawford, 2009: Simultaneous Observations of Boundary-layer Aerosol Layers with CL31 Ceilometer and 1064/532 nm Lidar. Atmos. Environ. 43, 5847–5852. Münkel, C., N. Eresmaa, J. Räsänen, and A. Karppinen, 2007: Retrieval of mixing height and dust concentration with lidar ceilometer. Bound.-Layer Meteor., 124, 117–128. Münkel C, R.Roininen, 2010: Automatic Monitoring of Boundary Layer Structures with Ceilometers. Available online at the Vaisala website. Martucci, G., R.Matthey, V. Mitev, and H. Richner, 2007: Comparison between backscatter lidar and radiosonde measurements of the diurnal and nocturnal stratification in the lower troposphere, J. Atmos. Ocean. Tech., 24, 1231–1244. Oke, T. R. (1988), Boundary Layer Climates, 2nd ed., 435 pp., Halsted Press, New York. Seibert, P., F. Beyrich, S. E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier, 2000: Review and intercomparison of the mixing height. Atmos. Environ., 34, 1001–1027. Seidel, D. J., C. O. Ao, and K. Li, 2010: Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis, J. Geophys. Res.,115, D16113, doi:10.1029/2009JD013680. Sorbjan, Z., 1989: Structure of the Atmospheric Boundary Layer, 317 pp.,Prentice Hall, Englewood Cliffs, N.J. Steyn, D. G., M. Baldi and R. M. Hoff, 1999: The detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles.Journal Of Atmospheric And Oceanic Technology, 16(7), 953–959. Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology, 666pp., Dordrecht, Kluwer. Thomas, W., 2013: Transitioning to Operations: Lidars and Ceilometers. WMO TECO-2012, Brussels,Belgium. Vaisala, 2006: Vaisala ceilometer CL31 user’s guide. Vaisala Oyj, 134 pp. Vogelezang, D. H. P. and A. A. M. Holtslag,, 1996: Evolution and model impacts of the alternative boundary layer formulations,Boundary-Layer Meteorol., 81, 245–269. Wang, X. Y. and K. C. Wang, 2014: Estimation of atmospheric mixing layer height from radiosonde data, Atmos. Meas. Tech., 7, 1701-1709, doi:10.5194/amt-7-1701-2014. Zhang, J. Q., Z. Q. Li, H. B. Chen, and M. Cribb, 2013: Validation of a radiosonde-based cloud layer detection method against a groundbased remote sensing method at multiple ARM sites, J.Geophys. Res.Atmos., 118, 846–858, doi:10.1029/2012JD018515. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52407 | - |
dc.description.abstract | 國內外對於大氣邊界層(ABL)都投入了大量觀測、模擬以及應用研究,常見的ABL觀測設備以氣球無線電探空儀(radiosonde)配合Holtzworth方法進行當地混合層高度(MLH)推估,過程一次性、簡單收並廣為環境工程界使用;遙測設備比如無線電聲波探測系統(RASS)、聲波雷達(SODAR)以及氣膠光達(aerosol Lidar),則是常見的大氣邊界層連續觀測的手段。
本研究分析台灣地區所有常態性無線電探空儀作業資料(板橋、花蓮、馬公、屏東及綠島探空站站),發現大部分探空測站於00:00UTC、12:00UTC 的MLH大約都分布在 400m~900m之間,並無明顯日夜和季節變化,其中板橋測站混合層高度都相對較高、花蓮測站則都相對較低。由於氣球探空方式難以進行長時間連續觀測,因此本研究透過台灣大學大氣科學系Vaisala CL31 Ceilometer Lidar雲冪儀,進行台灣各地MLH觀測和了解MLH變化特性。 本研究參考前人研究(Muenkel,2007)發展Ceilometer Lidar判斷MLH之邏輯,並透過板橋探空站在2014年夏季和2015年冬季兩次密集觀測實驗加以比較驗證,結果顯示CL31 雲冪儀和氣球無線電探空儀所判定的混合層高度,在剃除降雨的資料後差距大部分都不到 200 公尺,R2值也都有 0.8 以上。 最後我們利用這套CL31雲冪儀自2012年起陸續在台灣不同地點,所進行的短期大氣邊界層觀測,依據不同地景整理出都會、郊鄉、濱海與山區的MLH資訊。 | zh_TW |
dc.description.abstract | The observation, model simulation and applications in atmosphere boundary layer (ABL) are vital in many countries. The popular observation solution on ABL is balloon-borne radiosonde sounding and using Holtzworth method to estimate mixed layer height (MLH). This approach is one-time shot and simple for environmental engineer application. Another solution for continuous ABL observation is remoting sensing devices, such as RASS, SODAR and aerosol Lidar.
In this study, we analyze all the operational radiosonde data (launch at 00:00 UTC and 12:00 UTC) and found that most MLH is about 400m to 900m at these stations with no significant diurnal and seasonal variations. MLH is always higher at Banchiao, lower at Hualien. We then collected Vaisala CL31 Ceilometer Lidar data from NTU-AS at different locations to analyze MLH characteristics. The gradient method algorithm for MLH designed by Muenkel (2007) is used in our study. After two intensive inter-comparisons between radiosonde in the summer of 2014 and the winter of 2015, we found the MLH difference from these two observations is less than 200 meters and their correlation (R2) is greater than 0.8. At the end of this study, we evaluate all the CL31 short-term observation data (from 2012 until 2015) at urban, rural, coast and mountain sites in Taiwan and give MLH information on these different landscapes. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:13:59Z (GMT). No. of bitstreams: 1 ntu-104-R02229018-1.pdf: 21101541 bytes, checksum: 2d7e23f13b98220642e8645876b9ccbb (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 目錄
摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 v 圖目錄 vi 第一章 前言 1 1.1 大氣邊界層及混合層 1 1.2 文獻回顧 1 1.3 科學目標 3 第二章 資料特性和處理及計算方法 5 2.1 Vaisala RS92 無線電探空儀及其資料特性 5 2.2 探空資料之處理與計算 5 2.2.1 CAPE、LCL 計算方法 5 2.2.2 多變數梯度法 6 2.3 雲冪儀 8 2.3.1 CL31 與 RCEC Lidar同地觀測比較 10 2.3.2 CL31 訊號梯度分析法 11 第三章 無線電探空呈現的台灣大氣剖面氣候特徵 12 3.1 整層大氣剖面特徵 12 3.2 舉升凝結層高度以及對流可用位能 15 3.3 台灣地區混合層高度 16 第四章 雲冪儀和無線電探空密集比對實驗 17 4.1 夏季密集比對觀測實驗 17 4.2 冬季密集比對觀測實驗 19 4.3 雲冪儀判定混合層高度的可用性 21 第五章 雲冪儀在台灣各地的短期觀測 MLH 結果 22 5.1 都市情境 22 5.1.1 台北三重地區 22 5.1.2 高雄澄清湖地區 23 5.2 郊區情境 24 5.3 海濱 25 5.3.1 苗栗苑港 25 5.3.2 台中市梧棲 25 5.4 山區 26 5.4.1 南投縣竹山鎮臺灣大學實驗林溪頭營林區 26 5.4.2 南投縣和平鄉臺灣大學山地農場春陽分場 27 5.5 討論及整理 28 第六章 結論與未來展望 29 參考文獻 33 表 37 圖 45 | |
dc.language.iso | zh-TW | |
dc.title | 台灣環島之大氣邊界層特性 | zh_TW |
dc.title | The characteristics of atmospheric boundary layer surrounding Taiwan Island | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄭芳怡(Fang-Yi Cheng),吳健銘(Chien-Ming Wu),陳韡鼐(Wei-Nai Chen),賴彥任(Yan-Ren Lai) | |
dc.subject.keyword | 雲?儀,混合層高度,探空,短期大氣邊界層觀測,台灣地區探空剖面, | zh_TW |
dc.subject.keyword | Ceilometer,Mixing layer height,Radiosonde,Short-term atmosphere boundary layer observation,Radiosonde profiles in Taiwan, | en |
dc.relation.page | 111 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-18 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 20.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。