請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52397完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 姜昱至 | |
| dc.contributor.author | Kuan-Han Lee | en |
| dc.contributor.author | 李冠翰 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:13:43Z | - |
| dc.date.available | 2020-09-24 | |
| dc.date.copyright | 2015-09-24 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-18 | |
| dc.identifier.citation | [1] Petersen PE, Bourgeois D, Ogawa H, Estupinan-Day S, Ndiaye C. The global burden of oral diseases and risks to oral health. Bulletin of the World Health Organization. 2005;83:661-9. [2] Dixit LP, Shakya A, Shrestha M, Shrestha A. Dental caries prevalence, oral health knowledge and practice among indigenous Chepang school children of Nepal. BMC oral health. 2013;13:20. [3] Vail D. Dorland's Illustrated Medical Dictionary. Elsevier; 1957. [4] Fejerskov O, Kidd E. Dental caries: the disease and its clinical management: John Wiley Sons; 2009. [5] Silverstone LM. Dental caries. New York: MacMillian I. Dental caries. New York: MacMillian. 1981. [6] Fejerskov O CBIFO, Ekstrand J, Burt BA, editors. Dynamics of caries lesion formation. Fluoride in dentistry 1996:187–213. [7] Selwitz RH, Ismail AI, Pitts NB. Dental caries. The Lancet. 2007;369:51-9. [8] Jain P, Shankar A, Ramaiah S. Dental caries and social deprivation. Lancet. 2007;369:639. [9] Hicks J, Garcia-Godoy F, Flaitz C. Biological factors in dental caries enamel structure and the caries process in the dynamic process of demineralization and remineralization (part 2). Journal of clinical pediatric dentistry. 2005;28:119-24. [10] Featherstone JD. Prevention and reversal of dental caries: role of low level fluoride. Community dentistry and oral epidemiology. 1999;27:31-40. [11] Rolla G. On the role of calcium fluoride in the cariostatic mechanism of fluoride. Acta Odontol Scand. 1988;46. [12] Kidd E. Essentials of Dental Caries: The Disease and Its Management: The disease and its management: Oxford University Press; 2005. [13] Nagase H, Woessner JF. Matrix metalloproteinases. Journal of Biological Chemistry. 1999;274:21491-4. [14] Tezvergil-Mutluay A, Agee KA, Hoshika T, Carrilho M, Breschi L, Tjaderhane L, et al. The requirement of zinc and calcium ions for functional MMP activity in demineralized dentin matrices. Dental materials : official publication of the Academy of Dental Materials. 2010;26:1059-67. [15] Hedenbjork-Lager A, Bjorndal L, Gustafsson A, Sorsa T, Tjaderhane L, Akerman S, et al. Caries correlates strongly to salivary levels of MMP-8. Caries Res. 2015;49:1-8. [16] Mazzoni A, Mannello F, Tay F, Tonti G, Papa S, Mazzotti G, et al. Zymographic analysis and characterization of MMP-2 and-9 forms in human sound dentin. Journal of dental research. 2007;86:436-40. [17] Sulkala M, Larmas M, Sorsa T, Salo T, Tjäderhane L. The localization of matrix metalloproteinase-20 (MMP-20, enamelysin) in mature human teeth. Journal of dental research. 2002;81:603-7. [18] Nishitani Y, Yoshiyama M, Wadgaonkar B, Breschi L, Mannello F, Mazzoni A, et al. Activation of gelatinolytic/collagenolytic activity in dentin by self‐etching adhesives. European journal of oral sciences. 2006;114:160-6. [19] Tjäderhane L, Larjava H, Sorsa T, Uitto V-J, Larmas M, Salo T. The activation and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions. Journal of dental research. 1998;77:1622-9. [20] Hannas AR, Pereira JC, Granjeiro JM, Tjaderhane L. The role of matrix metalloproteinases in the oral environment. Acta odontologica Scandinavica. 2007;65:1-13. [21] Chaussain C, Boukpessi T, Khaddam M, Tjaderhane L, George A, Menashi S. Dentin matrix degradation by host matrix metalloproteinases: inhibition and clinical perspectives toward regeneration. Frontiers in physiology. 2013;4:308. [22] Heller KE, Eklund SA, Burt BA. Dental caries and dental fluorosis at varying water fluoride concentrations. Journal of public health dentistry. 1997;57:136-43. [23] Suntharalingam P, Cvitkovitch D. Quorum sensing in streptococcal biofilm formation. Trends Microbiol. 2005;13:3 - 6. [24] Filloux A, Vallet I. [Biofilm: set-up and organization of a bacterial community]. Medecine sciences: M/S. 2003;19:77-83. [25] Parsek MR, Fuqua C. Biofilms 2003: emerging themes and challenges in studies of surface-associated microbial life. Journal of bacteriology. 2004;186:4427-40. [26] Stoodley P, Sauer K, Davies D, Costerton JW. Biofilms as complex differentiated communities. Annual Reviews in Microbiology. 2002;56:187-209. [27] Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials. 2012;33:5967-82. [28] Monroe D. Looking for chinks in the armor of bacterial biofilms. PLoS Biol. 2007;5:e307. [29] Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical microbiology reviews. 2002;15:167-93. [30] Park A, Jeong H-H, Lee J, Kim KP, Lee C-S. Effect of shear stress on the formation of bacterial biofilm in a microfluidic channel. BioChip Journal. 2011;5:236-41. [31] Li Y-H, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG. Natural genetic transformation ofstreptococcus mutans growing in biofilms. Journal of bacteriology. 2001;183:897-908. [32] Li Y-H, Tang N, Aspiras MB, Lau PC, Lee JH, Ellen RP, et al. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. Journal of bacteriology. 2002;184:2699-708. [33] Aspiras MB, Ellen RP, Cvitkovitch DG. ComX activity of Streptococcus mutans growing in biofilms. FEMS Microbiol Lett. 2004;238:167-74. [34] Marsh P. Dental plaque as a biofilm and a microbial community - implications for health and disease. BMC Oral Health. 2006;6:S14. [35] Kidd E, Fejerskov O. What constitutes dental caries? Histopathology of carious enamel and dentin related to the action of cariogenic biofilms. Journal of Dental Research. 2004;83:35-8. [36] Featherstone JDB. The Continuum of Dental Caries—Evidence for a Dynamic Disease Process. Journal of Dental Research. 2004;83:39-42. [37] Usha C, Sathyanarayanan R. Dental caries-a complete changeover (Part I). Journal of conservative dentistry: JCD. 2009;12:46. [38] Mosci F PS, Bassa S, Capuano A, Marconi PF. The role of Streptococcus mutans in human caries. Minerva Stomatol. 1990 39:413-29. [39] Becker MR, Paster BJ, Leys EJ, Moeschberger ML, Kenyon SG, Galvin JL, et al. Molecular analysis of bacterial species associated with childhood caries. Journal of clinical microbiology. 2002;40:1001-9. [40] Aas JA, Griffen AL, Dardis SR, Lee AM, Olsen I, Dewhirst FE, et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol. 2008;46:1407-17. [41] Takahashi N, Nyvad B. Caries ecology revisited: microbial dynamics and the caries process. Caries Res. 2008;42:409-18. [42] Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives. Journal of dental research. 2011;90:294-303. [43] Hamada S, Slade HD. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiological reviews. 1980;44:331. [44] Loesche W. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986;50:353 - 80. [45] Mosci F, Perito S, Bassa S, Capuano A, Marconi P. [The role of Streptococcus mutans in human caries]. Minerva stomatologica. 1990;39:413-29. [46] Tanzer J, Thompson A, Wen Z, Burne R. Streptococcus mutans: fructose transport, xylitol resistance, and virulence. Journal of dental research. 2006;85:369-73. [47] Hamada S, Slade HD. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Review. 1980;44:331-84. [48] Jean-San C. Analysis of a Functionally Important Sequence in the Glucosyltransferases of Streptococcus mutans 1993. [49] Lodge J, Jacobson GR. Starvation-induced stimulation of sugar uptake in Streptococcus mutans is due to an effect on the activities of preexisting proteins of the phosphotransferase system. Infection and Immunity. 1988;56:2594-600. [50] IR R. A review of direct orthodontic bonding. Br Dent J. 1975;2:171. [51] Feilzer AJ, De Gee AJ, Davidson CL. Curing contraction of composites and glass-ionomer cements. J Prosthet Dent. 1988;59:297-300. [52] Kidd E, Toffenetti F, Mjör I. Secondary caries. International Dental Journal. 1992;42:127-38. [53] Mjör IA. The reasons for replacement and the age of failed restorations in general dental practice. Acta Odontologica. 1997;55:58-63. [54] Mjör IA, Toffenetti F. Secondary caries: A literature review with case reports. Quintessence international (Berlin, Germany: 1985). 2000;31:165-79. [55] Fontana M, Gonzalez-Cabezas C. Secondary caries and restoration replacement: An unresolved problem. Compendium of continuing education in dentistry (Jamesburg, NJ: 1995). 2000;21:15-8, 21-4, 6 passim; quiz 30. [56] Mo S-s, Bao W, Lai G-y, Wang J, Li M-y. The microfloral analysis of secondary caries biofilm around Class I and Class II composite and amalgam fillings. BMC infectious diseases. 2010;10:241. [57] Ástvaldsdóttir Á, Dagerhamn J, van Dijken JW, Naimi-Akbar A, Sandborgh-Englund G, Tranæus S, et al. Longevity of posterior resin composite restorations in adults–A systematic review. Journal of dentistry. 2015. [58] Bernardo M, Luis H, Martin MD, Leroux BG, Rue T, Leitão J, et al. Survival and reasons for failure of amalgam versus composite posterior restorations placed in a randomized clinical trial. The Journal of the American Dental Association. 2007;138:775-83. [59] Beyth N, Domb AJ, Weiss EI. An in vitro quantitative antibacterial analysis of amalgam and composite resins. Journal of dentistry. 2007;35:201-6. [60] Weinmann W, Thalacker C, Guggenberger R. Siloranes in dental composites. Dental Materials. 2005;21:68-74. [61] Ilie N, Jelen E, Clementino-Luedemann T, Hickel R. Low-shrinkage composite for dental application. Dental Materials Journal. 2007;26:149-55. [62] Lien W, Vandewalle KS. Physical properties of a new silorane-based restorative system. Dental Materials. 2010;26:337-44. [63] Bagis Y, Baltacioglu I, Kahyaogullari S. Comparing microleakage and the layering methods of silorane-based resin composite in wide Class II MOD cavities. Operative Dentistry. 2009;34:578-85. [64] Chen C-Y, Huang C-K, Lin S-P, Han J-L, Hsieh K-H, Lin C-P. Low-shrinkage visible-light-curable urethane-modified epoxy acrylate/SiO2 composites as dental restorative materials. Composites Science and Technology. 2008;68:2811-7. [65] Li F, Weir MD, Chen J, Xu HH. Effect of charge density of bonding agent containing a new quaternary ammonium methacrylate on antibacterial and bonding properties. Dental materials : official publication of the Academy of Dental Materials. 2014;30:433-41. [66] Melo MA, Cheng L, Zhang K, Weir MD, Rodrigues LK, Xu HH. Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate. Dental materials : official publication of the Academy of Dental Materials. 2013;29:199-210. [67] Savarino L, Cervellati M, Stea S, Cavedagna D, Donati M, Pizzoferrato A, et al. In vitro investigation of aluminum and fluoride release from compomers, conventional and resin-modified glass-ionomer cements: a standardized approach. Journal of Biomaterials Science, Polymer Edition. 2000;11:289-300. [68] L. SAVARINO MC, S. STEA, D. CAVEDAGNA, M. E. DONATI, A. PIZZOFERRATO and M. VISENTIN In vitro investigation of aluminum and fluoride release from compomers, conventional and resin-modified glass-ionomer cements: A standardized approach. J Biomater Sci Polymer Edn. 2000;11:289-300. [69] Acta RG. On the role of calicium fluoride in the cariostatic mechanism of fluoride. Odont Scand. 1988;46:341-5. [70] Toumba KJ CM. Slow-release fluoride. Caries Res 1993;27:43-6. [71] J. TC. Review on fluoride, with special emphasis on calcium fluoride mechanisms in caries prevention. . European Journal of Oral Sciences. 1997;105:461-5. [72] Qvist V LL, Poulsen A, Teglers PT. Longevity and cariostatic effects of everyday conventional glass-ionomer and amalgam restorations in primary teeth:three-year results. Journal of dental research. 1997;76:1387-96. [73] Yamamoto H, Nomachi M, Yasuda K, Iwami Y, Ebisu S, Komatsu H, et al. Fluorine uptake into the human tooth from a thin layer of F-releasing material. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2007;260:194-200. [74] Verbeeck RM DME, Marks LA, De Moor RJ, De Witte AM, Trimpeneers LM. . Fluoride release process of (resin-modified) glass-ionomer cements versus (polyacid-modified) composite resins. Biomaterials. 1998;19:509-19. [75] Lee SY DD, Huang HM, Shih YH. . Fluoride ion diffusion from a glass-ionomer cement. J Oral Rehabil 2000;27:576-86. [76] Attar N, Önen A. Fluoride release and uptake characteristics of aesthetic restorative materials. Journal of Oral Rehabilitation. 2002;29:791-8. [77] Naoum S, Ellakwa A, Martin F, Swain M. Fluoride release, recharge and mechanical property stability of various fluoride-containing resin composites. Oper Dent. 2011;36:422-32. [78] Huang S-Y. Development of Fluorinated Epigallocatechin Gallate Modified Dental Composite Resin 2014. [79] Xu X, Burgess JO. Compressive strength, fluoride release and recharge of fluoride-releasing materials. Biomaterials. 2003;24:2451-61. [80] Creanor SL CL, Saunders WP, Strang R, Foye RH. . Fluoride uptake and release characteristics of glass ionomer cements. Caries Res. 1994;28:322-8. [81] Williams JA BR, Pearson GJ. . A long term study of fluoride release from metal-containing conventional and resin-modified glass-ionomer cements. J Oral Rehabil. 2001;28:41-7. [82] Vermeersch G, Leloup G, Vreven J. Fluoride release from glass–ionomer cements, compomers and resin composites. Journal of Oral Rehabilitation. 2001;28:26-32. [83] Dionysopoulos P, Kotsanos N, Pataridou A. Fluoride release and uptake by four new fluoride releasing restorative materials. Journal of oral rehabilitation. 2003;30:866-72. [84] Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports. 2000;28:1-63. [85] Sozer N, Kokini JL. Nanotechnology and its applications in the food sector. Trends in Biotechnology. 2009;27:82-9. [86] Giannelis E. A new strategy for synthesizing polymer-ceramic nanocomposites. JOM. 1992;44:28-30. [87] Weerasooriya R, Wickramarathne H, Dharmagunawardhane H. Surface complexation modeling of fluoride adsorption onto kaolinite. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1998;144:267-73. [88] Weerasooriya R, Wickramarathna HUS. Modeling Anion Adsorption on Kaolinite. Journal of Colloid and Interface Science. 1999;213:395-9. [89] Richerson D, Richerson DW, Lee WE. Modern ceramic engineering: properties, processing, and use in design: CRC press; 2005. [90] Jung IH, Yun JH, Cho AR, Kim CS, Chung WG, Choi SH. Effect of (-)-epigallocatechin-3-gallate on maintaining the periodontal ligament cell viability of avulsed teeth: a preliminary study. Journal of periodontal implant science. 2011;41:10-6. [91] Nakagawa K, Ninomiya M, Okubo T, Aoi N, Juneja LR, Kim M, et al. Tea catechin supplementation increases antioxidant capacity and prevents phospholipid hydroperoxidation in plasma of humans. J Agric Food Chem 1999;47:3967-73. 1999;47:3967-73. [92] Sato T, Miyata G. The nutraceutical benefit, part iv: garlic. Nutrition. 2000;16:787-8. [93] Yang CS, Maliakal P, Meng X. Inhibition of carcinogenesis by tea. Annu Rev Pharmacol Toxicol. 2002;42:25-54. [94] Gordon NC, Wareham DW. Antimicrobial activity of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) against clinical isolates of Stenotrophomonas maltophilia. International journal of antimicrobial agents. 2010;36:129-31. [95] Gradisar H, Pristovsek P, Plaper A, Jerala R. Green tea catechins inhibit bacterial DNA gyrase by interaction with its ATP binding site. J Med Chem. 2007;50:264-71. [96] Hirasawa M, Takada K, Otake S. Inhibition of acid production in dental plaque bacteria by green tea catechins. Caries Res. 2006;40:265-70. [97] Xu X, Zhou XD, Wu CD. The tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of Streptococcus mutans. Antimicrobial agents and chemotherapy. 2011;55:1229-36. [98] Horiba N, Maekawa Y, Ito M, Matsumoto T, Nakamura H. A pilot study of Japanese green tea as a medicament: antibacterial and bactericidal effects. . J Endod 1991;17:122-4. [99] Tsai Y-R. Development of Bacteriostatic Epigallocatechin Gallate Modified Dental Composite Resin 2013. [100] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods. 1983;65:55-63. [101] SKJöRLAND KK. Plaque accumulation on different dental filling materials. European Journal of Oral Sciences. 1973;81:538-42. [102] Skj?rland KK, S?nju T. Effect of sucrose rinses on bacterial colonization on amalgam and composite. Acta Odontologica. 1982;40:193-6. [103] Weitman RT, Eames WB. Plaque accumulation on composite surfaces after various finishing procedures. The Journal of the American Dental Association. 1975;91:101-6. [104] Beyth N, Farah S, Domb AJ, Weiss EI. Antibacterial dental resin composites. Reactive and Functional Polymers. 2014;75:81-8. [105] Chu C-H, Lee AH-C, Zheng L, Mei ML, Chan GC-F. Arresting rampant dental caries with silver diamine fluoride in a young teenager suffering from chronic oral graft versus host disease post-bone marrow transplantation: a case report. BMC research notes. 2014;7:3. [106] sbrucker RA EJ, Wolz E, Davidovich A, Bausch J,. Safety studies on epigallocatechin gallate (EGCG) preparations. Food Chem Toxicol 2006;44:636-50. [107] Kato MT, Magalhães AC, Rios D, Hannas AR, Attin T, Buzalaf MAR. Protective effect of green tea on dentin erosion and abrasion. Journal of Applied Oral Science. 2009;17:560-4. [108] Al-Naimi OT, Itota T, Hobson RS, McCabe JF. Fluoride release for restorative materials and its effect on biofilm formation in natural saliva. Journal of materials science Materials in medicine. 2008;19:1243-8. [109] Chan WD, Yang L, Wan W, Rizkalla AS. Fluoride release from dental cements and composites: a mechanistic study. Dental materials : official publication of the Academy of Dental Materials. 2006;22:366-73. [110] Milgrom P, Zero DT, Tanzer JM. An examination of the advances in science and technology of prevention of tooth decay in young children since the Surgeon General's Report on Oral Health. Academic pediatrics. 2009;9:404-9. [111] Young DA, Lyon L, Azevedo S. The role of dental hygiene in caries management: a new paradigm. American Dental Hygienists Association. 2010;84:121-9. [112] Papas A, Vollmer W, Gullion C, Bader J, Laws R, Fellows J, et al. Efficacy of Chlorhexidine Varnish for the Prevention of Adult Caries A Randomized Trial. Journal of dental research. 2012;91:150-5. [113] Eckert R, Sullivan R, Shi W. Targeted antimicrobial treatment to re-establish a healthy microbial flora for long-term protection. Adv Dent Res. 2012;24:94-7. [114] Shieh D-B. Self-assembly microenvironment-sensing core-shell nanocubes in caries prevention and therapeutics. 中華牙醫學會第三十七次學術研討會. 2014. [115] Todar K. Mechanisms of bacteria1 pathogenicity: Colonization and Invasion. University of Wisconsin Department of Bacteriology Bacteriology at UW-Madison. 1997. [116] Lendenmann U, Grogan J, Oppenheim FG. Saliva and Dental Pellicle-A Review. Advances in Dental Research. 2000;14:22-8. [117] Montanaro L, Campoccia D, Rizzi S, Donati ME, Breschi L, Prati C, et al. Evaluation of bacterial adhesion of Streptococcus mutans on dental restorative materials. Biomaterials. 2004;25:4457-63. [118] Dickert H, Machka K, Braveny I. The uses and limitations of disc diffusion in the antibiotic sensitivity testing of bacteria. Infection. 1981;9:18-24. [119] van der Heijden IM, Levin AS, De Pedri EH, Fung L, Rossi F, Duboc G, et al. Comparison of disc diffusion, Etest and broth microdilution for testing susceptibility of carbapenem-resistant P. aeruginosa to polymyxins. Annals of clinical microbiology and antimicrobials. 2007;6:8. [120] Palenik CJ, Behnen MJ, Setcos JC, Miller CH. Inhibition of microbial adherence and growth by various glass ionomers in vitro. Dental materials : official publication of the Academy of Dental Materials. 1992;8:16-20. [121] Hamilton IR. Biochemical effects of fluoride on oral bacteria. Journal of dental research. 1990;69 Spec No:660-7; discussion 82-3. [122] Jenkins GN. Review of fluoride research since 1959. Archives of oral biology. 1999;44:985-92. [123] Yao K, Gr?n P. Fluoride concentrations in duct saliva and in whole saliva. Caries research. 1970;4:321-31. [124] BRUUN RD. An overview of clinical experience. Journal of the American Academy of Child Psychiatry. 1984;23:126-33. [125] Ekstrand J FO, Silverstone LM, editors. . Fluoride in Dentistry. Copenhagen: Munksgaard. 1988:96. [126] Tatevossian A. Fluoride in dental plaque and its effects. Journal of dental research. 1990;69 Spec No:645-52; discussion 82-3. [127] Wiegand A, Buchalla W, Attin T. Review on fluoride-releasing restorative materials--fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dental materials : official publication of the Academy of Dental Materials. 2007;23:343-62. [128] Hamilton IR, Buckley ND. Adaptation by Streptococcus mutans to acid tolerance. Oral Microbiol Immunol. 1991;6:65-71. [129] Quivey RG, Jr., Kuhnert WL, Hahn K. Adaptation of oral streptococci to low pH. Adv Microb Physiol. 2000;42:239-74. [130] Griswold AR, Chen YY, Burne RA. Analysis of an agmatine deiminase gene cluster in Streptococcus mutans UA159. J Bacteriol. 2004;186:1902-4. [131] Xu X, Zhou XD, Wu CD. Tea catechin epigallocatechin gallate inhibits Streptococcus mutans biofilm formation by suppressing gtf genes. Archives of oral biology. 2012;57:678-83. [132] Lemos JA, Abranches J, Burne RA. Responses of cariogenic streptococci to environmental stresses. Curr Issues Mol Biol. 2005;7:95-107. [133] Hillman JD, Chen A, Snoep JL. Genetic and physiological analysis of the lethal effect of L-(+)-lactate dehydrogenase deficiency in Streptococcus mutans: complementation by alcohol dehydrogenase from Zymomonas mobilis. Infect Immun. 1996;64:4319-23. [134] Du X, Huang X, Huang C, Wang Y, Zhang Y. Epigallocatechin-3-gallate (EGCG) enhances the therapeutic activity of a dental adhesive. Journal of dentistry. 2012;40:485-92. [135] Huebsch N, Mooney DJ. Inspiration and application in the evolution of biomaterials. Nature. 2009;462:426-32. [136] Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428:487-92. [137] Hu L-X, He J, Hou L, Wang H, Li J, Xie C, et al. Biological Evaluation of the Copper/Low-density Polyethylene Nanocomposite Intrauterine Device. PLoS ONE. 2013;8:e74128. [138] Schmalz G. Use of cell cultures for toxicity testing of dental materials—advantages and limitations. Journal of Dentistry. 1994;22, Supplement 2:S6-S11. [139] Pitts B, Willse A, McFeters G, Hamilton M, Zelver N, Stewart P. A repeatable laboratory method for testing the efficacy of biocides against toilet bowl biofilms. Journal of applied microbiology. 2001;91:110-7. [140] Gursoy UK, Kononen E, Pradhan-Palikhe P, Tervahartiala T, Pussinen PJ, Suominen-Taipale L, et al. Salivary MMP-8, TIMP-1, and ICTP as markers of advanced periodontitis. J Clin Periodontol. 2010;37:487-93. [141] Osorio R, Yamauti M, Osorio E, Ruiz-Requena ME, Pashley D, Tay F, et al. Effect of dentin etching and chlorhexidine application on metalloproteinase-mediated collagen degradation. Eur J Oral Sci. 2011;119:79-85. [142] Snoek P, Von den Hoff JW. Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52397 | - |
| dc.description.abstract | 複合樹脂近年來已成為廣泛運用之牙科臨床填補材料,因其具有齒色優美外觀、直接操作與費用低廉等優點,但在光照聚合後產生的體積收縮使牙齒與填補物之間易造成邊緣性滲漏,再加上複合樹脂本身大多缺乏抗齲齒菌能力,使表面容易聚集細菌貼附而形成生物膜,最終造成繼發性齲齒的發生,也是導致複合樹脂失敗最主要的原因。 兒茶素(EGCG)為茶葉茶多酚裡主要成分,具有多樣作用如抗氧化、抗發炎、抗菌,根據研究,EGCG在15.6 µg/ml可以有效抑制90%轉糖糖鏈球菌的生物膜形成,而氟素可以幫助牙齒表面再礦化、減少去礦化、干擾與抑制微生物的生長與代謝。因此本研究目的為研發含氟化高嶺土填料與兒茶素接枝改質複合樹脂,利用高嶺土層狀結構對氟離子良好的吸附效果,合成高嶺土-丙烯醯胺含氟複合物當作複合樹脂中的部分無機填料,讓材料能穩定釋放並再吸收氟素。另外將EGCG做改質,使之在複合樹脂光固化後可接枝在有機基質上,確保材料抑菌的效果。 本研究共分為四部分進行,第一部分為實驗複合樹脂合成。包含有機基質合成、EGCG改質、氟化高嶺土填料及氧化鋁無機填料合成。第二部分為材料性質分析與測試。包含表面微硬度與直徑抗拉強度測試,並且以電子顯微鏡觀察實驗合成複合樹脂斷面及利用能量散射光譜儀分析元素比例與分布狀況。第三部分為材料抑菌效果測試,選用主要致齲齒細菌–轉糖糖鏈球菌為測定目標,以細菌直接接觸法進行複合樹脂錠片表面生物膜培養,再檢測細菌懸浮液光密度值與菌落形成單位多寡,錠片表面以電子顯微鏡觀察轉糖糖鏈球菌生物膜分部狀況,並搭配共軛焦雷射顯微鏡影分析,將死菌與活菌透過紅綠螢光訊號呈現,且量化紅綠螢光訊號強度。第四部分為材料生物相容性測試,利用人類牙髓細胞與複合樹脂進行WST-1細胞增殖測試與乳酸脫氫酶細胞毒性測試。 實驗結果顯示本實驗研發之含氟化高嶺土填料與兒茶素接枝質複合樹脂,在電子顯微鏡觀察下,有機基質與氟化高嶺土填料能夠良好結合而不易脫落,且以能量散射光譜儀分析證實有氟元素存在;物理性質部分,直徑抗拉強度與市售材料相當,但表面微硬度略低於市售材料,因此未來仍須針對此部分進行改良;抑菌效果方面,當加入1000 ppm EGCG與重量比30%氟化高嶺土後的複合樹脂,已能達到良好抑菌效果,優於市售含氟商品Beautifil II與Fuji II LC,且對人類牙髓細胞有良好之生物相容性,故本實驗研發之複合樹脂在臨床應用上對於預防繼發性齲齒具有相當的發展潛力。 | zh_TW |
| dc.description.abstract | Dental composite resin has been widely used as clinical restorative filling material because of its tooth-color appearance, direct filling technique and lower cost. However, the nature of polymerization shrinkage of light-curing composite resin would cause marginal leakage between tooth and restoration. The lack of anti-bacterial ability will give rise to bacteria adhesion and biofilm formation. Consequently, secondary caries take place, which contributed to the major failure reason for the composite resin. The epigallocatechin gallate (EGCG), the main component of tea polyphenols in tea leaves, which presents important physiological properties such as anti-oxidation, anti-inflammation and anti-bacterial etc. According to previous study, 15.6 µg/ml EGCG showed at least 90% inhibition of streptococcus mutans (S. mutans) biofilm formation. In addition, not only does fluoride promote tooth remineralization but it also helps to create an environment for the resistance of microbial growth and metabolism. Therefore, the objects of this study were (1) to development a novel dental composite resin containing fluorinated kaolinite fillers and epigallocatechin gallate. Kaolinite (Al2Si2O5(OH)4), a clay mineral, has been known for its ability to carry and absorption of fluoride due to the layered aluminosilicate structure; (2) to test its anti-bacterial and physical properties. By means of kaolinite, we synthesized fluoridated kaolinite-acrylamide compound as kind of inorganic filler, which will facilitate continuous fluoride release and recharge of experimental composite resin. Furthermore, the EGCG immobilized organic matrix perform significant bacteriostatic effect after light-curing polymerization. This study was carried out in four parts: Part 1:Synthesis of experimental composite resin, including organic matrix, EGCG modification, fluorinated kaolinite fillers and aluminum oxide fillers. Part 2:Material analysis and physical properties evaluation, including surface microhardness and diametral tensile strength. Fractography were examined by scanning electron microscope (SEM). Energy dispersive spectroscopy (EDS) were also conducted for analysis of element ratio and distribution. Part 3:Bacteriostatic assessment. We used S. mutans as our experimental target bacteria, the major cariogenic microorganism responses for dental caries. By means of direct contact with bacterial solution, S. mutans biofilm were formed on composite resin disk surface. We detected the bacterial suspension optical density and colony forming unit per milliliter. The distribution of S. mutans biofilm were observation by SEM. Moreover, the dead and live bacteria were convert to the red and green fluorescence signal through confocal laser microscope. Fluorescence signal intensity were quantified by computer software. Part 4:Biocompatibility test. Human dental pulp cell for WST-1 cell proliferation test and lactate dehydrogenase cytotoxicity assay were performed. The results showed that experimental composite resin can well integrate fluorinated kaolinite inorganic fillers and organic matrix without exfoliation under SEM observations. EDS element analysis confirmed the presence of fluoride. As for physical properties, diametral tensile strength is comparable to commercial products. The surface microhardness appeared slightly lower than commercial products due to its lower filler content compared to commercial filler loading. When experimental composite resin incorporating 30% weight ratio of fluorinated kaolinite and immobilized 1000 ppm EGCG, the bacteriostatic effect was prominent compared to commercial fluorinated material–Beautifil II and Fuji II LC (p<0.05). We believed that this novel dental composite resin has great potential of clinical applications in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:13:43Z (GMT). No. of bitstreams: 1 ntu-104-R01422015-1.pdf: 11123851 bytes, checksum: 1169d348962dc6316ca41bc8bf053005 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 摘要 I Abstract III 目錄 VI 圖目錄 XI 表目錄 XIV 第一章 緒論 1 1-1 齲齒(Caries) 1 1-1-1 齲齒致病機制 1 1-1-2 生物膜(Biofilm) 4 1-1-2-1 生物膜的定義 4 1-1-2-2 生物膜的形成 5 1-1-2-3 口腔內細菌生物膜與齲齒相關性 6 1-1-3 轉糖鏈球菌與齲齒相關性 8 1-2 牙科用複合樹脂 9 1-2-1 牙科複合樹脂的興起 9 1-2-2 牙科複合樹脂基本組成 9 1-2-3 牙科複合樹脂缺點與繼發性齲齒 12 1-2-4 理想的牙科複合樹脂填補材料 13 1-3 抗齲齒複合樹脂之應用 14 1-3-1 氟化物 15 1-3-1-1 釋放氟素的填補材料 16 1-3-1-2 高嶺土的構造 18 1-3-1-3 高嶺土吸附氟化物理論模型 19 1-3-2 兒茶素 21 第二章 實驗動機與目的 23 第三章 實驗架構 25 第四章 實驗材料與方法 27 4-1 實驗材料 27 4-2 常用實驗儀器 28 4-3 改質之複合樹脂系統合成 29 4-3-1 樹脂有機基質合成 29 4-3-2 兒茶素改質 30 4-3-3 氟化高嶺土無機填料合成 31 4-3-3-1 高嶺土/ N-甲基甲醯胺複合物之製備 31 4-3-3-2 高嶺土/丙烯醯胺含氟複合物之製備 31 4-3-3-3 高嶺土/丙烯醯胺含氟複合物之矽烷化處理 32 4-3-4 奈米氧化鋁無機填料合成 32 4-3-5 氟化高嶺土填料與兒茶素接枝改質樹脂材料分組 33 4-3-6 氟化高嶺土填料與兒茶素接枝改質複合樹脂合成 34 4-4 改質複合樹脂材料性質測試與分析 35 4-4-1 樣本錠片之製作 35 4-4-2 改質複合樹脂物理性質測試 35 4-4-2-1 微硬度測試(Microhardness) 35 4-4-2-2 直徑抗拉強度(Diametral Tensile Strength, DTs) 36 4-4-3 改質複合樹脂錠片斷面分析 37 4-4-3-1 掃描式電子顯微鏡影像觀察 38 4-4-3-2 能量散射光譜儀分析 39 4-5 樹脂錠片抑菌效果測試 39 4-5-1 轉糖鏈球菌之菌株來源資料 39 4-5-2 轉糖鏈球菌培養保存方法 39 4-5-2-1 腦心浸出物培養液之製備 39 4-5-2-2 腦心浸出物瓊脂培養基之製備 40 4-5-2-3 轉糖鏈球菌菌種活化 41 4-5-2-4 轉糖鏈球菌菌種保存 41 4-5-2-5 轉糖鏈球菌繼代培養 42 4-5-3 轉糖鏈球菌生長曲線測定 43 4-5-4 菌落形成單位測定 43 4-5-5 瓊脂擴散試驗 44 4-5-6 細菌直接接觸法試驗 45 4-5-6-1 轉糖鏈球菌生物膜培養 45 4-5-6-2 細菌懸浮液光密度值測定 45 4-5-6-3 錠片表面菌落形成單位測定 46 4-5-6-4 錠片表面之掃描式電子顯微鏡影像觀察 46 4-5-6-5 錠片表面之共軛焦雷射顯微鏡影像觀察與分析 47 4-6 改質複合樹脂生物相容性測試 48 4-6-1 人類牙髓細胞初級培養 48 4-6-2 細胞培養與保存方法 49 4-6-2-1 細胞繼代培養 49 4-6-2-2 細胞冷凍保存 50 4-6-2-3 細胞解凍活化 50 4-6-3 細胞計數 51 4-6-4 WST-1細胞增殖測試 51 4-6-5 乳酸脫氫酶細胞毒性測試 52 4-7 統計分析 54 第五章 實驗結果 55 5-1 改質之複合樹脂系統合成 55 5-1-1 樹脂有機基質合成 55 5-1-2 兒茶素改質 55 5-1-3 氟化高嶺土無機填料合成 56 5-1-4 奈米氧化鋁無機填料合成 56 5-2 改質複合樹脂材料性質測試與分析 56 5-2-1 樣本錠片製作 56 5-2-2 改質複合樹脂物理性質測試 57 5-2-2-1 表面微硬度(Microhardness) 57 5-2-2-2 直徑抗拉強度(Diametral Tensile Strength, DTs) 57 5-2-3 改質複合樹脂錠片斷面分析 58 5-2-3-1 掃描式電子顯微鏡影像觀察 58 5-2-3-2 能量散射光譜儀分析 59 5-3 改質複合樹脂抑菌效果測試 59 5-3-1 轉糖鏈球菌生長曲線測定 59 5-3-2 瓊脂擴散試驗 60 5-3-3 細菌直接接觸法實驗 60 5-3-3-1 細菌懸浮液光密度值測定結果 60 5-3-3-2 錠片表面菌落形成單位測定 61 5-3-3-3 錠片表面之掃描式電子顯微鏡影像觀察 61 5-3-3-4 錠片表面之共軛焦雷射顯微鏡影像觀察與分析 62 5-4 改質複合樹脂生物相容性測試 64 5-4-1 WST-1細胞增殖測試 64 5-4-2 乳酸脫氫酶細胞毒性測試 64 第六章 討論 65 6-1 抑菌型複合樹脂改質探討 65 6-2 改質複合樹脂材料性質探討 67 6-2-1 改質複合樹脂物理性質 67 6-2-2 改質複合樹脂錠片斷面觀察 68 6-3 複合樹脂抑菌效果探討 70 6-3-1 單一菌種抑菌測試 70 6-3-2 無口腔唾液環境抑菌測試 71 6-3-3 不同抑菌測試方式之結果探討 72 6-3-4 氟與轉糖鏈球菌之關係 75 6-3-5 兒茶素與轉糖鏈球菌之關係 77 6-3-6 氟與兒茶素結合對轉糖鏈球菌之關係 79 6-4 改質複合樹脂生物相容性探討 80 第七章 結論 83 第八章 未來研究方向 85 參考文獻 87 圖附錄 97 表附錄 135 | |
| dc.language.iso | zh-TW | |
| dc.subject | 兒茶素 | zh_TW |
| dc.subject | 繼發性齲齒 | zh_TW |
| dc.subject | 抑菌效果 | zh_TW |
| dc.subject | 生物膜 | zh_TW |
| dc.subject | 氟化高嶺土 | zh_TW |
| dc.subject | 複合樹脂 | zh_TW |
| dc.subject | Composite resin | en |
| dc.subject | Bacteriostatic effect | en |
| dc.subject | Biofilm | en |
| dc.subject | Fluorinated kaolinite | en |
| dc.subject | Epigallocatechin gallate | en |
| dc.subject | Secondary caries | en |
| dc.title | 含氟化高嶺土填料與兒茶素接枝改質之抑菌型牙科複合樹脂 | zh_TW |
| dc.title | Bacteriostatic Dental Composite Resin Containing Fluorinated Kaolinite Fillers and Immobilized Epigallocatechin Gallate | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳敏慧,黃士豪,謝國煌 | |
| dc.subject.keyword | 複合樹脂,繼發性齲齒,兒茶素,氟化高嶺土,生物膜,抑菌效果, | zh_TW |
| dc.subject.keyword | Composite resin,Secondary caries,Epigallocatechin gallate,Fluorinated kaolinite,Biofilm,Bacteriostatic effect, | en |
| dc.relation.page | 142 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-18 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 10.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
