Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52392
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃文達(Wen-Dar Huang)
dc.contributor.authorHuan-Wun Chenen
dc.contributor.author陳煥文zh_TW
dc.date.accessioned2021-06-15T16:13:36Z-
dc.date.available2020-08-20
dc.date.copyright2015-08-20
dc.date.issued2015
dc.date.submitted2015-08-18
dc.identifier.citationAbrahamson W.G., McCrea K.D., Whitwell A.J., Vernieri L.A. (1991) The role of phenolics in goldenrod ball gall resistance and formation. Biochemical Systematics and Ecology 19:615-622.
Albertsson P.-Å., Andreasson E., Svensson P. (1990) The domain organization of the plant thylakoid membrane. FEBS Letters 273:36-40.
Ali F., Ranneh Y., Ismail A., Esa N. (2015) Identification of phenolic compounds in polyphenols-rich extract of Malaysian cocoa powder using the HPLC-UV-ESI—MS/MS and probing their antioxidant properties. Journal of Food Science and Technology 52:2103-2111.
Aoyama T., Akimoto S.-i., Hasegawa E. (2012) Gall distribution as a compromise between the optimal gall-site selection and the synchrony to host-plant phenology in the aphid Kaltenbachiella japonica. Arthropod-Plant Interactions 6:461-469.
Arimura G., Kost C., Boland W. (2005) Herbivore-induced, indirect plant defences. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1734:91-111.
Barash I., Manulis-Sasson S. (2007) Virulence mechanisms and host specificity of gall-forming Pantoea agglomerans. Trends in Microbiology 15:538-545.
Barash I., Manulis-Sasson S. (2009) Recent Evolution of Bacterial Pathogens: The Gall-Forming Pantoea agglomerans Case. Annual Review of Phytopathology 47:133-152.
Bauerfeind J., Hintze V., Kschonsek J., Killenberg M., Böhm V. (2014) Use of photochemiluminescence for the determination of antioxidant activities of carotenoids and antioxidant capacities of selected tomato products. journal of agricultural and food chemistry 62:7452-7459.
Bedetti C.S., Modolo L.V., Isaias R.M.D.S. (2014) The role of phenolics in the control of auxin in galls of Piptadenia gonoacantha (Mart.) MacBr (Fabaceae: Mimosoideae). Biochemical Systematics and Ecology 55:53-59.
Berner J., Van der Westhuizen A. (2010) Inhibition of Xanthine Oxidase activity results in the inhibition of russian wheat aphid-induced defense enzymes. Journal of Chemical Ecology 36:1375-1380.
Bruce S., Saville B., Neil Emery R. J. (2011) Ustilago maydis Produces Cytokinins and Abscisic Acid for Potential Regulation of Tumor Formation in Maize. Journal of Plant Growth Regulation 30:51-63.
Cândido T.L.N., Silva M.R., Agostini-Costa T.S. (2015) Bioactive compounds and antioxidant capacity of buriti (Mauritia flexuosa L.f.) from the Cerrado and Amazon biomes. Food Chemistry 177:313-319.
Carneiro R.G.S., Castro A.C., Isaias R.M.S. (2014) Unique histochemical gradients in a photosynthesis-deficient plant gall. South African Journal of Botany 92:97-104.
Chen C. H., Chan H. C., Chu Y. T., Ho H. Y., Chen P. Y., Lee T. H., Lee C. K. (2009) Antioxidant activity of some plant extracts towards xanthine oxidase, lipoxygenase and tyrosinase. Molecules 14:2947.
Cheng L., Li J., Hao Y., Zhou X. (2010) Effect of compounds of Galla chinensis on remineralization of enamel surface in vitro. Archives of Oral Biology 55:435-440.
Chlopicka J., Pasko P., Gorinstein S., Jedryas A., Zagrodzki P. (2012) Total phenolic and total flavonoid content, antioxidant activity and sensory evaluation of pseudocereal breads. Food Science and Technology 46:548-555.
Close D., Beadle C. (2003) The ecophysiology of foliar anthocyanin. The Botanical Review 69:149-161.
Connor E., Bartlett L., O’Toole S., Byrd S., Biskar K., Orozco J. (2012) The mechanism of gall induction makes galls red. Arthropod-Plant Interactions 6:489-495.
Deng J. C. (1982) Control problems of grey systems. Systems and Control Letters 1:288-294.
Dinis T.C.P., Madeira V.M.C., Almeida L.M. (1994) Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics 315:161-169.
Dorchin N., CRAMER M. D., HOFFMANN J. H. (2006) Photosynthesis and sink activity of wasp-induced galls in Acacia Pycnantha. Ecology 87(7):1781–1791.
Dsouza M. R., Ravishankar B. E. (2014) Nutritional sink formation in galls of Ficus glomerata Roxb. (Moraceae) by the insect Pauropsylla depressa (Psyllidae, Hemiptera). International Society for Tropical Ecology 55(1):129-136.
Educ J. C. (1995) The flavonoids: advances in research since 1986. Journal of Chemical Education 72:A73.
Ge Q., Ma X. (2013) Composition and antioxidant activity of anthocyanins isolated from Yunnan edible rose (An ning). Food Science and Human Wellness 2:68-74.
Gupta V. K., Sharma S. K. (2006) plant as nature antioxidants. natural product radiance 5(4):326-334.
Haiden S. A., Hoffmann J. H., Cramer M. D. (2012) Benefits of photosynthesis for insects in galls. Oecologia 170:987-997.
Harborne J. B. (2001) Twenty-five years of chemical ecology. The Royal Society of Chemistry 18:361–379.
Hartley S. E. (1998) The chemical composition of plant galls: are levels of nutrients and secondary compounds controlled by the gall-former? Oecologia 113:492-501.
Heil M., Greiner S., Meimberg H., Kruger R., Noyer J. L., Heubl G., Eduard K., Boland W. (2004) Evolutionary change from induced to constitutive expression of an indirect plant resistance. Nature 430:205-208.
Höglund S. (2010) Induced responses in willow determine feeding success of a gall-forming insect. Acta Universitatis agriculturae Sueciae 82:1-34.
Hsu C. Y., Chao P. Y., Hu S. P., Yang C. M. (2013) The antioxidant and free radical scavenging activities of chlorophylls and pheophytins. Food and Nutrition Sciences 4:1-8.
Hsu C. Y., Yang C. M., Chen C. M., Chao P. Y., Hu S. P. (2005) Effects of chlorophyll-related compounds on hydrogen peroxide induced dna damage within human lymphocytes. Journal of Agricultural and Food Chemistry 53:2746-2750.
Huang M. Y., Huan W. D., Chou H. M., Chen C. C., Chen P. J., Chang Y. T., Yang C. M. (2015) Structural, biochemical, and physiological characterization of photosynthesis in leaf-derived cup-shaped galls on Litsea acuminata. BMC Plant Biology 15:61-73.
Huang M. Y., Huang M. Y., Lin K. H., Lin K. H., Yang M. M., Yang M. M. (2011) Chlorophyll fluorescence, spectral properties, and pigment composition of galls on leaves of International Journal of Plant Sciences 172(3):323-329.
Huang X., Cheng L., Exterkate R. A. M., Liu M., Zhou X., Li J., ten Cate J.M. (2012) Effect of pH on Galla chinensis extract's stability and anti-caries properties in vitro. Archives of Oral Biology 57:1093-1099.
Jana S., Choudhuri M. A. (1982) Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquatic Botany 12:345-354.
Jauffret D., Shorthouse J. D. (1992) Diversity of gall-inducing insects and their galls. Biology of insect-induced galls:8-33. ,In J. D. Shorthouse and O. Rohfritsch (eds.), Biology of insect-induced galls. Oxford University Press, Oxford, United Kingdom.
Julong D. (1989) Introduction to Grey System Theory The Journal of Grey System 1:1-24.
Kaur R., Gupta A., Taggar G. (2014) Role of catalase, H2O2 and phenolics in resistance of pigeonpea towards Helicoverpa armigera (Hubner). Acta Physiologiae Plantarum 36:1513-1527.
Kiprovski B., Mikulic-Petkovsek M., Slatnar A., Veberic R., Stampar F., Malencic D., Latkovic D. (2015) Comparison of phenolic profiles and antioxidant properties of European Fagopyrum esculentum cultivars. Food Chemistry 185:41-47.
Lanfer-Marquez U.M., Barros R.M.C., Sinnecker P. (2005) Antioxidant activity of chlorophylls and their derivatives. Food Research International 38:885-891.
Liu X., Williams C. E., Nemacheck J. A., Wang H., Subramanyam S., Zheng C., Chen M. S. (2010) Reactive oxygen species are involved in plant defense against a gall midge. plant Physiology 152:985–999.
Maag D., Erb M., Köllner T. G., Gershenzon J. (2015) Defensive weapons and defense signals in plants: Some metabolites serve both roles. BioEssays 37:167-174.
Maffei M.E., Mithöfer A., Arimura G. I., Uchtenhagen H., Bossi S., Bertea C. M., Cucuzza L.S., Novero M., Volpe V., Quadro S., Boland W. (2006) Effects of Feeding Spodoptera littoralis on Lima Bean Leaves. III. Membrane Depolarization and Involvement of Hydrogen Peroxide. Plant Physiology 140:1022-1035.
Mancinelli A.L., Yang C. P.H., Lindquist P., Anderson O.R., Rabino I. (1975) Photocontrol of anthocyanin synthesis: iii. the action of streptomycin on the synthesis of chlorophyll and anthocyanin. Plant Physiology 55:251-257.
Masuoka N., Nihei K. i., Masuoka T., Kuroda K., Sasaki K., Kubo I. (2012) The inhibition of uric acid formation catalyzed by xanthine oxidase properties of the alkyl caffeates and cardol. Journal of Food Research 3:257-262.
Huang M. Y., Hsu M. H., Huang W. D., Chen P. J., Chang Y. T., Chao P. Y., Yang C. M. (2012) Differential Contribution of antioxidants to antioxidative functions in galls Evaluated by Grey System Theory. J. Grey Sys 24(4):359-370.
Misra P., Pandey A., Tiwari M., Chandrashekar K., Sidhu O.P., Asif M.H., Chakrabarty D., Singh P.K., Trivedi P.K., Nath P., Tuli R. (2010) Modulation of transcriptome and metabolome of tobacco by arabidopsis transcription factor, AtMYB12, leads to insect resistance. Plant Physiology 152:2258–2268.
Mittapalli O., Neal J. J., Shukle R. H. (2007) Antioxidant defense response in a galling insect. Proceedings of the National Academy of Sciences 104:1889-1894.
Mukund S., Senthilkumar N.S., Palanisamy M., Sivasubramanian V. (2014) Evaluation of enzymatic and non-enzymatic antioxidant potential of Phormidium fragile. J. Algal Biomass Utln 5 (2):58 - 65.
Narayan M. S., Akhilender Naidu K., Ravishankar G. A., Srinivas L., Venkataraman L. V. (1999) Antioxidant effect of anthocyanin on enzymatic and non-enzymatic lipid peroxidation. Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA) 60:1-4.
Noctor G., Lelarge-Trouverie C., Mhamdi A. (2015) The metabolomics of oxidative stress. Phytochemistry 112:33-53.
Nyman T., Julkunen-Tiitto R. (2000) Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. PNAS PNAS:13184–13187.
Ollerstam, S. L. (2003) Salicylic acid mediates resistance in the willow Salix viminalis against the gall midge Dasineura marginemtorquens. J Chem Ecol. 29(1):163-74.
Oyaizu M. (1988) Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. J. Jpn. Soc. Food Sci. 35:771-775.
Pertry I., Václavíková K., Depuydt S., Galuszka P., Spíchal L., Temmerman W., Stes E., Schmülling T., Kakimoto T., Van Montagu M.C.E., Strnad M., Holsters M., Tarkowski P., Vereecke D. (2009) Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proceedings of the National Academy of Sciences of the United States of America 106:929-934.
Phung T.H., Jung S. (2015) Alterations in the porphyrin biosynthesis and antioxidant responses to chilling and heat stresses in Oryza sativa. Biologia Plantarum 59:341-349.
Price P. W., Fernandes G. W., Waring G. L. (1987) Adaptive Nature of Insect Galls. Environ. Entomol. 16: 15–24.
Robak J., Ryszard J. G. (1988 ) Flavonoids are scavengers of superoxide anions. Biochem Pharmacol 37(5):837-841.
Sakakibara H., Kasahara H., Ueda N., Kojima M., Takei K., Hishiyama S., Asami T., Okada K., Kamiya Y., Yamaya T., Yamaguchi S. (2005) Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant. Proceedings of the National Academy of Sciences of the United States of America 102:9972-9977.
Scandalios J. G. (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research 38:995-1014.
Sedej I., Mandić A., Sakač M., Mišan A., Tumbas V. (2010) Comparison of antioxidant components and activity of buckwheat and wheat flours. Cereal Chemistry Journal 87:387-392.
Sedej I., Sakač M., Mandić A., Mišan A., Tumbas V., Čanadanović-Brunet J. (2012) Buckwheat (Fagopyrum esculentum Moench) grain and fractions: antioxidant compounds and activities. Journal of Food Science 77:C954-C959.
Sharma P., Jha A. B., Dubey R. S., Pessarakli M. (2012 ) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012 1-26.
Shealer D. A., Snyder J. P., Dreisbach V. C., Sunderlin D. F., Novak J. A. (1999) Foraging patterns of eastern gray squirrels (Sciurus carolinensis) on goldenrod gall insects, a potentially important winter food resource. American Midland Naturalist 142:102-109.
Shimada K., Fujikawa K., Yahara K., Nakamura T. (1992) Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry 40:945-948.
Singleton V. L., Rossi J. A. (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16:144-158.
Stracke R., Ishihara H., Huep G., Barsch A., Mehrtens F., Niehaus K., Weisshaar B. (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. The Plant Journal 50:660-677.
Tanaka Y., Okada K., Asami T., Suzuki Y. (2013) Phytohormones in Japanese mugwort gall induction by a gall-inducing gall midge. Bioscience, Biotechnology, and Biochemistry 77:1942-1948. DOI: 10.1271/bbb.130406.
Tian F., Li B., Ji B., Yang J., Zhang G., Chen Y., Luo Y. (2009) Antioxidant and antimicrobial activities of consecutive extracts from galla chinensis: The polarity affects the bioactivities. Food Chemistry 113:173-179.
Tokuda M., Jikumaru Y., Matsukura K., Takebayashi Y., Kumashiro S., Matsumura M., Kamiya Y. (2013) Phytohormones related to host plant manipulation by a gall-inducing leafhopper. PLoS ONE 8:e62350.
Xiong L. H., Wu X., Lu J. J. (2010) Bird predation on concealed insects in a reed-dominated estuarine tidal marsh. Wetlands 30:1203-1211.
Yamaguchi H., Tanaka H., Hasegawa M., Tokuda M., Asami T., Suzuki Y. (2012) Phytohormones and willow gall induction by a gall-inducing sawfly. New Phytologist 196:586-595.
Yang C. M., Chang K. W., Yin M. H., Huang S. M. (1998) Methods for the determination of the chlorophylls and their derivatives. Taiwania 43:116-122.
Yang C. M., Yang M. M., Huang M .Y., Hsu J. M., Jane W. N. (2007) Life time deficiency of photosynthetic pigment-protein complexes CP1, A1, AB1, and AB2 in two cecidomyiid galls derived from Machilus thunbergii leaves. Photosynthetica 45:589-593.
Yang C. T. (1984) Psyllidae of Taiwan. Taiwan Mus. Spec. 3:305.
You J. S., Jeon S., Byun Y. J., Koo S., Choi S. S. (2015) Enhanced biological activity of carotenoids stabilized by phenyl groups. Food Chemistry 177:339-345.
Jia Z. S., Tang M. C., Wu J. M.. (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry 64:555-559.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52392-
dc.description.abstract蟲癭為造癭蟲在刺激植物後,造成植物細胞異常生長所產生之結構。造癭蟲會改變與調控植物的生理機制,造成光合作用、抗蟲機制、植生物質與活化氧族含量、抗氧化能力等表現有所不同。植生物質包含類黃酮、花青素、酚類等,部分植生物質為植物為抗蟲所產生,與活化氧族(ROS)皆參與植物防禦機制,然過量的活化氧族在對抗蟲害的同時,對植物造成氧化逆境。部分植生物質具抗氧化能力,能降低氧化逆境帶來的傷害。本研究採用五種蟲癭,分別為Dryocosmus kuriphilus在Castanea mollissima(板栗)形成之蟲癭;Daphnephila taiwanensis在Machilus thunbergii(紅楠)形成之蟲癭;Pauropsylla triozoptera在Ficus irisana Elmer (青剛櫟)形成之蟲癭; Cecidomyiidae(癭蚋科)之昆蟲在Litsea acuminata (Bl.) Kurata(長葉木薑子)形成之蟲癭;Melaphis chinensis Bell於Rhus semialata羅氏鹽膚木形成之蟲癭(五倍子),在民間做為中藥材使用。本研究透過觀察蟲癭之組織是否因植生物質之濃度梯度不同,進而探討其分佈上的意義。最後透過灰關聯分析,比較各個植生物質對於抗氧化能力之貢獻度。結果顯示,部分植生物質在有無受蟲癭寄生之葉片上含量有顯著差異,並且影響正常生理功能。感染葉與正常葉之葉綠素含量不同,但無法提供對於光合作用效率或是碳同化物質有無影響的直接證據。酚類、類黃酮為主要抗蟲與抗氧化物質,在蟲癭之含量由外而內遞減,減少造癭蟲因取食蟲癭營養層或吸食其汁液時,抗蟲物質對造癭蟲造成的傷害。在不同蟲癭組織間,植生物質與活化氧族的含量有所差異,造成抗氧化能力高低的差異。透過灰關聯分析,得知植生物質與抗氧化能力之關聯性,酚類與類黃酮為強力抗氧化物,與前人分析結果相同。五倍子具有高含量之酚類物質,具有高度抗氧化力,可針對其抗氧化能力進一步分析,萃取出具抗氧化保健功效的化合物,提高五倍子的應用價值。zh_TW
dc.description.abstractGalls are the abnormal cell growth structures inducing by gall insect s on the plants. The plant physiology manipulated by insect galls makes the differences in photosynthesis, insect defense mechanisms, phytochemicals, reactive oxygen species(ROS) contents, and the antioxidant abilities. Some phytochemicals with the purpose of insect resistance and ROS take part in the plant defense mechanisms. The excessive ROS resistant the insects and cause the oxidative stress in plants. Part of the phytochemicals with antioxidant abilities reduce the damage of oxidant stress.
In this thesis, there are five species galls used, including galls of Dryocosmus kuriphilus on Castanea mollissima, galls of Daphnephila taiwanensis on Machilus thunbergii, galls of Pauropsylla triozoptera on Ficus irisana Elmer, galls of Cecidomyiidae on Litsea acuminata (Bl.) Kurata,and galls of Melaphis chinensis Bell on Rhus semialata(Galla Chinensis), a traditional Chinese medicine. The thesis studies the meaning of the arrangements of phytochemicals based on whether there are concentration gradients in gall tissue. At last comparing the contributions of individual phytochemicals to antioxidative abilities by Grey Relational Analysis The chlorophyll contents in non-gall and galled leaves are different. However, the results can’t show direct evidences on the effects of photosynthesis efficiency and carbon assimilation. Phenolics and flavonoids play important roles in insect resistant and antioxidant activities. The contents of phenolics and flavonoids reduce outside-inside which reduce the damage to gall insects causing by insect resistance properties when gall insects eat the nutritive layer or uptake the plant fluids. Different contents of phytochemicals and ROS in gall tissue result in the different antioxidative abilities. The correlation between hytochemicals and antioxidative abilities are revealed by Grey Relational Analysis. Phenolics and flavonoids are antioxidants with high efficiencies. The results are consistent with previous researches. There are high contents of phenolics in Galla Chinensis. Galla Chinensis has high efficient antioxidative abilities. Advanced reaserch focusing on the antioxidative abilities of Galla Chinensis can be done. Extracting the components with antioxidative and healthy functions can promote the application value of Galla Chinensis.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:13:36Z (GMT). No. of bitstreams: 1
ntu-104-R02621101-1.pdf: 1359929 bytes, checksum: b627a7ec6df67c5078bc9b2a2be093aa (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 ix
第一章 前言 1
一、蟲癭的形成 1
二、蟲癭的形成啟動植物防禦機制─ROS與植生物質 3
三、植生物質之抗氧化能力 5
四、研究目的 7
第二章、材料與方法 9
一、試驗材料 9
二、試驗處理 9
三、分析項目 9
(一) 植生物質 9
(二) 活化氧族(reactive oxygen species, ROS) 11
(三) 抗氧化能力 11
四、統計方法 14
(一) 統計分析 14
(二) 灰關聯分析 15
第三章、結果 17
一、植生物質與活化氧族含量 17
(一) 葉綠素 17
(二) 類胡蘿蔔素 18
(三) 總酚 18
(四) 類黃酮 18
(五) 花青素 19
(六) 活化氧族─過氧化氫 19
二、乙醇萃取液抑制黃嘌呤氧化酶能力 19
(一) 濃度4 mg/ml之寄主葉部乙醇萃取液 19
(二) 濃度10 mg/ml之蟲癭乙醇萃取液 20
(三) 濃度0.4 mg/ml之五倍子乙醇萃取液 20
三、甲醇萃取液之抗氧化能力 20
(一) DPPH清除力之IC50 (mg/ml) 20
(二) 還原力之IC50 (mg/ml) 21
(三) 螯合亞鐵離子之IC50 (mg/ml) 21
(四) 超氧陰離子清除率之IC50 (mg/ml) 21
(五) 植生物質與抗氧化能力、過氧化氫之灰關聯性分析 22
第四章、討論 23
一、植生物質、過氧化氫含量變化與生理特性之關係 23
(一) 葉綠素 23
(二) 類胡蘿蔔素 24
(三) 總酚 24
(四) 類黃酮 25
(五) 花青素 25
(六) 過氧化氫 25
二、植生物質與抗氧化能力、抑制黃嘌呤氧化酶能力之關係 26
第五章 結論與展望 28
第六章 參考文獻 29
dc.language.isozh-TW
dc.title台灣蟲癭植化物質與抗氧化能力之探討zh_TW
dc.titleStudies on the Phytochemicals and Antioxidative
Abilities of Galls in Taiwan
en
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.coadvisor楊棋明(Chi-Ming Yang)
dc.contributor.oralexamcommittee許明晃(Ming-Huang Hsu),楊志維(Zhi-Wei Yang),黃盟元(Meng-Yuan Huang)
dc.subject.keyword五倍子,蟲癭,植生物質,活化氧族,抗氧化能力,灰關聯分析,zh_TW
dc.subject.keywordGalla Chinensis,galls,phytochemicals,ROS,antioxidative ability,grey relational analysis,en
dc.relation.page51
dc.rights.note有償授權
dc.date.accepted2015-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
1.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved