請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52380
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王淑珍(Shu-Jen Wang) | |
dc.contributor.author | Ko-Shuan Shao | en |
dc.contributor.author | 邵恪玄 | zh_TW |
dc.date.accessioned | 2021-06-15T16:13:16Z | - |
dc.date.available | 2018-08-19 | |
dc.date.copyright | 2015-08-19 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-18 | |
dc.identifier.citation | 何佳勳 (2010) 光照誘導水稻種子根產生波動狀型態之生理機制。國立臺灣大學生物資源暨農學院系碩士論文。
陳薌雯 (2012) 生長素、一氧化氮與oxylipins共同參與調控光照誘導水稻種子波動狀根發生。國立臺灣大學生物資源暨農學院系碩士論文。 Abas L, Benjamins R, Malenica N, Paciorek T, Wiśniewska J, Moulinier-Anzola JC, Sieberer T, Friml J, Luschnig C (2006) Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nature Cell Biology 8:249-256. Anderson MB, Folta K, Warpeha KM, Gibbons J, Gao J, Kaufman LS (1999) Blue-light directed destabilization of the pea Lhcb1*4 transcript depends on sequences within the 5’ untranslated region. The Plant Cell 11: 1579–1589. Arnim A, Deng XW (1996) Light control of seedling development. Annual Review of Plant Physiology and Plant Molecular Biology 47:215-243. Babu RC, Shashidhar HE, Lilley JM, Thanh ND, Ray JD, Sadasivam S, Sarkarung S, O'Toole JC, Nguyen HT (2001) Variation in root penetration ability, osmotic adjustment and dehydration tolerance among accessions of rice adapted to rainfed lowland and upland ecosystems. Plant Breeding 120:233-238. Bai S, Yao T, Li M, Guo X, Zhang Y, Zhu S, He Y (2014) PIF3 is involved in the primary root growth inhibition of Arabidopsis Induced by nitric oxide in the light. Molecular Plant 7:616-625 Bailey PHJ, Currey JD, Fitter AH (2002) The role of root system architecture and root hairs in promoting anchorage against uprooting forces in Allium Cepa and root mutants of Arabidopsis Thaliana. Journal of Experimental Botany 53:333-340. Benech-Arnold RL, Sánchez RA, Forcella F, Kruk BC, Ghersa CM (2000) Environmental control of dormancy in weed seed banks in soil. Field Crops Research 67:105-122. Björn LO (2008) Photobiology: The science of life and light. Dordrecht, Netherlands: Springer. Brendel R, Svyatyna K, Jikumaru Y, Reichelt M, Mithöfer A, Takano M, Kamiya Y, Nick P, Riemann M (2014) Effects of light and wounding on jasmonates in rice phyAphyC mutants. Plants 3:143-159. Briggs WR, Christie JM (2002) Phototropins 1 and 2: versatile plant blue-light receptors. TRENDS in Plant Science 7:204-210. Bouly JP, Schleicher E, Dionisio-Sese M, Vandenbussche F, Van Der Straeten D, Bakrim N, Meier S, Batschauer A, Galland P, Bittl R, Ahmad M (2007) Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. The Journal of Biological Chemistry 282:9383-9391. Casal JJ (2013) Photoreceptor signaling networks in plant responses to shade. Annual Review of Plant Biology 64:403-427. Casal JJ, Candia AN, Sellaro R (2013) Light perception and signalling by phytochrome A. Journal of Experimental Botany 65:2835-2845. Chehab WE, Perea JV, Gopalan B, Theg S, Dehesh K (2007) Oxylipin pathway in rice and Arabidopsis. Journal of Integrative Plant Biology 49:43-51. Chen CF, Chen Y, Zhang Q, Chen BW, Yang CW, Wang YQ (2011) Overexpression of rice phytochrome A in Arabidopsis: diverse role in multiple physiological responses. Pakistan Journal of Botany 43:2835-2844. Chen YH, Kao CH (2012a) The effect of auxin and nitric oxide on root hair formation in rice. Crop, Environment and Bioinformatics 9:73-80. Chen YH, Kao CH (2012b) Calcium is involved in nitric oxide- and auxin-induced lateral root formation in rice. Protoplasma 249:187-195. Chen CC, Huang MY, Lin KH, Wong SL, Huang WD, Yang CM (2014) Effects of light quality on the growth, development and metabolism of rice seedlings (Oryza Sativa L.). Research Journal of Biotechnology 9:15-24. Chen HW, Shao KH, Wang SJ (2015) Light-modulated seminal wavy roots in rice mediated by nitric oxide-dependent signaling. Protoplasma DOI 10.1007/s00709-015-0762-0. Ennos AR (1989) The mechanics of anchorage in seedlings of sunflower, Helianthus Annuus L. New Phytologist 113:185-192. Ennos AR (1990) The anchorage of leek seedlings: the effect of root length and soil strength. Annals of Botany 65:409-416. Ennos AR (1991) The mechanics of anchorage in wheat Triticum Aestivum L. Journal of Experimental Botany 42:1607-1613. Ennos AR (1993) The scaling of root anchorage. Journal of Theoretical Biology 161:61-75. Folta KM, Kaufman LS (2003) Phototropin 1 is required for high-fluence blue-light-mediated mRNA destabilization. Plant Molecular Biology 51:609-618. Folta KM (2004) Green light stimulates early stem elongation, antagonizing light-mediated growth inhibition. Plant Physiology 135:1407-1416. Galen C, Rabenold JJ, Liscum E (2007) Light-sensing in roots. Plant Signaling and Behavior 2:106-108. Galvão VC, Fankhauser C (2015) Sensing the light environment in plants: photoreceptors and early signaling steps. Current Opinion in Neurobiology 34:46-53. Ge L, Chen H, Jiang JF, Zhao Y, Xu ML, Xu YY, Tan KH, Xu ZH, Chong K (2004) Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity. Plant Physiology 135:1502-1513. Goh CH, Jang S, Jung S, Kim HS, Kang HG, Park YI, Bae HJ, Lee CH, An G (2009) Rice Phot1a mutation reduces plant growth by affecting photosynthetic responses to light during early seedling growth. Plant Molecular Biology 69:605-619. Gu JW, Liu J, Xue YJ, Zang X, Xie XZ (2011) Functions of phytochrome in rice growth and development. Rice Science 18:231-237. Haga K, Iino M (2004) Phytochrome-mediated transcriptional up-regulation of ALLENE OXIDE SYNTHASE in rice seedlings. Plant and Cell Physiology 45:119-128. Hejnowicz Z, Erickson RO (1968) Growth inhibition and recovery in roots following temporary treatment with auxin. Physiologia Plantarum 21:302-313. Hirose F, Shinomura T, Tanabata T, Shimada H, Takano M (2006) Involvement of rice cryptochromes in de-etiolation responses and flowering. Plant and Cell Physiology 47:915-925. Hirota H, Watanabe S (1981) Endogenous Factors Affecting the Varietal Differences in the Curvature of Seminal Roots of Zea mays L. Seedlings in Water Culture. Japanese Journal of Crop Science 50: 148-156. Hori K, Nonoue Y, Ono N, Shibaya T, Ebana K, Matsubara K, Ogiso-Tanaka E, Tanabata T, Sugimoto K, Taguchi-Shiobara F, Yonemaru J, Mizobuchi R, Uga Y, Fukuda A, Ueda T, Yamamoto S, Yamanouchi U, Takai T, Ikka T, Kondo K, Hoshino T, Yamamoto E, Adachi S, Nagasaki H, Shomura A, Shimizu T, Kono I, Ito S, Mizubayashi T, Kitazawa N, Nagata K, Ando T, Fukuoka S, Yamamoto T, Yano M (2015) Genetic architecture of variation in heading date among Asian rice accessions. BMC Plant Biology 15:115. Hu X, Neill SJ, Tang Z, Cai W (2005) Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiology 137:663-670. Imaseki H, Pjon CJ, Furuya M (1971) Phytochrome action in Oryza Sativa L IV. Red and far red reversible effect on the production of ethylene in excised coleoptiles. Plant Physiology 48:241-244. Inoue N, Arase T, Hagiwara M, Amano T, Hayashi T, Ikeda R (1999) Ecological significance of root tip rotation for seedling establishment of Oryza Sativa L. Ecological Research 14:31-38. Iwamoto M, Takano M (2011) Phytochrome-regulated EBL1 contributes to ACO1 upregulation in rice. Biotechnology Letters 33:173-178. Iwamoto M, Kiyota S, Hanada A, Yamaguchi S, Takano M (2011) The multiple contributions of phytochromes to the control of internode elongation in rice. Plant Physiology 157:1187-1195. Jain M, Sharma P, Tyagi SB, Tyagi AK, Khurana JP (2007) Light regulation and differential tissue-specific expression of phototropin homologues from rice (Oryza Sativa ssp. Indica). Plant Science 172:164-171. Jiang J, Li J, Xu Y, Han Y, Bai Y, Zhou G, Lou Y, Xu Z, Chong K (2007) RNAi knockdown of Oryza sativa root meander curling gene led to altered root development and coiling which were mediated by jasmonic acid signaling in rice. Plant, Cell and Environment 30:690-699. Kanegae H, Tahir M, Savazzini F, Yamamoto K, Yano M, Sasaki T, Kanegae T, Wada M, Takano M (2000) Rice NPH1 homologues, OsNPH1a and OsNPH1b, are differently photoregulated.' Plant and Cell Physiology 41:415-423. Kami C, Lorrain S, Hornitschek P, Fankhauser C (2010) Light-regulated plant growth and development. Current Topics in Developmental Biology 91:29-66. Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Krishnan A, Nataraja KN, Udayakumar M, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proceedings of the National Academy of Sciences of the United States of America 104:15270-15275. Kiss JZ, Mullen JL, Correll MJ, Hangarter RP (2003) Phytochromes A and B mediate red-light-induced positive phototropism in roots. Plant Physiology 131:1411-1417. Kitomi Y, Kanno N, Kawai S, Mizubayashi T, Fukuoka S, Uga Y (2015) QTLs underlying natural variation of root growth angle among rice cultivars with the same functional allele of DEEPER ROOTING 1. Rice 8:16. Kojima H, Urano Y, Kikuchi K, Higuchi T, Hirata Y, Nagano T (1999) Fluorescent indicators for imaging nitric oxide production. Angewandte Chemie International Edition in English 38:3209-3212. Lai KL, Hou CR (1975) Effects of light on the cultured rice roots. Botanical Bulletin of Academia Sinica 16:45-54. Lehmann P, Nӧthen J, Schmidt von Braun S, Bohnsack MT, Mirus O, Schleiff E (2011) Transitions of gene expression induced by short-term blue light. Plant Biology 13:349-361. Li Y, Zhuang CH, Zhuang WJ, Wang NY, Dai F, Qiu XL, Xie NY, Lin JQ (2011) Effect of suppressing OsCRY2 gene expression on main agronomic traits of rice. Journal of Nuclear Agricultural Science 25:1094-1099. Li Y, Zhuang WJ, Wang NY, Hong GQ, Dai F (2011) Effects of suppressing OsCRY1a gene expression on rice agronomic traits. Chinese Journal of Rice Science 25:575-579. Li Y, Zhuang WJ, Zhuang CH, Wang NY, Dai F (2012) Effect of interfering the expression of cryptochrome Cry1a/Cry1b genes on several rice agronomic traits. Journal of Fujian Agriculture and Forestry University 41:153-158. Li YY, Mao K, Zhao C, Zhang RF, Zhao XY, Zhang HL, Shu HR, Hao YJ (2013) Molecular cloning of Cryptochrome 1 from apple and its functional characterization in Arabidopsis. Plant Physiology and Biochemistry 67:169-177. Liu Y, He J, Jiang L, Wu H, Xiao Y, Liu Y, Li G, Du Y, Liu C, Wan J (2011) Nitric oxide production is associated with response to brown planthopper infestation in rice. Journal of Plant Physiology 168:739-745. Maloof JN, Borevitz JO, Dabi T, Lutes J, Nehring RB, Redfern JL, Trainer GT, Wilson JM, Asami T, Berry CC, Weigel D, Chory J (2001) Natural variation in light sensitivity of Arabidopsis. Nature Genetics 29:441-446. Mandoli DF, Ford GA, Waldron LJ, Nemson JA, and Briggs WR (1990) Some spectral properties of several soil types: implications for photomorphogenesis. Plant, Cell and Environment 13:287-294. Mao K, Jiang LB, Bo WH, Xu F, Wu RL (2014) Cloning of the cryptochrome-encoding PeCRY1 gene from Populus Euphratica and functional analysis in Arabidopsis. PLoS One 9(12), e115201. Matsumoto N, Hirano T, Iwasaki T, Yamamoto N (2003) Functional analysis and intracellular localization of rice cryptochromes. Plant Physiology 133:1494-1503. Mazzella MA, Casal JJ, Muschietti JP, Fox AR (2014) Hormonal networks involved in apical hook development in darkness and their response to light. Frontiers in Plant Science 5:52. McSteen P (2010) Auxin and monocot development. Cold Spring Harbor Perspectives in Biology 2:a001479. Mergemann H, Sauter M (2000) Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiology 124:609-614. Moctezuma E (1999) Changes in auxin patterns in developing gynophores of the peanut plant (Arachis Hypogaea L.). Annals of Botany 83:235-242. Mochizuki S, Harada A, Inada S, Sugimoto-Shirasu K, Stacey N, Wada T, Ishiguro S, Okada K, Sakai T (2005) The Arabidopsis WAVY GROWTH 2 protein modulates root bending in response to environmental stimuli. The Plant Cell 17:537-547. Müller A, Hillebrand H, Weiler EW (1998) Indole-3-acetic acid is synthesized from L-tryptophan in roots of Arabidopsis thaliana. Planta 206: 362-369. Mur LAJ, Prats E, Pierre S, Hall MA, Hebelstrup KH (2013) Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense Pathways. Frontiers in Plant Science 4: 215. Mutum RD, Balyan SC, Kansal S, Agarwal P, Kumar S, Kumar M, Raghuvanshi S (2013) Evolution of variety-specific regulatory schema for expression of osa-miR408 in indica rice varieties under drought stress. Federation of European Biochemical Societies 280:1717-1730. Neff MM, Chory J (1998) Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiology 118:27-36. Neumann R, Iino Moritoshi (1997) Phototropism of rice (Oryza sativa L.) coleoptiles: fluence-response relationships, kinetics and photogravitropic equilibrium. Planta 201:288-292. Oladokun MAO, Ennos AR (2006) Structural development and stability of rice Oryza Sativa L. var. Nerica 1. Journal of Experimental Botany 57:3123-3130. Ohashi-Kaneko K, Matsuda R, Goto E, Fujiwara K, Kurata K (2006) Growth of rice plants under red light with or without supplemental blue light. Soil Science and Plant Nutrition 52:444-452. Ohno Y, Fujiwara A (1967) Photoinhibition of elongation growth of roots in rice seedlings. Plant and Cell Physiology 8:141-150. Okada K, Shimura Y (1990) Reversible Root Tip Rotation in Arabidopsis Seedlings Induced by Obstacle-Touching Stimulus. Science 250:274-276. Oyama T, Shimura Y, Okada K (1997) The Arabidopsis Hy5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes and Development 11:2983-2995. Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiology 129:954-956. Pjon CJ and Furuya M (1968) Phytochrome action in Oryza Sativa L.: II. The spectrophotometric versus the physiological status of phytochrome in coleoptiles. Planta 81:303-313. Quail PH, Boylan MT, Parks BM, Short TW, Xu Y, Wagner D (1995) Phytochromes: photosensory perception and signal transduction. Science 268:675-680. Retzer K, Korbei B, Luschnig C (2014) Auxin and tropisms. Zažímalová, Eva; Petrasek, Jan; Benková, Eva, Auxin and Its Role in Plant Development, 361-387; Springer, Wien. Roy R, Bassham DC (2014) Root growth movements: waving and skewing. Plant Science 221-222:42-47. Rzewuski G, Sauter M (2008) Ethylene biosynthesis and signaling in rice. Plant Science 175:32-42. Sellaro R, Crepy M, Trupkin SA, Karayekov E, Buchovsky AS, Rossi C, Casal JJ (2010) Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis. Plant Physiology 154:401-409. Sindelar TJ, Millar KDL, Kiss JZ (2014) Red light effects on blue light-based phototropism in roots of Arabidopsis thaliana. International Journal of Plant Sciences 175:731-740. Sharma P, Chatterjee M, Burman N, Khurana JP (2014) Cryptochrome 1 regulates growth and development in Brassica through alteration in the expression of genes involved in light, phytohormone and stress signalling. Plant, Cell and Environment 37:961-977. Sharrock RA, Clack T (2002) Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiology 130:442-456. Shimizu H, Tanabata T, Xie X, Inagaki N, Takano M, Shinomura T, Yamamoto KT (2009) Phytochrome-mediated growth inhibition of seminal roots in rice seedlings. Physiologia Plantarum 137:289-297. Stӧhr C, Stremlau S (2006) Formation and possible roles of nitric oxide in plant roots. Journal of Experimental Botany 57:463-470. Sun Q, Yoda K, Suzuki H (2005) Internal axial light conduction in the stems and roots of herbaceous plants. Journal of Experimental Botany 56:191-203. Suzuki H, Okamoto A, Kojima A, Nishimura T, Takano M, Kagawa T, Kadota A, Kanegae T, Koshiba T (2014) Blue-light regulation of ZmPHOT1 and ZmPHOT2 gene expression and the possible involvement of Zmphot1 in phototropism in maize coleoptiles. Planta 240:251-261. Svyatyna K, Riemann M (2012) Light-dependent regulation of the jasmonate pathway. Protoplasma 249 Suppl 2, S137-145. Takano M, Kanegae H, Shinomura T, Miyao A, Hirochika H, Furuya M (2001) Isolation and characterization of rice phytochrome A mutants. The Plant Cell 13:521-534. Takano M, Inagaki N, Xie X, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T (2005) Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and Flowering in Rice. The Plant Cell 17:3311-3325. Takano M, Inagaki N, Xie XZ, Kiyota S, Baba-Kasai A, Tanabata T, Shinomura T (2009) Phytochromes are the sole photoreceptors for perceiving red/far-red light in rice. Proceedings of the National Academy of Sciences of the United States of America U S A 106:14705-14710. Uga Y, Ebana K, Abe J, Morita S, Okuno K, Yano M (2009) Variation in root morphology and anatomy among accessions of cultivated rice (Oryza Sativa L.) with different genetic backgrounds. Breeding Science 59:87-93. Uga Y, Okuno K, Yano M (2011) Dro1, a major QTL involved in deep rooting of rice under upland field conditions. Journal of Experimental Botany 62:2485-2494. Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics 45:1097-1102. Vellosillo T, Martínez M, López MA, Vicente J, Cascón T, Dolan L, Hamberg M, Castresana C (2007) Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade. The Plant Cell 19:831-846. Vollsnes AV, MelØ TB, Futsaether CM (2012) Photomorphogenesis and pigment induction in lentil seedling roots exposed to low light conditions. Plant Biology 14:467-474. Wang SJ, Ho CH, Chen HW (2011a) Rice develop wavy seminal roots in response to light stimulus. Plant Cell Reports 30:1747-1758. Wang SH, Kang CH, Chen HW (2011b) Effect of the interaction between light and touch stimuli on inducing curling seminal roots in rice seedlings. Plant Signaling & Behavior 6:1434-1435. Wang Y, Maruhnich SA, Mageroy MH, Justice JR, Folta KM (2013) Phototropin 1 and cryptochrome action in response to green light in combination with other wavelengths. Planta 237:225-237. Wang YH, Zhang TT, Folta KM (2015) Green light augments far-red-light-induced shade response. Plant Growth Regulation DOI 10.1007/s10725-015-0046-x. Xie X, Shinomura T, Inagaki N, Kiyota S, Takano M (2007) Phytochrome-mediated inhibition of coleoptile growth in rice: age-dependency and action spectra. Photochemistry and Photobiology 83:131-138. Xie XZ, Xue YJ, Zhou JJ, Zhang B, Chang H, Takano M (2011) Phytochromes regulate SA and JA signaling pathways in rice and are required for developmentally controlled resistance to Magnaporthe Grisea. Molecular Plant 4:688-696. Xiong J, Lu H, Lu K, Duan Y, An L, Zhu C (2009) Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primordia initiation in rice seedlings. Planta 230:599–610. Yin CC, Ma B, Collinge DP, Pogson BJ, He SJ, Xiong Q, Duan KX, Chen H, Yang C, Lu X, Wang YQ, Zhang WK, Chu CC, Sun XH, Fang S, Chu JF, Lu TG, Chen SY, Zhang JS (2015) Ethylene responses in rice roots and coleoptiles are differentially regulated by a carotenoid isomerase-mediated abscisic acid pathway. The Plant Cell 27:1061-1081. Yoshida S, Hasegawa S (1982) The rice root system: its development and function. In drought resistance in crops with emphasis on rice. IRRI, Los Banos, Philippines. Zhang YC, Gong SF, Li QH, Sang Y, Yang HQ (2006) Functional and signaling mechanism analysis of rice CRYPTOCHROME 1. The Plant Journal 46:971-983. Zhang X, Takemiya A, Kinoshita T, Shimazaki K (2007) Nitric oxide inhibits blue light-specific stomatal opening via abscisic acid signaling pathways in Vicia guard cells. Plant and Cell Physiology 48:715-723. Zhang T, Maruhnich SA, Folta KM (2011) Green light induces shade avoidance symptoms. Plant Physiology 157:1528-1536. Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annual Review of Plant Biology 61: 39-64. Zhao Y, Zhou J, Xing D (2014) Phytochrome B-mediated activation of lipoxygenase modulates an excess red light-induced defence response in Arabidopsis. Journal of Experimental Botany 65: 4907-4918. Zhao X, Wang J, Yuan J, Wang XL, Zhao QP, Kong PT, Zhang X (2015) NITRIC OXIDE-ASSOCIATED PROTEIN1 (AtNOA1) is essential for salicylic acid-induced root waving in Arabidopsis thaliana. New Phytologist 207: 211-224. Zheng J, Zhou JJ, Zhao J, Zhao SZ, Li GR, Xie XZ (2013) Phytochromes are involved in elongation of seminal roots and accumulation of dry Substances in rice seedlings. Rice Science 20:88-94. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52380 | - |
dc.description.abstract | 光除了是植物重要之能量來源外,亦是影響植物外觀型態之重要環境因子。本實驗室先前研究發現白光下秈型稻臺中在來一號 (Oryza sativa L. cv. Taichung Native 1;TCN1) 之幼苗種子根會呈現波動狀外觀;稉型稻臺農六十七號 (Oryza sativa L. cv. Tainung 67;TNG67) 之幼苗種子根於白光下則發展為直根型態。另外,我們亦發現一氧化氮、脂氧化物 (oxylipins)、乙烯、生長素依序參與在光照下誘導波動根發生之訊息傳遞途徑中。本研究利用此訊息傳遞途徑探討造成品種間種子根光型態差異可能之原因,發現TCN1對光照刺激及其下游訊息傳遞物較為敏感, 其種子根延長受光照抑制之程度、OsHY5基因表現受光照誘導倍率、訊息分子生合成受光照誘導倍率皆較TNG67高。除此之外,我們發現部分光接受體 (OsPHYs、OsPHOT1a、OsPHOT1b) 於光照及黑暗下之基因表現趨勢符合品種間根部外觀之趨勢。進一步以單光試驗及複合光試驗探討何種光質因子調控波動根發生之分析中,我們發現紅藍綠混光及藍綠混光可模擬出TCN1於白光下之波動根型態,且OsPHOT1a、OsPHOT1b基因表現趨勢符合不同光質下根部外觀型態之趨勢。然而在探討品種間種子根型態差異之生態意義上,我們在固著力試驗結果中發現TCN1植株之固著能力於黑暗或光照下兩者無差別,反之光照下TNG67植株之固著能力明顯低於黑暗處理組。 | zh_TW |
dc.description.abstract | Light is not only the energy source for plants, but also an environmental signal to modulate plant morphogenesis. Our previous research showed that TCN1 (Oryza sativa L. cv. Taichung Native 1; an indica-type rice variety) displayed a wavy root phenotype under light conditions, but TNG67 (Oryza sativa L. cv. Tainung 67; a japonica-type rice variety) displayed a straight root phenotype. Moreover, nitric oxide, oxylipins, ethylene, and auxin were sequentially involved in the signaling cascades of light-induced root waving. In this study, we tried to clarify the mechanism leading to varietally dissimilar seminal root photomorphogenesis. Our results showed that TCN1 was more sensitive to light stimulus and following downstream signaling molecules. Moreover, the levels of light-induced inhihibition of root elongation, gene expression of OsHY5, and biosynthesis of signaling molecules in TCN1 could be higher than those in TNG67. In addition, the gene expression patterns of some photoreceptors (OsPHYs, OsPHOT1a, OsPHOT1b) were correlated to the root phenotypes between varieties under light or dark condition. The effects of the specific wavelength of light on root waving induction were also identified. The results showed that root waving can be induced by red-green-blue and green-blue light. The gene expression patterns of OsPHOT1a and OsPHOT1b were correlated to the root phenotypes under different light qualities. For evaluation of environmental significance of different root morphogenesis; however, it was found that TCN1 seedlings under light or dark conditions performed same anchorage strength. On the other hand, TNG67 seedlings under light condition performed weaker anchorage strength than under dark condition. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:13:16Z (GMT). No. of bitstreams: 1 ntu-104-R02621123-1.pdf: 5004760 bytes, checksum: abfcd3597065b0813217b5d5244008da (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 目錄
誌謝………………………………………………………………………………………i 中文摘要………………………………………………………………………………...ii Abstract…………………………………………………………………………………iii 目錄……………………………………………………………………………………...v 圖目錄…………………………………………………………………………………viii 附表與附圖目錄………………………………………………………………………..ix 縮寫字對照….…………………………………………………………………………..x 前人研究………………………………………………………………………………...1 1. 植物波動狀種子根型態之發生…………………………………………………..1 2. 光照刺激調控植物根部生長發育………………………………………………..3 2.1 不同光質對植株生長發育之影響……………………………………………4 2.1.1 單光質對植物根部生長發育之影響…………………………………….4 2.1.2 多波長複合光質對植株生長發育之影響……………………………….5 2.1.3 不同光強之光照刺激對植株生長發育之影響………………………….6 2.2 植物光接受體 (photoreceptor)……………………………………………….6 2.2.1 光敏素 (phytochrome;PHY) …………………………………………...7 2.2.2 隱花色素 (cryptochrome;CRY)………………………………………..8 2.2.3向光素 (phototropin;PHOT)……………………………………………9 2.2.4 品種間光敏感度之差異性間接影響水稻根系型態…………………….9 3. 植物訊息傳遞物質參與環境因子對根部生長之調控機制……………………10 3.1 一氧化氮 (Nitric Oxide) …………………………………………………….10 3.2 脂氧化物 (Oxylipins)………………………………………………………..11 3.3 乙烯 ………………………………………………………………………….12 3.4 生長素………………………………………………………………………..13 4. 植物根部型態與生長行為之生態意義…………………………………………14 5. 本論文之研究主題………………………………………………………………15 材料與方法…………………………………………………………………………….17 1. 植物材料…………………………………………………………………………17 2. 比較不同水稻品種間種子根光型態差異之調控機制…………………………17 2.1 材料處理 …………………………………………………………………….17 2.2 比較品種間對光敏感度之差異……………………………………………..17 2.3比較品種間對訊息傳遞物質敏感度之差異………………………………...18 2.3.1 一氧化氮………………………………………………………………...18 2.3.2 乙烯……………………………………………………………………...18 2.3.3 生長素…………………………………………………………………...18 3. 不同光質與光強處理……………………………………………………………19 3.1 單光質處理…………………………………………………………………..19 3.2 複合光質處理 ……………………………………………………………….19 3.3 高光強藍光試驗處理………………………………………………………..19 3.4 一氧化氮螢光影像偵測與定量……………………………………………..20 4. 基因分析表現……………………………………………………………………21 4.1 水稻總RNA之萃取…………………………………………………………21 4.2 TURBO DNase處理………………………………………………………….21 4.3 RNA電泳 …………………………………………………………………….22 4.4 即時反轉錄聚合酶連鎖反應 (real-time RT-PCR)………………………….22 5. 固著力分析………………………………………………………………………23 結果…………………………………………………………………………………….24 1. 造成不同水稻品種發展不同光型態之生理機制………………………………24 1.1 不同水稻品種對光之敏感性………………………………………………..24 1.2 不同品種光照下訊息傳遞物生合成趨勢…………………………………..25 1.3 不同水稻品種對一氧化氮之敏感度………………………………………..25 1.4 不同水稻品種對乙烯之敏感度……………………………………………..26 1.5 不同水稻品種對生長素之敏感度…………………………………………..27 1.6 光照及黑暗下不同品種之光接受體基因表現……………………………..27 2. 不同光質對於TCN1種子根部型態之影響……………………………………28 2.1 單光光質對TCN1種子根部型態之影響…………………………………..29 2.2 不同單光質對種子根根尖內一氧化氮與生長素生合成含量之影響……..29 2.3 複合光光質對TCN1種子根部型態之影響………………………………..31 2.4藍光與其他光質交互之影響……………………………...……..…….…….32 2.5 不同光質環境下TCN1種子根光接受體基因表現……………...….……..32 3. 水稻種子根型態對植株固著力之影響…………………………………………33 討論…………………………………………………………………………………….35 1. 造成品種間光型態差異之原因…………………………………………………35 2. 不同光質對於水稻種子根發展之影響…………………………………………37 3. 調控波動狀種子根發生之光吸收受體…………………………………………39 4. 不同水稻種子根部光型態對於植株固著力之影響……………………………41 5. 結語與未來展望…………………………………………………………………42 參考文獻……………………………………………………………………………….59 圖目錄 圖一、不同水稻品種幼苗之光型態比較…………………………………………….44 圖二、不同品種水稻種子根尖於光照及黑暗下光形態正向轉錄因子OsHY5之基因表現…………………………………………………………………………….45 圖三、不同水稻品種種子根根尖於光照黑暗下oxylipins生合成主要酵素OsAOS1與乙烯生合成主要酵素OsACO1之基因表現……………………………….46 圖四、不同品種水稻種子根對一氧化氮之敏感度比較…………………………….47 圖五、不同品種水稻種子根對乙烯之敏感度比較………………………………….48 圖六、不同品種水稻種子根對生長素之敏感度比較……………………………….49 圖七、不同品種間光型態差異之生理機制………………………………………….50 圖八、光照與黑暗下不同品種水稻種子根根尖之光接受體基因表現…………….51 圖九、不同單光質對TCN1種子根外觀發展之影響……………………………….52 圖十、不同單光質對TCN1種子根根尖內一氧化氮及生長素生合成之影響…….53 圖十一、複合光質處理下TCN1種子根之外觀型態 (1)…………………………...54 圖十二、複合光質混光下TCN1種子根之外觀型態 (2)…………………………...55 圖十三、不同光質下TCN1種子根根尖光接受體基因之表現……………...……..56 圖十四、光照與黑暗下,不同水稻品種植株之最大固著力量值與種子根根長散佈圖…………………………………………………………………………….57 圖十五、不同品種光型態對植株固著能力之影響………………………………….58 附表與附圖目錄 附表一:Real-time RT-PCR之專一性引子…………………………………………..73 附圖一、TCN1與TNG67於光照及黑暗下之植株型態……………………………74 附圖二、TCN1與TNG67種子根之根尖迴旋運動擺動角度………………………75 附圖三、光照誘導TCN1水稻種子根產生波動狀型態之訊息機制……………….76 附圖四、人工照明室白光光譜與紅光、綠光、藍光LED光譜…………………...77 附圖五、種子根根尖之一氧化氮螢光表現………………………………………….78 附圖六、固著力分析測量設計示意圖……………………………………………….79 | |
dc.language.iso | zh-TW | |
dc.title | 探討誘導水稻幼苗波動狀種子根發生之光質因子與接受體 | zh_TW |
dc.title | Study on Light Qualities and Photoreceptors Involved in the Induction of Root Waving in Rice Seedlings | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 洪傳揚(Chwan-Yang Hong),張孟基(Men-Chi Chang),謝旭亮(Hsu-Liang Hsieh),郭瑋君(Woei-Jiun Guo) | |
dc.subject.keyword | 光,水稻,波動狀種子根,品種差異,光接受體,光質,固著力, | zh_TW |
dc.subject.keyword | light,rice (Oryza sativa L.),root waving,variety difference,photoreceptor,light quality,anchorage, | en |
dc.relation.page | 79 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-18 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農藝學研究所 | zh_TW |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 4.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。