Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52319
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余佳慧(Linda Chia-Hui Yu)
dc.contributor.authorWei-Wun Liuen
dc.contributor.author劉韋妏zh_TW
dc.date.accessioned2021-06-15T16:11:46Z-
dc.date.available2020-09-25
dc.date.copyright2015-09-25
dc.date.issued2015
dc.date.submitted2015-08-18
dc.identifier.citation1. Scaldaferri F, Pizzoferrato M, Gerardi V, et al. The gut barrier: new acquisitions and therapeutic approaches. J Clin Gastroenterol 2012;46 Suppl:S12-7.
2. Lange W. Cell number and cell density in the cerebellar cortex of man and some other mammals. Cell Tissue Res 1975;157:115-24.
3. Gershon MD. The enteric nervous system: a second brain. Hosp Pract (1995) 1999;34:31-2, 35-8, 41-2 passim.
4. Bienenstock J, Collins S. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: psycho-neuroimmunology and the intestinal microbiota: clinical observations and basic mechanisms. Clin Exp Immunol 2010;160:85-91.
5. Collins SM, Bercik P. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 2009;136:2003-14.
6. Fichna J, Storr MA. Brain-Gut Interactions in IBS. Front Pharmacol 2012;3:127.
7. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012;13:701-12.
8. Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 2009;6:306-14.
9. Knowles CH, Aziz Q. Basic and clinical aspects of gastrointestinal pain. Pain 2009;141:191-209.
10. Mayer EA, Tillisch K. The brain-gut axis in abdominal pain syndromes. Annu Rev Med 2011;62:381-96.
11. Grundy D. Neuroanatomy of visceral nociception: vagal and splanchnic afferent. Gut 2002;51 Suppl 1:i2-5.
12. Kennedy C. ATP as a cotransmitter in the autonomic nervous system. Auton Neurosci 2015;191:2-15.
13. Garcia-Larrea L. The posterior insular-opercular region and the search of a primary cortex for pain. Neurophysiol Clin 2012;42:299-313.
14. Penman J, Smith MC. Degeneration of the primary and secondary sensory neurones after trigeminal injection. J Neurol Neurosurg Psychiatry 1950;13:36-46.
15. Blackshaw LA, Brierley SM, Hughes PA. TRP channels: new targets for visceral pain. Gut 2010;59:126-35.
16. Sikandar S, Dickenson AH. Pregabalin modulation of spinal and brainstem visceral nociceptive processing. Pain 2011;152:2312-22.
17. Basbaum AI, Bautista DM, Scherrer G, et al. Cellular and molecular mechanisms of pain. Cell 2009;139:267-84.
18. Millan MJ. Descending control of pain. Prog Neurobiol 2002;66:355-474.
19. Sengupta JN. Visceral pain: the neurophysiological mechanism. Handb Exp Pharmacol 2009:31-74.
20. Ibeakanma C, Ochoa-Cortes F, Miranda-Morales M, et al. Brain-gut interactions increase peripheral nociceptive signaling in mice with postinfectious irritable bowel syndrome. Gastroenterology 2011;141:2098-2108 e5.
21. Hawrelak JA, Myers SP. The causes of intestinal dysbiosis: a review. Altern Med Rev 2004;9:180-97.
22. Thompson WG, Longstreth GF, Drossman DA, et al. Functional bowel disorders and functional abdominal pain. Gut 1999;45 Suppl 2:II43-7.
23. Lu CL, Chen CY, Lang HC, et al. Current patterns of irritable bowel syndrome in Taiwan: the Rome II questionnaire on a Chinese population. Aliment Pharmacol Ther 2003;18:1159-69.
24. Quigley EM, Abdel-Hamid H, Barbara G, et al. A global perspective on irritable bowel syndrome: a consensus statement of the World Gastroenterology Organisation Summit Task Force on irritable bowel syndrome. J Clin Gastroenterol 2012;46:356-66.
25. Wong RK, Drossman DA. Quality of life measures in irritable bowel syndrome. Expert Rev Gastroenterol Hepatol 2010;4:277-84.
26. Dorn SD, Morris CB, Hu Y, et al. Irritable bowel syndrome subtypes defined by Rome II and Rome III criteria are similar. J Clin Gastroenterol 2009;43:214-20.
27. Chen J, Zhang Y, Deng Z. Imbalanced shift of cytokine expression between T helper 1 and T helper 2 (Th1/Th2) in intestinal mucosa of patients with post-infectious irritable bowel syndrome. BMC Gastroenterol 2012;12:91.
28. Bouin M, Plourde V, Boivin M, et al. Rectal distention testing in patients with irritable bowel syndrome: sensitivity, specificity, and predictive values of pain sensory thresholds. Gastroenterology 2002;122:1771-7.
29. Mertz H, Naliboff B, Munakata J, et al. Altered rectal perception is a biological marker of patients with irritable bowel syndrome. Gastroenterology 1995;109:40-52.
30. Drossman DA, Camilleri M, Mayer EA, et al. AGA technical review on irritable bowel syndrome. Gastroenterology 2002;123:2108-31.
31. Kellow JE, Phillips SF. Altered small bowel motility in irritable bowel syndrome is correlated with symptoms. Gastroenterology 1987;92:1885-93.
32. Kellow JE, Phillips SF, Miller LJ, et al. Dysmotility of the small intestine in irritable bowel syndrome. Gut 1988;29:1236-43.
33. Ohman L, Simren M. Pathogenesis of IBS: role of inflammation, immunity and neuroimmune interactions. Nat Rev Gastroenterol Hepatol 2010;7:163-73.
34. Bhatia V, Tandon RK. Stress and the gastrointestinal tract. J Gastroenterol Hepatol 2005;20:332-9.
35. Filaretova L. The hypothalamic-pituitary-adrenocortical system: Hormonal brain-gut interaction and gastroprotection. Auton Neurosci 2006;125:86-93.
36. Bradford K, Shih W, Videlock EJ, et al. Association between early adverse life events and irritable bowel syndrome. Clin Gastroenterol Hepatol 2012;10:385-90 e1-3.
37. Chitkara DK, van Tilburg MA, Blois-Martin N, et al. Early life risk factors that contribute to irritable bowel syndrome in adults: a systematic review. Am J Gastroenterol 2008;103:765-74; quiz 775.
38. Drossman DA, Sandler RS, McKee DC, et al. Bowel patterns among subjects not seeking health care. Use of a questionnaire to identify a population with bowel dysfunction. Gastroenterology 1982;83:529-34.
39. Fava GA, Pavan L. Large bowel disorders. I. Illness configuration and life events. Psychother Psychosom 1976;27:93-9.
40. Posserud I, Agerforz P, Ekman R, et al. Altered visceral perceptual and neuroendocrine response in patients with irritable bowel syndrome during mental stress. Gut 2004;53:1102-8.
41. Soderholm JD, Perdue MH. Stress and gastrointestinal tract. II. Stress and intestinal barrier function. Am J Physiol Gastrointest Liver Physiol 2001;280:G7-G13.
42. Bradesi S, Schwetz I, Ennes HS, et al. Repeated exposure to water avoidance stress in rats: a new model for sustained visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol 2005;289:G42-53.
43. Larauche M, Bradesi S, Million M, et al. Corticotropin-releasing factor type 1 receptors mediate the visceral hyperalgesia induced by repeated psychological stress in rats. Am J Physiol Gastrointest Liver Physiol 2008;294:G1033-40.
44. Cameron HL, Perdue MH. Stress impairs murine intestinal barrier function: improvement by glucagon-like peptide-2. J Pharmacol Exp Ther 2005;314:214-20.
45. Santos J, Benjamin M, Yang PC, et al. Chronic stress impairs rat growth and jejunal epithelial barrier function: role of mast cells. Am J Physiol Gastrointest Liver Physiol 2000;278:G847-54.
46. Santos J, Yang PC, Soderholm JD, et al. Role of mast cells in chronic stress induced colonic epithelial barrier dysfunction in the rat. Gut 2001;48:630-6.
47. Moloney RD, O'Leary OF, Felice D, et al. Early-life stress induces visceral hypersensitivity in mice. Neurosci Lett 2012;512:99-102.
48. Barreau F, Cartier C, Leveque M, et al. Pathways involved in gut mucosal barrier dysfunction induced in adult rats by maternal deprivation: corticotrophin-releasing factor and nerve growth factor interplay. J Physiol 2007;580:347-56.
49. Chung EK, Zhang X, Li Z, et al. Neonatal maternal separation enhances central sensitivity to noxious colorectal distention in rat. Brain Res 2007;1153:68-77.
50. Spiller R, Garsed K. Postinfectious irritable bowel syndrome. Gastroenterology 2009;136:1979-88.
51. Neal KR, Hebden J, Spiller R. Prevalence of gastrointestinal symptoms six months after bacterial gastroenteritis and risk factors for development of the irritable bowel syndrome: postal survey of patients. BMJ 1997;314:779-82.
52. Moss-Morris R, Spence M. To 'lump' or to 'split' the functional somatic syndromes: can infectious and emotional risk factors differentiate between the onset of chronic fatigue syndrome and irritable bowel syndrome? Psychosom Med 2006;68:463-9.
53. Wang LH, Fang XC, Pan GZ. Bacillary dysentery as a causative factor of irritable bowel syndrome and its pathogenesis. Gut 2004;53:1096-101.
54. Mearin F, Perez-Oliveras M, Perello A, et al. Dyspepsia and irritable bowel syndrome after a Salmonella gastroenteritis outbreak: one-year follow-up cohort study. Gastroenterology 2005;129:98-104.
55. Barbara G, Cremon C, Pallotti F, et al. Postinfectious irritable bowel syndrome. J Pediatr Gastroenterol Nutr 2009;48 Suppl 2:S95-7.
56. Drossman DA. Mind over matter in the postinfective irritable bowel. Gut 1999;44:306-7.
57. King T. Psychometric scores and persistence of irritable bowel after infectious diarrhoea. Clin Nutr 1996;15:143.
58. Spiller RC. Role of infection in irritable bowel syndrome. J Gastroenterol 2007;42 Suppl 17:41-7.
59. Faubert G. Immune response to Giardia duodenalis. Clin Microbiol Rev 2000;13:35-54, table of contents.
60. Monis PT, Caccio SM, Thompson RC. Variation in Giardia: towards a taxonomic revision of the genus. Trends Parasitol 2009;25:93-100.
61. Gardner TB, Hill DR. Treatment of giardiasis. Clin Microbiol Rev 2001;14:114-28.
62. Roxstrom-Lindquist K, Palm D, Reiner D, et al. Giardia immunity--an update. Trends Parasitol 2006;22:26-31.
63. Lai CC, Wu FT, Ji DD, et al. Gastroenteritis in a Taipei emergency department: aetiology and risk factors. Clin Microbiol Infect 2011;17:1071-7.
64. Nash TE. Antigenic variation in Giardia lamblia and the host's immune response. Philos Trans R Soc Lond B Biol Sci 1997;352:1369-75.
65. Eckmann L. Mucosal defences against Giardia. Parasite Immunol 2003;25:259-70.
66. Langford TD, Housley MP, Boes M, et al. Central importance of immunoglobulin A in host defense against Giardia spp. Infect Immun 2002;70:11-8.
67. Li E, Zhou P, Petrin Z, et al. Mast cell-dependent control of Giardia lamblia infections in mice. Infect Immun 2004;72:6642-9.
68. Cotton JA, Beatty JK, Buret AG. Host parasite interactions and pathophysiology in Giardia infections. Int J Parasitol 2011;41:925-33.
69. Jimenez JC, Fontaine J, Grzych JM, et al. Systemic and mucosal responses to oral administration of excretory and secretory antigens from Giardia intestinalis. Clin Diagn Lab Immunol 2004;11:152-60.
70. Tandon BN, Tandon RK, Satpathy BK, et al. Mechanism of malabsorption in giardiasis: a study of bacterial flora and bile salt deconjugation in upper jejunum. Gut 1977;18:176-81.
71. Chen TL, Chen S, Wu HW, et al. Persistent gut barrier damage and commensal bacterial influx following eradication of Giardia infection in mice. Gut Pathog 2013;5:26.
72. D'Anchino M, Orlando D, De Feudis L. Giardia lamblia infections become clinically evident by eliciting symptoms of irritable bowel syndrome. J Infect 2002;45:169-72.
73. Hanevik K, Hausken T, Morken MH, et al. Persisting symptoms and duodenal inflammation related to Giardia duodenalis infection. J Infect 2007;55:524-30.
74. Nygard K, Schimmer B, Sobstad O, et al. A large community outbreak of waterborne giardiasis-delayed detection in a non-endemic urban area. BMC Public Health 2006;6:141.
75. Hanevik K, Dizdar V, Langeland N, et al. Development of functional gastrointestinal disorders after Giardia lamblia infection. BMC Gastroenterol 2009;9:27.
76. Robertson LJ, Hanevik K, Escobedo AA, et al. Giardiasis--why do the symptoms sometimes never stop? Trends Parasitol 2010;26:75-82.
77. Roth KA, Kim S, Gordon JI. Immunocytochemical studies suggest two pathways for enteroendocrine cell differentiation in the colon. Am J Physiol 1992;263:G174-80.
78. Manocha M, Shajib MS, Rahman MM, et al. IL-13-mediated immunological control of enterochromaffin cell hyperplasia and serotonin production in the gut. Mucosal Immunol 2013;6:146-55.
79. Nakatani Y, Sato-Suzuki I, Tsujino N, et al. Augmented brain 5-HT crosses the blood-brain barrier through the 5-HT transporter in rat. Eur J Neurosci 2008;27:2466-72.
80. Sharma HS, Dey PK. Impairment of blood-brain barrier (BBB) in rat by immobilization stress: role of serotonin (5-HT). Indian J Physiol Pharmacol 1981;25:111-22.
81. Sharma HS, Dey PK. Probable involvement of 5-hydroxytryptamine in increased permeability of blood-brain barrier under heat stress in young rats. Neuropharmacology 1986;25:161-7.
82. Sikander A, Rana SV, Prasad KK. Role of serotonin in gastrointestinal motility and irritable bowel syndrome. Clin Chim Acta 2009;403:47-55.
83. Dunlop SP, Coleman NS, Blackshaw E, et al. Abnormalities of 5-hydroxytryptamine metabolism in irritable bowel syndrome. Clin Gastroenterol Hepatol 2005;3:349-57.
84. Buhner S, Li Q, Vignali S, et al. Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. Gastroenterology 2009;137:1425-34.
85. Barbara G, Wang B, Stanghellini V, et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 2007;132:26-37.
86. Lu CL, Hsieh JC, Dun NJ, et al. Estrogen rapidly modulates 5-hydroxytrytophan-induced visceral hypersensitivity via GPR30 in rats. Gastroenterology 2009;137:1040-50.
87. Bardhan KD, Bodemar G, Geldof H, et al. A double-blind, randomized, placebo-controlled dose-ranging study to evaluate the efficacy of alosetron in the treatment of irritable bowel syndrome. Aliment Pharmacol Ther 2000;14:23-34.
88. Muller-Lissner SA, Fumagalli I, Bardhan KD, et al. Tegaserod, a 5-HT(4) receptor partial agonist, relieves symptoms in irritable bowel syndrome patients with abdominal pain, bloating and constipation. Aliment Pharmacol Ther 2001;15:1655-66.
89. Ford AC, Vandvik PO. Irritable bowel syndrome. BMJ Clin Evid 2012;2012.
90. Bohn L, Storsrud S, Tornblom H, et al. Self-reported food-related gastrointestinal symptoms in IBS are common and associated with more severe symptoms and reduced quality of life. Am J Gastroenterol 2013;108:634-41.
91. Liddle RA. Cholecystokinin cells. Annu Rev Physiol 1997;59:221-42.
92. Rehfeld JF. The endoproteolytic maturation of progastrin and procholecystokinin. J Mol Med (Berl) 2006;84:544-50.
93. Rehfeld JF, Bungaard JR, Friis-Hansen L, et al. On the tissue-specific processing of procholecystokinin in the brain and gut--a short review. J Physiol Pharmacol 2003;54 Suppl 4:73-9.
94. Dockray GJ. Cholecystokinin and gut-brain signalling. Regul Pept 2009;155:6-10.
95. Varga G, Balint A, Burghardt B, et al. Involvement of endogenous CCK and CCK1 receptors in colonic motor function. Br J Pharmacol 2004;141:1275-84.
96. Blackshaw LA, Grundy D. Effects of cholecystokinin (CCK-8) on two classes of gastroduodenal vagal afferent fibre. J Auton Nerv Syst 1990;31:191-201.
97. Tirassa P, Aloe L, Stenfors C, et al. Cholecystokinin-8 protects central cholinergic neurons against fimbria-fornix lesion through the up-regulation of nerve growth factor synthesis. Proc Natl Acad Sci U S A 1999;96:6473-7.
98. Cano V, Merino B, Ezquerra L, et al. A cholecystokinin-1 receptor agonist (CCK-8) mediates increased permeability of brain barriers to leptin. Br J Pharmacol 2008;154:1009-15.
99. Zhu XG, Greeley GH, Jr., Lewis BG, et al. Blood-CSF barrier to CCK and effect of centrally administered bombesin on release of brain CCK. J Neurosci Res 1986;15:393-403.
100. Noble F, Wank SA, Crawley JN, et al. International Union of Pharmacology. XXI. Structure, distribution, and functions of cholecystokinin receptors. Pharmacol Rev 1999;51:745-81.
101. Fornai M, Colucci R, Antonioli L, et al. CCK2 receptors mediate inhibitory effects of cholecystokinin on the motor activity of guinea-pig distal colon. Eur J Pharmacol 2007;557:212-20.
102. Cawston EE, Miller LJ. Therapeutic potential for novel drugs targeting the type 1 cholecystokinin receptor. Br J Pharmacol 2010;159:1009-21.
103. Ko BS, Han JH, Jeong JI, et al. Mechanism of action of cholecystokinin on colonic motility in isolated, vascularly perfused rat colon. J Neurogastroenterol Motil 2011;17:73-81.
104. Rettenbacher M, Reubi JC. Localization and characterization of neuropeptide receptors in human colon. Naunyn Schmiedebergs Arch Pharmacol 2001;364:291-304.
105. Schulz S, Rocken C, Mawrin C, et al. Immunohistochemical localization of CCK1 cholecystokinin receptors in normal and neoplastic human tissues. J Clin Endocrinol Metab 2005;90:6149-55.
106. Steigerwalt RW, Goldfine ID, Williams JA. Characterization of cholecystokinin receptors on bovine gallbladder membranes. Am J Physiol 1984;247:G709-14.
107. von Schrenck T, Moran TH, Heinz-Erian P, et al. Cholecystokinin receptors on gallbladder muscle and pancreatic acinar cells: a comparative study. Am J Physiol 1988;255:G512-21.
108. Yu DH, Huang SC, Wank SA, et al. Pancreatic receptors for cholecystokinin: evidence for three receptor classes. Am J Physiol 1990;258:G86-95.
109. Moonka R, Zhou W, Bell RH, Jr. Cholecystokinin-A receptor messenger RNA expression in human pancreatic cancer. J Gastrointest Surg 1999;3:134-40.
110. Niederau C, Luthen R, Heintges T. Effects of CCK on pancreatic function and morphology. Ann N Y Acad Sci 1994;713:180-98.
111. Takiguchi S, Suzuki S, Sato Y, et al. Role of CCK-A receptor for pancreatic function in mice: a study in CCK-A receptor knockout mice. Pancreas 2002;24:276-83.
112. Ghilardi JR, Allen CJ, Vigna SR, et al. Trigeminal and dorsal root ganglion neurons express CCK receptor binding sites in the rat, rabbit, and monkey: possible site of opiate-CCK analgesic interactions. J Neurosci 1992;12:4854-66.
113. Wiesenfeld-Hallin Z, Xu XJ, Hokfelt T. The role of spinal cholecystokinin in chronic pain states. Pharmacol Toxicol 2002;91:398-403.
114. Rivat C, Becker C, Blugeot A, et al. Chronic stress induces transient spinal neuroinflammation, triggering sensory hypersensitivity and long-lasting anxiety-induced hyperalgesia. Pain 2010;150:358-68.
115. Heinricher MM, Neubert MJ. Neural basis for the hyperalgesic action of cholecystokinin in the rostral ventromedial medulla. J Neurophysiol 2004;92:1982-9.
116. Xie JY, Herman DS, Stiller CO, et al. Cholecystokinin in the rostral ventromedial medulla mediates opioid-induced hyperalgesia and antinociceptive tolerance. J Neurosci 2005;25:409-16.
117. Friedrich AE, Gebhart GF. Effects of spinal cholecystokinin receptor antagonists on morphine antinociception in a model of visceral pain in the rat. J Pharmacol Exp Ther 2000;292:538-44.
118. Friedrich AE, Gebhart GF. Modulation of visceral hyperalgesia by morphine and cholecystokinin from the rat rostroventral medial medulla. Pain 2003;104:93-101.
119. Cao B, Zhang X, Yan N, et al. Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats. Mol Brain 2012;5:19.
120. Van Der Veek PP, Biemond I, Masclee AA. Proximal and distal gut hormone secretion in irritable bowel syndrome. Scand J Gastroenterol 2006;41:170-7.
121. Zhang H, Yan Y, Shi R, et al. Correlation of gut hormones with irritable bowel syndrome. Digestion 2008;78:72-6.
122. Chey WY, Jin HO, Lee MH, et al. Colonic motility abnormality in patients with irritable bowel syndrome exhibiting abdominal pain and diarrhea. Am J Gastroenterol 2001;96:1499-506.
123. Cremonini F, Camilleri M, McKinzie S, et al. Effect of CCK-1 antagonist, dexloxiglumide, in female patients with irritable bowel syndrome: a pharmacodynamic and pharmacogenomic study. Am J Gastroenterol 2005;100:652-63.
124. Dizdar V, Spiller R, Singh G, et al. Relative importance of abnormalities of CCK and 5-HT (serotonin) in Giardia-induced post-infectious irritable bowel syndrome and functional dyspepsia. Aliment Pharmacol Ther 2010;31:883-91.
125. Gay J, More J, Bueno L, et al. CCK-induced Fos expression in brain stem is enhanced after intestinal nematode infection in rats. Brain Res 2002;942:124-7.
126. Juanola C, Giralt M, Jimenez M, et al. Mucosal mast cells are involved in CCK disruption of MMC in the rat intestine. Am J Physiol 1998;275:G63-7.
127. Simren M, Abrahamsson H, Bjornsson ES. An exaggerated sensory component of the gastrocolonic response in patients with irritable bowel syndrome. Gut 2001;48:20-7.
128. van der Schaar PJ, van Hoboken E, Ludidi S, et al. Effect of cholecystokinin on rectal motor and sensory function in patients with irritable bowel syndrome and healthy controls. Colorectal Dis 2013;15:e29-34.
129. Sabate JM, Gorbatchef C, Flourie B, et al. Cholecystokinin octapeptide increases rectal sensitivity to pain in healthy subjects. Neurogastroenterol Motil 2002;14:689-95.
130. Chey WY, Chang T. Neural hormonal regulation of exocrine pancreatic secretion. Pancreatology 2001;1:320-35.
131. Coffin B, Fossati S, Flourie B, et al. Regional effects of cholecystokinin octapeptide on colonic phasic and tonic motility in healthy humans. Am J Physiol 1999;276:G767-72.
132. Enck P, Kaiser C, Felber M, et al. Circadian variation of rectal sensitivity and gastrointestinal peptides in healthy volunteers. Neurogastroenterol Motil 2009;21:52-8.
133. Harvey RF, Read AE. Effect of cholecystokinin on colonic motility and symptoms in patients with the irritable-bowel syndrome. Lancet 1973;1:1-3.
134. Renny A, Snape WJ, Jr., Sun EA, et al. Role of cholecystokinin in the gastrocolonic response to a fat meal. Gastroenterology 1983;85:17-21.
135. Akbar A, Yiangou Y, Facer P, et al. Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut 2008;57:923-9.
136. Hong S, Zheng G, Wu X, et al. Corticosterone mediates reciprocal changes in CB 1 and TRPV1 receptors in primary sensory neurons in the chronically stressed rat. Gastroenterology 2011;140:627-637 e4.
137. Stengel A, Tache Y. Corticotropin-releasing factor signaling and visceral response to stress. Exp Biol Med (Maywood) 2010;235:1168-78.
138. Sagami Y, Shimada Y, Tayama J, et al. Effect of a corticotropin releasing hormone receptor antagonist on colonic sensory and motor function in patients with irritable bowel syndrome. Gut 2004;53:958-64.
139. Wallon C, Yang PC, Keita AV, et al. Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro. Gut 2008;57:50-8.
140. Santos J, Saunders PR, Hanssen NP, et al. Corticotropin-releasing hormone mimics stress-induced colonic epithelial pathophysiology in the rat. Am J Physiol 1999;277:G391-9.
141. Tache Y, Perdue MH. Role of peripheral CRF signalling pathways in stress-related alterations of gut motility and mucosal function. Neurogastroenterol Motil 2004;16 Suppl 1:137-42.
142. Guilarte M, Santos J, de Torres I, et al. Diarrhoea-predominant IBS patients show mast cell activation and hyperplasia in the jejunum. Gut 2007;56:203-9.
143. Barbara G, Stanghellini V, De Giorgio R, et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 2004;126:693-702.
144. Buhner S, Schemann M. Mast cell-nerve axis with a focus on the human gut. Biochim Biophys Acta 2012;1822:85-92.
145. van Diest SA, Stanisor OI, Boeckxstaens GE, et al. Relevance of mast cell-nerve interactions in intestinal nociception. Biochim Biophys Acta 2012;1822:74-84.
146. Jacob C, Yang PC, Darmoul D, et al. Mast cell tryptase controls paracellular permeability of the intestine. Role of protease-activated receptor 2 and beta-arrestins. J Biol Chem 2005;280:31936-48.
147. Marchiando AM, Shen L, Graham WV, et al. Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. J Cell Biol 2010;189:111-26.
148. Martinez C, Gonzalez-Castro A, Vicario M, et al. Cellular and molecular basis of intestinal barrier dysfunction in the irritable bowel syndrome. Gut Liver 2012;6:305-15.
149. Kiyatkin ME, Feng B, Schwartz ES, et al. Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization. Am J Physiol Gastrointest Liver Physiol 2013;305:G638-48.
150. Okun A, Liu P, Davis P, et al. Afferent drive elicits ongoing pain in a model of advanced osteoarthritis. Pain 2012;153:924-33.
151. Parekh R, Ascoli GA. Quantitative investigations of axonal and dendritic arbors: development, structure, function, and pathology. Neuroscientist 2015;21:241-54.
152. Cenac N, Andrews CN, Holzhausen M, et al. Role for protease activity in visceral pain in irritable bowel syndrome. J Clin Invest 2007;117:636-47.
153. Cremon C, Carini G, Wang B, et al. Intestinal serotonin release, sensory neuron activation, and abdominal pain in irritable bowel syndrome. Am J Gastroenterol 2011;106:1290-8.
154. Gecse K, Roka R, Ferrier L, et al. Increased faecal serine protease activity in diarrhoeic IBS patients: a colonic lumenal factor impairing colonic permeability and sensitivity. Gut 2008;57:591-9.
155. Caterina MJ, Julius D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 2001;24:487-517.
156. Caterina MJ, Schumacher MA, Tominaga M, et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997;389:816-24.
157. Hutter MM, Wick EC, Day AL, et al. Transient receptor potential vanilloid (TRPV-1) promotes neurogenic inflammation in the pancreas via activation of the neurokinin-1 receptor (NK-1R). Pancreas 2005;30:260-5.
158. Winston J, Shenoy M, Medley D, et al. The vanilloid receptor initiates and maintains colonic hypersensitivity induced by neonatal colon irritation in rats. Gastroenterology 2007;132:615-27.
159. Ahluwalia J, Urban L, Capogna M, et al. Cannabinoid 1 receptors are expressed in nociceptive primary sensory neurons. Neuroscience 2000;100:685-8.
160. Casu MA, Porcella A, Ruiu S, et al. Differential distribution of functional cannabinoid CB1 receptors in the mouse gastroenteric tract. Eur J Pharmacol 2003;459:97-105.
161. Turu G, Hunyady L. Signal transduction of the CB1 cannabinoid receptor. J Mol Endocrinol 2010;44:75-85.
162. Sanson M, Bueno L, Fioramonti J. Involvement of cannabinoid receptors in inflammatory hypersensitivity to colonic distension in rats. Neurogastroenterol Motil 2006;18:949-56.
163. Shen L, Yang XJ, Qian W, et al. The role of peripheral cannabinoid receptors type 1 in rats with visceral hypersensitivity induced by chronic restraint stress. J Neurogastroenterol Motil 2010;16:281-90.
164. Ahluwalia J, Urban L, Bevan S, et al. Cannabinoid 1 receptors are expressed by nerve growth factor- and glial cell-derived neurotrophic factor-responsive primary sensory neurones. Neuroscience 2002;110:747-53.
165. Galdino G, Romero TR, Silva JF, et al. The endocannabinoid system mediates aerobic exercise-induced antinociception in rats. Neuropharmacology 2014;77:313-24.
166. Silva LC, Romero TR, Guzzo LS, et al. Participation of cannabinoid receptors in peripheral nociception induced by some NSAIDs. Braz J Med Biol Res 2012;45:1240-3.
167. Mercer JG, Farningham DA, Lawrence CB. Effect of neonatal capsaicin treatment on cholecystokinin-(CCK8) satiety and axonal transport of CCK binding sites in the rat vagus nerve. Brain Res 1992;569:311-6.
168. Ritter RC, Ladenheim EE. Capsaicin pretreatment attenuates suppression of food intake by cholecystokinin. Am J Physiol 1985;248:R501-4.
169. Sugiuar T, Bielefeldt K, Gebhart GF. TRPV1 function in mouse colon sensory neurons is enhanced by metabotropic 5-hydroxytryptamine receptor activation. J Neurosci 2004;24:9521-30.
170. Yu YB, Zuo XL, Zhao QJ, et al. Brain-derived neurotrophic factor contributes to abdominal pain in irritable bowel syndrome. Gut 2012;61:685-94.
171. Torrents D, Torres R, De Mora F, et al. Antinerve growth factor treatment prevents intestinal dysmotility in Trichinella spiralis-infected rats. J Pharmacol Exp Ther 2002;302:659-65.
172. Barreau F, Cartier C, Ferrier L, et al. Nerve growth factor mediates alterations of colonic sensitivity and mucosal barrier induced by neonatal stress in rats. Gastroenterology 2004;127:524-34.
173. Dhobale M. Neurotrophins: Role in adverse pregnancy outcome. Int J Dev Neurosci 2014;37:8-14.
174. Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 2006;361:1545-64.
175. Ernsberger U. Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res 2009;336:349-84.
176. Willot S, Gauthier C, Patey N, et al. Nerve growth factor content is increased in the rectal mucosa of children with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil 2012;24:734-9, e347.
177. Benito-Gutierrez E, Garcia-Fernandez J, Comella JX. Origin and evolution of the Trk family of neurotrophic receptors. Mol Cell Neurosci 2006;31:179-92.
178. Brown A, Ricci MJ, Weaver LC. NGF message and protein distribution in the injured rat spinal cord. Exp Neurol 2004;188:115-27.
179. Mimura J, Kosaka K, Maruyama A, et al. Nrf2 regulates NGF mRNA induction by carnosic acid in T98G glioblastoma cells and normal human astrocytes. J Biochem 2011;150:209-17.
180. Tirassa P, Costa N. CCK-8 induces NGF and BDNF synthesis and modulates TrkA and TrkB expression in the rat hippocampus and septum: Effects on kindling development. Neurochem Int 2007;50:130-8.
181. Tirassa P, Stenfors C, Lundeberg T, et al. Cholecystokinin-8 regulation of NGF concentrations in adult mouse brain through a mechanism involving CCK(A) and CCK(B) receptors. Br J Pharmacol 1998;123:1230-6.
182. Skaper SD, Pollock M, Facci L. Mast cells differentially express and release active high molecular weight neurotrophins. Brain Res Mol Brain Res 2001;97:177-85.
183. Leon A, Buriani A, Dal Toso R, et al. Mast cells synthesize, store, and release nerve growth factor. Proc Natl Acad Sci U S A 1994;91:3739-43.
184. Kuroda T, Ueda M, Nakano M, et al. Altered production of nerve growth factor in aganglionic intestines. J Pediatr Surg 1994;29:288-92; discussion 292-3.
185. Zhu ZW, Friess H, Wang L, et al. Brain-derived neurotrophic factor (BDNF) is upregulated and associated with pain in chronic pancreatitis. Dig Dis Sci 2001;46:1633-9.
186. Yang J, Yu Y, Yu H, et al. The role of brain-derived neurotrophic factor in experimental inflammation of mouse gut. Eur J Pain 2010;14:574-9.
187. Fulmer CG, VonDran MW, Stillman AA, et al. Astrocyte-derived BDNF supports myelin protein synthesis after cuprizone-induced demyelination. J Neurosci 2014;34:8186-96.
188. Hyman C, Hofer M, Barde YA, et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 1991;350:230-2.
189. Zhang R, Peng Z, Wang H, et al. Gastrodin ameliorates depressive-like behaviors and up-regulates the expression of BDNF in the hippocampus and hippocampal-derived astrocyte of rats. Neurochem Res 2014;39:172-9.
190. Bercik P, Park AJ, Sinclair D, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 2011;23:1132-9.
191. Winston JH, Sarna SK. Developmental origins of functional dyspepsia-like gastric hypersensitivity in rats. Gastroenterology 2013;144:570-579 e3.
192. Yu SJ, Grider JR, Gulick MA, et al. Up-regulation of brain-derived neurotrophic factor is regulated by extracellular signal-regulated protein kinase 5 and by nerve growth factor retrograde signaling in colonic afferent neurons in colitis. Exp Neurol 2012;238:209-17.
193. Boesmans W, Gomes P, Janssens J, et al. Brain-derived neurotrophic factor amplifies neurotransmitter responses and promotes synaptic communication in the enteric nervous system. Gut 2008;57:314-22.
194. Lucini C, Maruccio L, de Girolamo P, et al. Localisation of neurotrophin - containing cells in higher vertebrate intestine. Anat Embryol (Berl) 2002;205:135-40.
195. Kaplan DR, Matsumoto K, Lucarelli E, et al. Induction of TrkB by retinoic acid mediates biologic responsiveness to BDNF and differentiation of human neuroblastoma cells. Eukaryotic Signal Transduction Group. Neuron 1993;11:321-31.
196. Ross RA, Spengler BA, Biedler JL. Coordinate morphological and biochemical interconversion of human neuroblastoma cells.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52319-
dc.description.abstract背景:腸躁症(Irritable bowel syndrome)是一種常見的功能性腸胃道失調疾病,特徵為長期反覆性腹痛和排便習慣的改變,卻無特定病因或病原菌的存在。近期研究發現,血清素(serotonin, 5-hydroxytryptamine, 5-HT)、膽囊收縮素(cholecystokinin;CCK)、神經生長因子(nerve growh factor;NGF)與腸道痛覺敏感有其相關性。然而,腸躁症與其內臟痛覺敏感的病理機制仍不明。因此,我們實驗室利用人類母細胞瘤SH-SY5Y細胞探討CCK是否導致神經纖維延長,並利用後感染及精神壓力之雙重刺激因子來建立腸道痛覺敏感之小鼠模式和評估血清素受器配體對內臟高敏感性和腸道功能的影響。
方法:細胞實驗部分,利用人類SH-SY5Y神經母細胞株加入視黃酸(retinoic acid;RA)促使分化後,給予硫酸化的CCK-8S (sulphated CCK octapeptide)培養,而後測量其神經纖維長度,觀察神經纖維生長變化。動物實驗部分,利用後感染及精神壓力雙重因子的小鼠,測試血清素受器配體對其內臟敏感與腸胃道蠕動狀況的影響。藉由內臟動器對結直腸撐張來評估腹痛敏感程度。
結果:神經母細胞經RA作用分化後給予CCK-8S作用,結果神經纖維生長為3倍。若預先給予中和性anti-NGF或 CCK-A 或CCK-B receptor inhibitors (AIH或BIH)均能顯著降低神經纖維的延長。透過西方轉漬法分析發現,經CCK-8S作用後的神經細胞,其NGF蛋白的表現量會提高。此外,血清素受器配體不論以腹腔注射(單次性)或經口給予(單次或連續性),皆可有效降低小鼠的內臟敏感性,但惟有連續性經口給予可以減緩腸胃道蠕動。
結論:本篇細胞實驗證實了,CCK-8S能促使神經纖維的延長,藉由結合至CCK受器以及增加NGF的表現來達成。此外,血清素受器配體能降低小鼠的內臟敏感性。因此推論,CCK和5-HT有參與腸道痛覺高敏感性之機制。
zh_TW
dc.description.abstractBackground: Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder characterized by chronic recurrent abdominal pain and altered bowel habits, in the absence of identifiable organic cause and macroscopic lesions. Recent findings indicate links between serotonin (5-hydroxytryptamine, 5-HT), cholecystokinin (CCK) and nerve growth factor (NGF) with intestinal hyperalgesia. However, the mechanism of visceral hypersensitivity in IBS remains unclear. The aim is to evaluate whether CCK may cause neurite outgrowth in human neuroblastoma SH-SY5Y cells and the effecst of 5-HT7 receptor ligand on visceral hypersensitivity and gut dysfunctions in a mouse model of dual triggers of post-infection and psychological stress.
Method: SH-SY5Y cells were treated with retinoic acid (RA) to induce cell differentiation, and then cultured with sulphated CCK octapeptide (CCK-8S) for measurement of nerve fiber length. In some experiments, 5-HT7 receptor ligands were intraperitoneally administered to mice with dual triggers of post-infection and psychological stress. Abdominal pain was evaluated by visceromoter response to colorectal distension.
Result: SH-SY5Y cells displayed 3-times increase of nerve fiber length after incubation with exogenously CCK-8S compared to control group. Moreover, pretreatment with neutralizing anti-NGF or with antagonists to CCK receptors decreased the nerve fiber length in cells incubated with CCK-8S. Western blots showed increased level of NGF in cells after culturing with CCK-8S. In addition, intraperitoneal (one dose) and peroral (one or multiple doses) administration of 5HT7 receptor ligands inhibited visceral hypersensitivity; however, only multiple peroral dose reduced intestinal motility.
Conclusion: Exogenously CCK-8S induces neurite outgrowth via CCK receptors and induction of NGF synthesis. Moreover, 5HT7 receptor ligands inhibited visceral hypersensitivity. In sum, CCK and 5-HT are involved in the mechanisms of intestinal hyperalgesia.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:11:46Z (GMT). No. of bitstreams: 1
ntu-104-R02441011-1.pdf: 1838459 bytes, checksum: 46bc6cf53df5f4aa89b013708afb08e6 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目 錄 IV
圖目錄 VII
一、前言 1
1 腸道結構與功能 1
2 腦腸軸 (Brain-gut axis, BGA) 1
3 內臟痛覺傳遞 (Visceral pain pathways) 3
3.1 上行痛覺調控路徑 (Ascending visceral pain pathway) 3
3.2 下行痛覺調控路徑 (Descending visceral pain pathway) 4
3.3 內臟高敏感性 (Visceral hypersensitivity) 4
4 腸躁症 (Irritable bowel symdrom, IBS) 5
4.1 流行病學研究 5
4.2 臨床研究 6
4.3 風險因子 7
4.3.1 精神壓力 7
4.3.2 腸胃道感染 9
4.3.3 梨形鞭毛蟲感染與後感染腸躁症 (Postinfectious irritable bowel syndrome, PI-IBS) 10
4.3.4 動物模式之建立 12
5 腸道疼痛相關的神經激素(neuroendocrine)和其他介質(mediators) 13
5.1 血清素 (Serotonin) 13
5.2 膽囊收縮素(Cholecystokinin, CCK) 14
5.3 下視丘─腦下垂體─腎上腺皮質軸與腎上腺皮質酮 (Hypothalamic- pituitary-adrenal axis, HPA axis and corticosterone) 18
5.4 肥大細胞 (Mast cells) : 組織胺(histamine)與蛋白酶 (protease) 19
6 腸躁症痛覺敏感化與神經細胞功能型態之間的關聯性 20
6.1 神經細胞興奮性的提升 20
6.2 痛覺受器表現量的改變 20
6.3 神經纖維的延長 22
6.4 神經營養因子 (Neurotrophins) 22
6.5 人類神經母細胞瘤 SH-SY5Y 細胞株作神經分化和纖維生長的模式 …………………………………………………………………….…24
7 研究目的 25
二、材料與方法 26
1 實驗動物 26
2 實驗寄生蟲Giardia lamblia感染模式 26
2.1 動物感染方法 27
2.2 梨形蟲滋養體 (Giardia lamblia trophozoites) 計數 27
3 動物精神壓力模式 27
4 血清素受體拮抗劑(serotonin/5-HT receptor antagonist) 28
5 實驗動物分組與流程 28
5.1 梨形蟲感染與避水壓力實驗 28
5.2 拮抗劑試驗 29
6 細胞試驗 30
6.1 使用細胞株 30
6.2 神經纖維生長(neurite outgrowth)實驗 30
6.3 細胞影像的擷取與神經細胞纖維長度測量 31
6.4 細胞實驗使用之中和性抗體和拮抗劑 32
6.4.1 Neutralizing anti-NGF 32
6.4.2 CCK receptor inhibitors 32
7 組織處理與實驗分析小鼠體重 (body weight) 分析 32
8 內臟動器反應(visceromotor response, VMR)分析 32
9 腸胃道蠕動測試之活性碳飲食試驗(charcoal meal test) 34
10 組織切片與染色 34
10.1 冷凍包埋檢體製備 34
10.2 免疫螢光染色(Immunofluorescence;IF) 34
10.3 石蠟包埋檢體製備 35
10.4 免疫染色 (Immunohistochemistry;IHC) 35
11 西方轉漬法 (western blotting) 36
11.1 蛋白質萃取 36
11.2 蛋白質電泳 37
11.3 蛋白質分析 37
11.4 抗體列表 38
(1) IF or IHC 38
(2) 西方轉漬法所用抗體 38
(3) 中和用抗體 38
(4) 二級抗體 38
12 統計方法 39
三、實驗結果 40
1 SH-SY5Y神經母細胞經RA及CCK-8S刺激之神經纖維長度變化 40
1.1 RA處理分化後的神經纖維長度 40
1.2 CCK-8S劑量時間效應(dose-time response)實驗 40
2 神經營養因子對CCK-8S刺激引起SH-SY5Y神經纖維長度的影響 41
3 探討CCK受器拮抗劑處理對SH-SY5Y神經纖維長度的影響 42
4 探討CCK-8S刺激後SH-SY5Y神經細胞的NGF表現量 42
5 小鼠腸道痛覺敏感異常之機制研究 42
5.1 小鼠內臟動器反應和腸轉運百分比 42
5.2 腹腔注射受器配體對小鼠腸道內臟敏感性及腸胃蠕動的影響 44
5.3 經口給予受器配體對小鼠腸道內臟敏感性及腸胃蠕動之影響 44
5.4 連續十天經口給予受器配體之小鼠腸道內臟敏感性及腸胃蠕動狀況 ……………………………………………………….………………45
5.5 比較經口給予受器配體和拮抗劑之小鼠腸道內臟敏感性及腸胃蠕動狀況 46
四、討論 47
參考文獻 76
 
圖表目錄
表一、小鼠腸道外觀和組織異常狀態觀察與統計 56
圖一、SH-SY5Y 細胞生長型態 58
圖二、多次性給予CCK-8S對神經纖維長度的劑量時間效應 59
圖三、一次性給予CCK-8S對神經纖維長度的劑量時間效應 60
圖四、中和性抗體anti-NGF對CCK-8S培養之SH-SY5Y神經細胞纖維長度之影響 61
圖五、CCK受體拮抗劑對CCK-8S培養之SH-SY5Y神經細胞纖維長度之影響 62
圖六、CCK-8S處理之SH-SY5Y神經細胞中NGF的表現量 63
圖七、PN小鼠與GW小鼠之內臟痛覺反應及腸胃蠕動狀況 64
圖八、5HT-7受器表現量 65
圖九、大腸組織5HT免疫染色 66
圖十、腹腔注射受器配體之PN和GW小鼠腸道內臟敏感性 67
圖十一、腹腔注射受器配體對GW小鼠腸道內臟敏感性及腸胃蠕動的影響 68
圖十二、經口給予受器配體對GW小鼠腸道內臟敏感性及腸胃蠕動之影響 69
圖十三、不同時間經口給予受器配體對GW小鼠腸道內臟敏感性及腸胃蠕動之影響 70
圖十四、連續十天經口給予受器配體之GW小鼠腸道內臟敏感性及腸胃蠕動狀況 71
圖十五、比較經口給予受器配體或拮抗劑之GW小鼠腸道內臟敏感性及腸胃蠕動狀況 72
圖十六、經口給予受器配體或拮抗劑之GW小鼠腸道外觀狀態 73
圖十七、經口給予受器配體或拮抗劑之GW小鼠腸道組織H E染色結果 74
dc.language.isozh-TW
dc.subject神經纖維生長zh_TW
dc.subject內臟高敏感性zh_TW
dc.subject腸躁症zh_TW
dc.subject精神壓力zh_TW
dc.subject梨形蟲zh_TW
dc.subjectvisceral hypersensitivityen
dc.subjectirritable bowel syndromeen
dc.subjectpsychological stressen
dc.subjectGiardia lambliaen
dc.subjectneurite outgrowthen
dc.title腸道神經內分泌物質對神經纖維延長和腸道痛覺異常的影響zh_TW
dc.titleEffects of enteric neuroendocrines on nerve fiber elongation and intestinal hypernociceptionen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee孫錦虹(Chin-Hung Sun),忻凌偉(Ling-Wei Hsin)
dc.subject.keyword腸躁症,精神壓力,梨形蟲,內臟高敏感性,神經纖維生長,zh_TW
dc.subject.keywordirritable bowel syndrome,psychological stress,Giardia lamblia,visceral hypersensitivity,neurite outgrowth,en
dc.relation.page92
dc.rights.note有償授權
dc.date.accepted2015-08-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
1.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved