請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52311完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳林祈 | |
| dc.contributor.author | Che-Lun Chang | en |
| dc.contributor.author | 張哲綸 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:11:36Z | - |
| dc.date.available | 2018-08-26 | |
| dc.date.copyright | 2015-08-26 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-18 | |
| dc.identifier.citation | Bakker, E. and E. Pretsch. 1997. Potentiometric determination of effective complex formation constants of lipophilic ion carriers within ion-selective electrode membranes. J Electrochem Soc. 144(5): L125-L127.
Bobacka, J. 1999. Potential stability of all-solid-state ion-selective electrodes using conducting polymers as ion-to-electron transducers. Anal Chem. 71(21): 4932-4937. Bobacka, J. 2006. Conducting polymer-based solid-state ion-selective electrodes. Electroanal. 18(1): 7-18. Bobacka, J., A. Ivaska and A. Lewenstam. 1999. Plasticizer-free all-solid-state potassium-selective electrode based on poly(3-octylthiophene) and valinomycin. Anal Chim Acta. 385(1-3): 195-202. Bobacka, J., A. Ivaska and A. Lewenstam. 2008. Potentiometric ion sensors. Chem Rev. 108(2): 329-351. Cadogan, A., Z.Q. Gao, A. Lewenstam, A. Ivaska and D. Diamond. 1992. All-Solid-State Sodium-Selective Electrode Based on a Calixarene Ionophore in a Poly(Vinyl Chloride) Membrane with a Polypyrrole Solid Contact. Anal Chem. 64(21): 2496-2501. Chi, Q.J. and S.J. Dong. 1995. Amperometric Biosensors Based on the Immobilization of Oxidases in a Prussian Blue Film by Electrochemical Codeposition. Anal Chim Acta. 310(3): 429-436. de Oliveira, M.F., R.J. Mortimer and N.R. Stradiotto. 2000. Voltammetric determination of persulfate anions using an electrode modified with a Prussian blue film. Microchem J. 64(2): 155-159. Deshpande, M.S., A.S. Kumbhar and C. Nather. 2010. Stabilization of acyclic water tetramer in a copper(II) malonate framework structure. Dalton T. 39(38): 9146-9152. Dhakshinamoorthy, A., M. Alvaro, Y.K. Hwang, Y.K. Seo, A. Corma and H. Garcia. 2011. Intracrystalline diffusion in Metal Organic Framework during heterogeneous catalysis: Influence of particle size on the activity of MIL-100 (Fe) for oxidation reactions. Dalton T. 40(40): 10719-10724. Dimeski, G., T. Badrick and A. St John. 2010. Ion Selective Electrodes (ISEs) and interferences-A review. Clin Chim Acta. 411(5-6): 309-317. Fibbioli, M., W.E. Morf, M. Badertscher, N.F. de Rooij and E. Pretsch. 2000. Potential drifts of solid-contacted ion-selective electrodes due to zero-current ion fluxes through the sensor membrane. Electroanal. 12(16): 1286-1292. Gabrielli, C., P. Hemery, P. Liatsi, M. Masure and H. Perrot. 2005. An electrogravimetric study of an all-solid-state potassium selective electrode with Prussian blue as the electroactive solid internal contact. J Electrochem Soc. 152(12): H219-H224. Gupta, V.K., S. Chandra, D.K. Chauhan and R. Mangla. 2002. Membranes of 5,10,15,20-tetrakis(4-methoxyphenyl) porphyrinatocobalt (TMOPP-Co) (I) as MoO42--selective sensors. Sensors. 2(5): 164-173. Gyurcsanyi, R.E., A.S. Nyback, K. Toth, G. Nagy and A. Ivaska. 1998. Novel polypyrrole based all-solid-state potassium-selective microelectrodes. Analyst. 123(6): 1339-1344. Han, W.S., K.C. Chung, M.H. Kim, H.B. Ko, Y.H. Lee and T.K. Hong. 2004. A hydrogen ion-selective poly(aniline) solid contact electrode based on dibenzylpyrenemethylamine ionophore for highly acidic solutions. Anal Sci. 20(10): 1419-1422. Han, W.S., S.J. Yoo, S.H. Kim, T.K. Hong and K.C. Chung. 2003. Behavior of a polypyrrole solid contact pH-selective electrode based on tertiary amine ionophores containing different alkyl chain lengths between nitrogen and a phenyl group. Anal Sci. 19(3): 357-360. Hartmann, M., E.W. Grabner and P. Bergveld. 1991. Alkali Ion Sensor Based on Prussian Blue-Covered Interdigitated Array Electrodes. Sensor Actuat B-Chem. 4(3-4): 333-336. Hauser, P.C., D.W.L. Chiang and G.A. Wright. 1995. A Potassium-Ion Selective Electrode with Valinomycin Based Poly(Vinyl Chloride) Membrane and a Poly(Vinyl Ferrocene) Solid Contact. Anal Chim Acta. 302(2-3): 241-248. Hoskins, B.F. and R. Robson. 1989. Infinite Polymeric Frameworks Consisting of 3 Dimensionally Linked Rod-Like Segments. J Am Chem Soc. 111(15): 5962-5964. Hou, W.Y. and E. Wang. 1992. Flow-Injection Amperometric Detection of Hydrazine by Electrocatalytic Oxidation at a Prussian Blue Film-Modified Electrode. Anal Chim Acta. 257(2): 275-280. Huxford, R.C., J. Della Rocca and W.B. Lin. 2010. Metal-organic frameworks as potential drug carriers. Curr Opin Chem Biol. 14(2): 262-268. Inubushi, Y., S. Horike, T. Fukushima, G. Akiyama, R. Matsuda and S. Kitagawa. 2010. Modification of flexible part in Cu2+ interdigitated framework for CH4/CO2 separation. Chem Commun. 46(48): 9229-9231. Itaya, K., I. Uchida, T. Ataka and S. Toshima. 1982. Prussian Blue Modified Electrodes- -Its High Durability. Denki Kagaku. 50(5): 436-437. Karyakin, A.A., O.V. Gitelmacher and E.E. Karyakina. 1995. Prussian Blue Based First-Generation Biosensor - a Sensitive Amperometric Electrode for Glucose. Anal Chem. 67(14): 2419-2423. Karyakin, A.A. and E.E. Karyakina. 1999. Prussian Blue-based 'artificial peroxidase' as a transducer for hydrogen peroxide detection. Application to biosensors. Sensor Actuat B-Chem. 57(1-3): 268-273. Karyakin, A.A., E.E. Karyakina and L. Gorton. 1996. Prussian-Blue-based amperometric biosensors in flow-injection analysis. Talanta. 43(9): 1597-1606. Karyakin, A.A., E.E. Karyakina and L. Gorton. 1999. On the mechanism of H2O2 reduction at Prussian Blue modified electrodes. Electrochem Commun. 1(2): 78-82. Kitagawa, S., R. Kitaura and S. Noro. 2004. Functional porous coordination polymers. Angew Chem Int Edit. 43(18): 2334-2375. Koncki, R., L. Tymecki, E. Zwierkowska and S. Glab. 2000. Screen-printed copper ion-selective electrodes. Fresen J Anal Chem. 367(4): 393-395. Koncki, R. and O.S. Wolfbeis. 1998. Optical chemical sensing based on thin films of Prussian Blue. Sensor Actuat B-Chem. 51(1-3): 355-358. Krishnan, V., A.L. Xidis and V.D. Neff. 1990. Prussian Blue Solid-State Films and Membranes as Potassium Ion-Selective Electrodes. Anal Chim Acta. 239(1): 7-12. Lindfors, T. and A. Ivaska. 2004. Stability of the inner polyaniline solid contact layer in all-solid-state K+-selective electrodes based on plasticized poly(vinyl chloride). Anal Chem. 76(15): 4387-4394. Lindner, E. and R.E. Gyurcsanyi. 2009. Quality control criteria for solid-contact, solvent polymeric membrane ion-selective electrodes. J Solid State Electr. 13(1): 51-68. Lu, W., G.G. Wallace and A.A. Karayakin. 1998. Use of prussian blue conducting polymer modified electrodes for the detection of cytochrome c. Electroanal. 10(7): 472-476. Matthews, D. and R. Holman. 1987. Evaluation of a New Blood-Glucose Meter - Reply. Lancet. 1(8543): 1205-1206. McCormac, T., J. Cassidy and D. Cameron. 1996. Electrochemical deposition of Prussian Blue films across interdigital array electrodes and their use in gas sensing. Electroanal. 8(2): 195-198. Michalska, A., A. Galuszkiewicz, M. Ogonowska, M. Ocypa and K. Maksymiuk. 2004. PEDOT films: multifunctional membranes for electrochemical ion sensing. J Solid State Electr. 8(6): 381-389. Miles, J.F.K.F.D. 1936. Structures and Formulaeæ of the Prussian Blues and Related Compounds. Nature. 137577-578. Ming, H., N.L.K. Torad, Y.D. Chiang, K.C.W. Wu and Y. Yamauchi. 2012. Size- and shape-controlled synthesis of Prussian Blue nanoparticles by a polyvinylpyrrolidone-assisted crystallization process. Crystengcomm. 14(10): 3387-3396. Moscone, D., D. D'Ottavi, D. Compagnone, G. Palleschi and A. Amine. 2001. Construction and analytical characterization of Prussian Blue-based carbon paste electrodes and their assembly as oxidase enzyme sensors. Anal Chem. 73(11): 2529-2535. Neff, V.D. 1978. Electrochemical Oxidation and Reduction of Thin-Films of Prussian Blue. J Electrochem Soc. 125(6): 886-887. Nikolskii, B.P. and E.A. Materova. 1985. Solid Contact in Membrane Ion-Selective Electrodes. Ion Sel Electrode R. 7(1): 3-39. Pace, S.J. and J.D. Hamerslag. 1992. Thick-Film Multilayer Ion Sensors for Biomedical Applications. Acs Sym Ser. 487261-273. Paczosa-Bator, B., R. Piech and L. Cabaj. 2012. The influence of an intermediate layer on the composition stability of a polymeric ion-selective membrane. Electrochim Acta. 85104-109. Parra, E.J., G.A. Crespo, J. Riu, A. Ruiz and F.X. Rius. 2009. Ion-selective electrodes using multi-walled carbon nanotubes as ion-to-electron transducers for the detection of perchlorate. Analyst. 134(9): 1905-1910. Ping, J.F., Y.X. Wang, J. Wu and Y.B. Ying. 2011. Development of an all-solid-state potassium ion-selective electrode using graphene as the solid-contact transducer. Electrochem Commun. 13(12): 1529-1532. Rzewuska, A., M. Wojciechowski, E. Bulska, E.A.H. Hall, K. Maksymiuk and A. Michalska. 2008. Composite polyacrylate - Poly(3,4-ethylenedioxythiophene) membranes for improved all-solid-state ion-selective sensors. Anal Chem. 80(1): 321-327. Sarma, D., K.V. Ramanujachary, S.E. Lofland, T. Magdaleno and S. Natarajan. 2009. Amino Acid Based MOFs: Synthesis, Structure, Single Crystal to Single Crystal Transformation, Magnetic and Related Studies in a Family of Cobalt and Nickel Aminoisophthales. Inorg Chem. 48(24): 11660-11676. Sigel, H., A.D. Zuberbuhler and O. Yamauchi. 1991. Comments on Potentiometric Ph Titrations and the Relationship between Ph-Meter Reading and Hydrogen-Ion Concentration. Anal Chim Acta. 255(1): 63-72. Theorell, H. 1935. Determination of the number of acidic groups of the respiration co-ferment by means of diffusion measurements. Biochem Z. 27519-29. Vaivars, G., J. Pitkevics and A. Lusis. 1993. Sol-Gel Produced Humidity Sensor. Sensor Actuat B-Chem. 13(1-3): 111-113. Vazquez, M., J. Bobacka, A. Ivaska and A. Lewenstam. 2002. Influence of oxygen and carbon dioxide on the electrochemical stability of poly(3,4-ethylenedioxythiophene) used as ion-to-electron transducer in all-solid-state ion-selective electrodes. Sensor Actuat B-Chem. 82(1): 7-13. Vazquez, M., P. Danielsson, J. Bobacka, A. Lewenstam and A. Ivaska. 2004. Solution-cast films of poly(3,4-ethylenedioxythiophene) as ion-to-electron transducers in all-solid-state ion-selective electrodes. Sensor Actuat B-Chem. 97(2-3): 182-189. Walsh, S., D. Diamond, J. McLaughlin, E. McAdams, D. Woolfson, D. Jones and M. Bonner. 1997. Solid-state sodium-selective sensors based on screen-printed Ag/AgCl reference electrodes. Electroanal. 9(17): 1318-1324. Xidis, A. and V.D. Neff. 1991. On the Electronic Conduction in Dry Thin-Films of Prussian Blue, Prussian Yellow, and Everitt Salt. J Electrochem Soc. 138(12): 3637-3642. Xu, H., X.X. Yang, Y. Wang, J.B. Zheng, Z.Y. Luo and G. Li. 2010. Disposable blood potassium sensors based on screen-printed thick film electrodes. Meas Sci Technol. 21(5). Yaghi, O.M. and H.L. Li. 1995. Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. J Am Chem Soc. 117(41): 10401-10402. Zielinska, R., E. Mulik, A. Michalska, S. Achmatowicz and M. Maj-Zurawska. 2002. All-solid-state planar miniature ion-selective chloride electrode. Anal Chim Acta. 451(2): 243-249. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52311 | - |
| dc.description.abstract | 在開發固態式離子選擇電極時會面臨到離子電子轉移障礙與水層效應(water layer effect) 等問題,而此些現象會使得電極在感測時電位訊號不穩定。因此在過往研究中,離子選擇電極會被引入一層離子電子傳導層以改善上述情況。本研究探討普魯士藍 (Prussian blue) 作為硝酸根離子選擇電極之傳導層,比較普魯士藍結構對於離子選擇電極表現的影響。經實驗後發現裂痕較少之傳導層結構能防止水層滲入,而團簇較多之表面能增加粗糙度使疏水性提高減少水層產生,此些情況能使離子選擇電極之電位訊號較為穩定。表現最佳之普魯士藍傳導層結構比起未經傳導層修飾之離子選擇電極減少89%的電位飄移。普魯士藍傳導層硝酸根離子選擇電極靈敏度為50 mV/decade,比起過去應用於鉀離子選擇電極研究中的44mV/decade還高。此外,本研究利用循環伏安法針對普魯士藍薄膜之硝酸根離子選擇電極進行分析,以探討其在感測時之作用機制。然而,我們發現循環伏安圖形在除了0.1 M硝酸鉀外,其他濃度未有明顯的氧化還原對,且氧化還原對之峰值並不會隨著硝酸鉀濃度提高而增加,因此可推測硝酸根離子無法氧化還原普魯士藍。而為了解釋其感測現象,本研究提出普魯士藍利用鉀離子作為離子選擇電極內導電媒介以場效應方式傳遞電荷之模型。而根據此模型,我們使普魯士藍薄膜還原以增加內部鉀離子數量,製成選擇電極後即能獲得更好的電化學表現。而經還原之普魯士藍製成之選擇電極比起未還原者感測時能再次降低73%的電位飄移量。最後,經過還原之普魯士藍傳導層與其他離子選擇電極常用材料進行比較後發現,普魯士藍為傳導層之離子選擇電極電位飄移量僅有2.5 μV/s,在所有材料中具有最好的電位穩定性。 | zh_TW |
| dc.description.abstract | The potential instability of an all-solid-state ion selective electrode (ISE) owing to ion-to-electron transduction and water layer effect can be overcomed by inducing an ion-to-electron transducer into the ion selective electrode structure. In this study, we investigated a Prussian blue (PB) thin film as the ion-to-electron transducer for a nitrate ISE. PB thin film with fewer cracks and more clusters on its surface can presented a stable potential signal better. Compared with an ISE without ion-to-electron transducer, the ISE with PB thin film can reduce 89% potential drift. The sensitivity of nitrate ISE with a PB thin film is 50.0 mV/decade, and it’s better than that of the potassium ISE with a PB thin film in previous work. We also investigate the mechanism of the PB thin film as an ion-to-electron transducer by cyclic voltammetry. However, the CV plot of the ISE with a PB thin film has no apparently redox peaks but scanning in 0.1 M KNO3 solution. Besides, the redox peak doesn’t increase with the concentration of KNO3. It implies that the PB thin film doesn’t have redox reaction in the ISE. In order to explain this phenomenon, we set up a model that describes how the charge transports in the ISE. We suppose that the potential signal results from the field effect which causes by potassium ions transporting in the PB thin film as charge carriers. According to the model, we can improving the performance of an ISE by filling more potassium ions in PB thin film by reduction reaction. The ISE fabricated with a reduced PB thin film can reduced 73% potential drift comparing to an ISE with non-reduced PB. At last, the PB thin film and some commonly used materials of ion-to-electron transducer are brought into comparison. The ISE with a PB thin film transducer has the smallest potential drift, 2.5 μV/s, which does means that it has the most stable potential signal. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:11:36Z (GMT). No. of bitstreams: 1 ntu-104-R02631044-1.pdf: 5067592 bytes, checksum: a6d6d33b0dbdcb0864fbf511dc4762bc (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 中文摘要 I
ABSTRACT II 目錄 IV 圖目錄 VII 表目錄 IX 符號說明 X 第一章 緒論 1 1.1. 研究背景 1 1.2. 研究動機與目的 2 1.3. 研究架構 3 第二章 文獻回顧 5 2.1. 金屬有機骨架 5 2.3. 普魯士藍 6 2.3.1. 普魯士藍簡介 6 2.2.3. 普魯士藍在感測器上之應用 10 2.4. 離子選擇電極 12 2.3.1. 離子選擇電極發展 12 2.3.2. 離子載體之作用 13 2.3.3. 感測原理 16 2.3.4. 離子電子傳導阻礙 18 2.3.5. 水層效應 21 2.4. 網印式感測器 23 2.4.1. 網印技術於離子選擇電極之發展 23 第三章 材料與實驗方法 25 3.1. 儀器設備 25 3.2. 實驗藥品 26 3.3. 實驗方法 27 3.3.1. 網版印刷電極製作 27 3.3.2. 以不同鍍液條件與時間析鍍普魯士藍薄膜 30 3.3.3. 離子電子傳導層製作 32 3.3.4. 離子選擇薄膜製作 33 3.4. 電化學分析 34 3.4.1. 開環電位量測 34 3.4.2. 循環伏安分析 34 3.4.3. 電化學阻抗頻譜分析 34 3.4.4. 計時電位法 35 3.5. 表面結構分析 36 3.5.1. 掃描式電子顯微鏡 36 3.5.2. 接觸角測試 36 第四章 實驗結果與討論 37 4.1. 各電鍍條件之普魯士藍薄膜表面分析 37 4.1.1. 掃描式電子顯微鏡 37 4.1.2. 接觸角測試 43 4.2. 各電鍍條件之普魯士藍電化學分析 46 4.2.1. 電容分析 46 4.2.2. 電荷轉移阻抗分析 49 4.2.3. 水層干擾離子測試 52 4.2.4. 各普魯士藍傳導層穩定性測試 56 4.2.5. 普魯士藍傳導層最適條件 61 4.2.6. 普魯士藍離子選擇電極靈敏度測試 63 4.3. 普魯士藍傳導層做為離子選擇電極傳導層之作用機制 64 4.3.1. 普魯士藍薄膜與普魯士藍離子選擇電極循環伏安分析 64 4.3.2. 普魯士藍傳導層做為離子選擇電極傳導層之作用機制與模型建立 66 4.4. 還原態之普魯士藍離子選擇電極 67 4.4.1. 還原態之普魯士藍傳導層之電荷轉移阻抗分析 68 4.4.2. 還原態之普魯士藍離子選擇電極之穩定性測試 70 4.5. 普魯士傳導層與其他材料之比較 72 4.5.1. 電容測試 72 4.5.2. 電荷轉移阻抗測試 75 4.5.3. 親疏水性與干擾離子測試 77 4.5.4. 各傳導層離子選擇電極穩定性測試-計時電位法 81 4.5.5. 各傳導層離子選擇電極靈敏度測試 83 4.5.6. 傳導層材料選擇之結論 88 第五章 結論與建議 90 5.1. 結論 90 5.2. 建議 92 第六章 參考文獻 93 | |
| dc.language.iso | zh-TW | |
| dc.subject | 全固態式 | zh_TW |
| dc.subject | 離子電子傳導層 | zh_TW |
| dc.subject | 普魯士藍 | zh_TW |
| dc.subject | 離子選擇電極 | zh_TW |
| dc.subject | ion selective electrode | en |
| dc.subject | all-solid-state | en |
| dc.subject | ion to electron transducer | en |
| dc.subject | Prussian blue | en |
| dc.title | 以普魯士藍薄膜作為固態式離子選擇電極之離子電子傳導層 | zh_TW |
| dc.title | On the investigation of a Prussian blue thin film as an ion-to-electron transducer for a solid-state ion selective electrode | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 何國川,謝博全,陳世芳,廖英志 | |
| dc.subject.keyword | 普魯士藍,離子選擇電極,全固態式,離子電子傳導層, | zh_TW |
| dc.subject.keyword | Prussian blue,ion selective electrode,all-solid-state,ion to electron transducer, | en |
| dc.relation.page | 97 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 4.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
