Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52278
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘建源(Chien-Yuan Pan)
dc.contributor.authorShu-Jen Chiangen
dc.contributor.author姜束貞zh_TW
dc.date.accessioned2021-06-15T16:10:52Z-
dc.date.available2020-10-29
dc.date.copyright2015-10-29
dc.date.issued2015
dc.date.submitted2015-08-18
dc.identifier.citationREFERENCES
[1] Araki, Y., Zeng, M., Zhang, M., and Huganir, R.L. (2015). Rapid dispersion of SynGAP from synaptic spines triggers AMPA receptor insertion and spine enlargement during LTP. Neuron 85, 173-189.
[2] Arvanitakis, Z., Wilson, R.S., Bienias, J.L., Evans, D.A., and Bennett, D.A. (2004). Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol 61, 661-666.
[3] Becerra, J.E., Khoury, M.J., Cordero, J.F., and Erickson, J.D. (1990). Diabetes mellitus during pregnancy and the risks for specific birth defects: a population-based case-control study. Pediatrics 85, 1-9.
[4] Brownlee, M. (1995). Advanced protein glycosylation in diabetes and aging. Annu Rev Med 46, 223-234.
[5] Brownlee, M. (2005). The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54, 1615-1625.
[6] Castellani, R., Smith, M.A., Richey, P.L., and Perry, G. (1996). Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease. Brain Res 737, 195-200.
[7] Chan, D.C. (2006). Mitochondria: dynamic organelles in disease, aging, and development. Cell 125, 1241-1252.
[8] Chung, S.S., Ho, E.C., Lam, K.S., and Chung, S.K. (2003). Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol 14, S233-236.
[9] Dailey, M.E., and Smith, S.J. (1996). The dynamics of dendritic structure in developing hippocampal slices. J Neurosci 16, 2983-2994.
[10] DeFelipe, J., and Farinas, I. (1992). The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol 39, 563-607.
[11] Flood, J.F., Mooradian, A.D., and Morley, J.E. (1990). Characteristics of learning and memory in streptozocin-induced diabetic mice. Diabetes 39, 1391-1398.
[12] Frank, S., Gaume, B., Bergmann-Leitner, E.S., Leitner, W.W., Robert, E.G., Catez, F., Smith, C.L., and Youle, R.J. (2001). The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1, 515-525.
[13] Gjedde, A., and Crone, C. (1981). Blood-brain glucose transfer: repression in chronic hyperglycemia. Science 214, 456-457.
[14] Guleria, R.S., Pan, J., Dipette, D., and Singh, U.S. (2006). Hyperglycemia inhibits retinoic acid-induced activation of Rac1, prevents differentiation of cortical neurons, and causes oxidative stress in a rat model of diabetic pregnancy. Diabetes 55, 3326-3334.
[15] Harik, S.I., and LaManna, J.C. (1988). Vascular perfusion and blood-brain glucose transport in acute and chronic hyperglycemia. J Neurochem 51, 1924-1929.
[16] Harris, K.M., Jensen, F.E., and Tsao, B. (1992). Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12, 2685-2705.
[17] Hartenstein, V., and Stollewerk, A. (2015). The evolution of early neurogenesis. Dev Cell 32, 390-407.
[18] Heilig, C.W., Concepcion, L.A., Riser, B.L., Freytag, S.O., Zhu, M., and Cortes, P. (1995). Overexpression of glucose transporters in rat mesangial cells cultured in a normal glucose milieu mimics the diabetic phenotype. J Clin Invest 96, 1802-1814.
[19] Hinton, V.J., Brown, W.T., Wisniewski, K., and Rudelli, R.D. (1991). Analysis of neocortex in three males with the fragile X syndrome. Am J Med Genet 41, 289-294.
[20] Hussain, S., Mansouri, S., Sjoholm, A., Patrone, C., and Darsalia, V. (2014). Evidence for cortical neuronal loss in male type 2 diabetic Goto-Kakizaki rats. J Alzheimers Dis 41, 551-560.
[21] Irwin, S.A., Patel, B., Idupulapati, M., Harris, J.B., Crisostomo, R.A., Larsen, B.P., Kooy, F., Willems, P.J., Cras, P., Kozlowski, P.B., et al. (2001). Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet 98, 161-167.
[22] Jacob, R.J., Fan, X., Evans, M.L., Dziura, J., and Sherwin, R.S. (2002). Brain glucose levels are elevated in chronically hyperglycemic diabetic rats: no evidence for protective adaptation by the blood brain barrier. Metabolism 51, 1522-1524.
[23] Jakobsen, J., Nedergaard, M., Aarslew-Jensen, M., and Diemer, N.H. (1990). Regional brain glucose metabolism and blood flow in streptozocin-induced diabetic rats. Diabetes 39, 437-440.
[24] Joshi, D.C., and Bakowska, J.C. (2011). Determination of mitochondrial membrane potential and reactive oxygen species in live rat cortical neurons. J Vis Exp (51). 2704.
[25] Kaiser, N., Sasson, S., Feener, E.P., Boukobza-Vardi, N., Higashi, S., Moller, D.E., Davidheiser, S., Przybylski, R.J., and King, G.L. (1993). Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes 42, 80-89.
[26] Kalmijn, S., Feskens, E.J., Launer, L.J., Stijnen, T., and Kromhout, D. (1995). Glucose intolerance, hyperinsulinaemia and cognitive function in a general population of elderly men. Diabetologia 38, 1096-1102.
[27] Kikuchi, S., Shinpo, K., Takeuchi, M., Yamagishi, S., Makita, Z., Sasaki, N., and Tashiro, K. (2003). Glycation--a sweet tempter for neuronal death. Brain Res Brain Res Rev 41, 306-323.
[28] Li, Z., Okamoto, K., Hayashi, Y., and Sheng, M. (2004). The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119, 873-887.
[29] Li, Z.G., Zhang, W., Grunberger, G., and Sima, A.A. (2002). Hippocampal neuronal apoptosis in type 1 diabetes. Brain Res 946, 221-231.
[30] Liao, D., Scannevin, R.H., and Huganir, R. (2001). Activation of silent synapses by rapid activity-dependent synaptic recruitment of AMPA receptors. J Neurosci 21, 6008-6017.
[31] Lin, M.T., and Beal, M.F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787-795.
[32] Lorenzi, M., Cagliero, E., and Toledo, S. (1985). Glucose toxicity for human endothelial cells in culture. Delayed replication, disturbed cell cycle, and accelerated death. Diabetes 34, 621-627.
[33] Mans, A.M., DeJoseph, M.R., Davis, D.W., and Hawkins, R.A. (1988). Brain energy metabolism in streptozotocin-diabetes. Biochem J 249, 57-62.
[34] Martinez-Tellez, R., Gomez-Villalobos Mde, J., and Flores, G. (2005). Alteration in dendritic morphology of cortical neurons in rats with diabetes mellitus induced by streptozotocin. Brain Res 1048, 108-115.
[35] McCall, A.L., Millington, W.R., and Wurtman, R.J. (1982). Metabolic fuel and amino acid transport into the brain in experimental diabetes mellitus. Proc Natl Acad Sci U S A 79, 5406-5410.
[36] Mills, J.L. (2010). Malformations in infants of diabetic mothers. Teratology 25:385-94. 1982. Birth Defects Res A Clin Mol Teratol 88, 769-778.
[37] Mills, J.L., Baker, L., and Goldman, A.S. (1979). Malformations in infants of diabetic mothers occur before the seventh gestational week. Implications for treatment. Diabetes 28, 292-293.
[38] Mogi, M., and Horiuchi, M. (2011). Neurovascular coupling in cognitive impairment associated with diabetes mellitus. Circ J 75, 1042-1048.
[39] Mooradian, A.D. (1997a). Central nervous system complications of diabetes mellitus--a perspective from the blood-brain barrier. Brain Res Brain Res Rev 23, 210-218.
[40] Mooradian, A.D. (1997b). Pathophysiology of central nervous system complications in diabetes mellitus. Clin Neurosci 4, 322-326.
[41] Pardridge, W.M., Triguero, D., and Farrell, C.R. (1990). Downregulation of blood-brain barrier glucose transporter in experimental diabetes. Diabetes 39, 1040-1044.
[42] Pelligrino, D.A., LaManna, J.C., Duckrow, R.B., Bryan, R.M., Jr., and Harik, S.I. (1992). Hyperglycemia and blood-brain barrier glucose transport. J Cereb Blood Flow Metab 12, 887-899.
[43] Peters, A., and Kaiserman-Abramof, I.R. (1970). The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. Am J Anat 127, 321-355.
[44] Prasad, S., Sajja, R.K., Naik, P., and Cucullo, L. (2014). Diabetes Mellitus and Blood-Brain Barrier Dysfunction: An Overview. J Pharmacovigil 2, 125.
[45] Prentki, M., Matschinsky, F.M., and Madiraju, S.R. (2013). Metabolic signaling in fuel-induced insulin secretion. Cell Metab 18, 162-185.
[46] Ristow, M. (2004). Neurodegenerative disorders associated with diabetes mellitus. J Mol Med (Berl) 82, 510-529.
[47] Rodriguez, A., Ehlenberger, D.B., Dickstein, D.L., Hof, P.R., and Wearne, S.L. (2008). Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS One 3, e1997.
[48] Rosenn, B., Miodovnik, M., Combs, C.A., Khoury, J., and Siddiqi, T.A. (1994). Glycemic thresholds for spontaneous abortion and congenital malformations in insulin-dependent diabetes mellitus. Obstet Gynecol 84, 515-520.
[49] Rosenstock, J., and Raskin, P. (1988). Diabetes and its complications: blood glucose control vs. genetic susceptibility. Diabetes Metab Rev 4, 417-435.
[50] Rossetti, L., Giaccari, A., and DeFronzo, R.A. (1990). Glucose toxicity. Diabetes Care 13, 610-630.
[51] Russell, J.W., Sullivan, K.A., Windebank, A.J., Herrmann, D.N., and Feldman, E.L. (1999). Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol Dis 6, 347-363.
[52] Ryan, C.M., and Geckle, M.O. (2000). Circumscribed cognitive dysfunction in middle-aged adults with type 2 diabetes. Diabetes Care 23, 1486-1493.
[53] Saczynski, J.S., Siggurdsson, S., Jonsson, P.V., Eiriksdottir, G., Olafsdottir, E., Kjartansson, O., Harris, T.B., van Buchem, M.A., Gudnason, V., and Launer, L.J. (2009). Glycemic status and brain injury in older individuals: the age gene/environment susceptibility-Reykjavik study. Diabetes Care 32, 1608-1613.
[54] Shibata, N., Hirano, A., Hedley-Whyte, E.T., Dal Canto, M.C., Nagai, R., Uchida, K., Horiuchi, S., Kawaguchi, M., Yamamoto, T., and Kobayashi, M. (2002). Selective formation of certain advanced glycation end products in spinal cord astrocytes of humans and mice with superoxide dismutase-1 mutation. Acta Neuropathol 104, 171-178.
[55] Silver, I.A., and Erecinska, M. (1994). Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J Neurosci 14, 5068-5076.
[56] Smirnova, E., Griparic, L., Shurland, D.L., and van der Bliek, A.M. (2001). Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12, 2245-2256.
[57] Toni, N., Buchs, P.A., Nikonenko, I., Bron, C.R., and Muller, D. (1999). LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402, 421-425.
[58] Toni, N., Buchs, P.A., Nikonenko, I., Povilaitite, P., Parisi, L., and Muller, D. (2001). Remodeling of synaptic membranes after induction of long-term potentiation. J Neurosci 21, 6245-6251.
[59] Vincent, A.M., McLean, L.L., Backus, C., and Feldman, E.L. (2005). Short-term hyperglycemia produces oxidative damage and apoptosis in neurons. FASEB J 19, 638-640.
[60] Youle, R.J., and Karbowski, M. (2005). Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 6, 657-663.
[61] Zhao, W., Devamanoharan, P.S., and Varma, S.D. (2000). Fructose-mediated damage to lens alpha-crystallin: prevention by pyruvate. Biochim Biophys Acta 1500, 161-168.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52278-
dc.description.abstract高血糖症是糖尿病的主要病理特徵。研究顯示高血糖症除了導致糖尿病及其 併發症外,也和老年性白內障、動脈硬化、阿茲海默症、巴金森症、以及肌萎縮性脊髓側索硬化症等神經退化性疾病密切相關。本實驗探討高血糖症對神經型態與粒線體活性的影響,以為日後進一步研究神經退化性疾病尋找線索。此研究主要分二部份。第一部份利用共軛焦顯微鏡三度空間影像來觀察神經突軸及樹突棘的形態及密度。第二部份利用四甲基羅丹明酯的螢光變化以及細胞存活率分析來探討粒線體的活性。我們研究結果顯示高葡萄糖培養下,神經突軸有減少的趨勢, 而神經樹突棘的密度增加。另一方面,以四甲基羅丹明酯的螢光變化檢測,結果顯示粒線體膜電位呈現明顯下降。但是,細胞存活率分析的結果卻指出細胞無明顯死亡。此研究結果可用來解釋妊娠糖尿病導致新生兒大腦異常的病因,也可為神經退化性疾病致病機制提供線索。未來研究將規劃對糖尿病母親及其胎兒進行活體研究,並將研究結果與本研究結果進行比較分析,以進一步探索高血糖對粒線體去氧核醣核酸的影響。zh_TW
dc.description.abstractHyperglycemia is a key pathogenetic feature of diabetes mellitus and diabetic complications. There is considerable evidence that hyperglycemia is not only closely related to diseases such as senile cataracts and arteriosclerosis, but is also implicated in neurodegenerative diseases Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). In this study, we are interested in the defects in neuronal morphology and mitochondrial activity caused by high glucose insult as a first step toward understanding the events that underlie the development of neurodegenerative diseases. To characterize the effects of high glucose on neurons, this work is divided into two parts, the first part focuses on the morphology of neural dendrites and spine density on the basis of three dimensional (3D) images from confocal microscope; the second part studies the physiological function of mitochondria using TMRM fluorescence and MTT assay. Our findings show that high glucose is associated with drawback in branching point initiation and dendrite extension; in addition, spine outgrowth is abnormal. Regarding the mitochondria, the membrane potential across the inner membrane is perturbed as in apoptotic stress but no immediate cell death is observed. Taken together, these phenomena may play important roles in the pathogenesis of maternal hyperglycemia-induced CNS malformations. The result may also be the underlying mechanisms that cause certain aged people more vulnerable to inflict neurodegenerative diseases. In the future, in vivo study on STZ-induced diabetic mother and its embryo will be carried out for comparative study, with further investigation on the effects of hyperglycemia upon mitochondrial deoxyribonucleic acid (mtDNA).en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:10:52Z (GMT). No. of bitstreams: 1
ntu-104-R01b41031-1.pdf: 826702 bytes, checksum: fc96ae5dd5f3feaeac284ce6589cac32 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsCONTENTS

ACKNOWLEDGEMENT i
摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES viii
Chapter 1 Introduction 1
1.1 Diabetes Mellitus and Complications 1
1.2 Blood Brain Barrier (BBB) Glucose Transport 2
1.3 Diabetes-induced CNS Complications and Potential Mechanisms 3
1.4 Maternal Diabetes-induced CNS Complications in Infants and Underlying Mechanisms 4
1.5 Research Interest and Strategy 5
Chapter 2 Materials and Methods 7
2.1 Chemicals 7
2.2 Chemical Treatments and Experimental Timeline 7
2.3 Primary Culture of Embryonic Cortical Cells 8
2.4 Plasmid EGFP Transformation 9
2.5 Plasmid EGFP Purification 9
2.6 Plasmid EGFP Lipid-based Transfection 10
2.7 Paraformaldehyde Fixation 11
2.8 TMRM Fluorescence Staining 11
2.9 MTT Cell Proliferation Assay 12
2.10 Data Analysis 13
Chapter 3 Results 14
3.1 Overall Decrease in Dendritic Branching and Complexity, and Overall Changes in Neuronal Profiles under High Glucose Condition 14
3.2 Increased Density of Dendritic Spines in the Cell Population Treated in High Glucose Medium 15
3.3 Perturbed Mitochondrial Membrane Potential Detected in the Cells Treated in High Glucose Medium 16
3.4 No Functional Defects in Succinate Dehydrogenase of Complex II and Dehydrogenase in High Glucose Experimental Set 18
Chapter 4 Disccusion 20
4.1 A Drawback in Initiating Branching Points and Extending Dendrites 20
4.2 Abnormal Spine Outgrowth 22
4.3 Perturbed Mitochondrial Membrane Potential as in Apoptoic Stress 23
4.4 No Significant Cell Death 25
Chapter 5 Conclusion 26
FIGURES 27
REFERENCES 36
dc.language.isoen
dc.title高血糖症對發育中大腦皮質神經形態及粒腺體活性的影響zh_TW
dc.titleEffects of Hyperglycemia on the Morphology and Mitochondrial Activity in Cultured Embryonic Cortical Neuronsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee閔明源(Ming-Yuan Min),陳瑞芬(Ruei-Feng Chen)
dc.subject.keyword高血糖症,糖尿病,老年性白內障,動脈硬化,阿茲海默症,巴金森症,肌萎縮性脊髓側索硬化症,神經退化性疾病,共軛焦顯微鏡,突軸,樹突棘,四甲基羅丹明酯,細胞存活率分析,粒線體,粒線體去氧核醣核酸,zh_TW
dc.subject.keywordHyperglycemia,diabetes mellitus,senile cataracts,arteriosclerosis,Alzheimer’s disease,Parkinson’s disease,amyotrophic lateral sclerosis,neurodegenerative disease,confocal microscope,dendrite,spine,TMRM,MTT assay,mitochondria,mitochondrial deoxyribonucleic acid,en
dc.relation.page42
dc.rights.note有償授權
dc.date.accepted2015-08-18
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
807.33 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved