Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52266
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪銘輝(Minghwei Hong)
dc.contributor.authorKuanhsiung Chenen
dc.contributor.author陳冠雄zh_TW
dc.date.accessioned2021-06-15T16:10:36Z-
dc.date.available2020-08-26
dc.date.copyright2015-08-26
dc.date.issued2015
dc.date.submitted2015-08-18
dc.identifier.citation1. S. M. Sze, Semiconductor Device: Physics and Technology (second edition), Wiley (2001)
2. http://en.wikipedia.org/wiki/Moore's_law.
3. Gordon E. Moore, Electronics 38, 114 (1965).
4. D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt and G. Timp, Nature 399, 758-761 (6738).
5. M. T. Bohr, R. S. Chau, T. Ghani, and K. Mistry, IEEE Spectr. 44, 29 (2007).
6. http://www.ioffe.rssi.ru/SVA/NSM/Semicond/.
7. K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buechler, A. Cappellani, R. Chau et al., IEEE, 247, (2007).
8. J. Robertson and B. Falabretti, Band offset of high κ oxide on III-V semiconductors, J. Appl. Phys. 100, 014111 (2006).
9. D. N. Butcher and B. J. Sealy, Electron. Lett. 13, 558 (1977).
10. H. Hasegawa, K. W. Forward, and H. L. Hartnagal, Appl. Phys. Lett. 26, 567 (1975).
11. O. A. Weinreich, J. Appl. Phys. 37, 2924 (1966).
12. M. Hong, J. P. Mannaerts, J.E. Bowers, J. Kwo, M. Passlack, W. -Y. Hwang, L. W. Tu, J. Cryst. Growth 175, 422 (1997).
13. M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, A. M. Sergent, Science 283, 1897 (1999).
14. S. Koveshnikov, W. Tsai, I. Ok, J. C. Lee, V. Torkanov, M. Yakimov, and S. Oktyabrsky, Appl. Phys. Lett. 88, 022106 (2006).
15. D. Shahrjerdi, M. M. Oye, A. L. Holmes, Jr., S. K. Banerjee, Appl. Phys. Lett. 89, 043501 (2006).
16. P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, S. N. G. Chu, S. Nakahara, H. -J. L. Gossmann, J. P. Mannaerts, M. Hong, K. K. Ng, and J. Bude, Appl. Phys. Lett. 83, 180 (2003).
17. Y. C. Chang, M. L. Huang, K.Y. Lee, Y.J. Lee, T.D. Lin, M. Hong, J. Kwo, T.S. Lay, C. C. Liao, K. Y. Cheng, Appl. Phys. Lett 92, 072901 (2008).
18. Y. C. Chang, C. Merckling, J. Penaud, C. Y. Lu, W.-E. Wang, J. Dekoster, M. Meuris, M. Caymax, M. Heyns, J. Kwo, and M. Hong, Appl. Phys. Lett. 97, 112901 (2010).
19. P. d. Rouffignac, J. Park, and R. G. Gordon, Chem. Mater, 17,4808 (2005).
20. J. Kwo, M. Hong, A. R. Kortan, L. Queeney, Y. J. Chabal, R. L. Qpila, D. A. Mullar, S. N. G. Chu, B. J. Sapjeta, T. S. Lay, J. P. Mannaerts, T. Boone, H. W. Krautter, J. J. Krajewski, A. M. Sergnt, and J. M. Rosamilia, J. Appl. Phys., 89, 3920, (2001).
21. O. Bethge, C. Zimmermann, B, Lutzer, S. Simsek, J. Smoliner, M. Sto ̈ger-Pollach, C. Henkel, and E. Bertagnolli, J. Appl. Phys., 116, 214111(2014).
22. I. Park, Y. Jung, S. Seong, J. Ahn, J. Kang, W. Noh, and C. Lansalot-Matras, J. Mater. Chem. C, 2, 9240 (2014).
23. P. S. Das, G. K. Dalapati, D. Z. Chi, A. Biswas, C. K. Maiti, Applied Surface Science, 256, 2245 (2010).
24. M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, M. Hong, Appl. Phys. Lett. 87, 252104 (2005).
25. Chemical Vapour Deposition : Precursors, Processes and Applications, edited by Anthony C Jones, Michael L Hitchman (2009).
26. A. M. Shevjakov, G. N. Kuznetsova, and V. B. Aleskovskii, in Chemistry of High-Temperature Materials, Proceedings of the Second USSR Conference on High-Temperature Chemistry of Oxides, Leningrad, USSR, 26–29 November 1965 (Nauka, Leningrad, USSR, 1967) , pp. 149–155, in Russian.
27. R. L. Puurunen, J. Appl. Phys., 97,121301 (2005).
28. M. T. Bohr, R. S. Chan, T. Ghani and K. Mistry, IEEE Spectrum, 44(10), 29 (2007).
29. T. W. Pi, Y. H. Lin, Y. T. Fanchiang, T. H. Chiang, C. H. Wei, Y. C. Lin, G. K. Wertheim, J. Kwo, and M. Hong, Nanotechnology 26, 164001 (2015)
30. M. L. Huang, Y. H. Chang, T. D. Lin, H. Y. Lin, Y. T. Liu, T. W. Pi, M. Hong, and J. Kwo, Appl. Phys. Lett. 101, 212101 (2012)
31. A. Y. Cho, Surf. Sci., 17, 494 (1969)
32. A. Y. Cho and J. R. Arthur, Prog. Solid State Chem., 10, part 3, 157 (1975)
33. A. Y. Cho, J. Cryst. Growth, 150, 1 (1995)
34. M. Henini, Thin Solid Films, 306, 331 (1997)
35. C. F. Majkrzak, J. W. Cable, J. Kwo, M. Hong, D. B. Mcwhan, Y. Yafet, J. V. Waszczak, and C. Vettier, Phys. Rev. Lett., 56, 2700 (1986)
36. J. Kwo, M. Hong, and S. Nakahara, Appl. Phys. Let., 49, 319 (1986)
37. J. Kwo, M. Hong, F. J. Disalvo, J. V. Waszczak, and C. F. Majkrzak, Phys. Rev. B, 35, 7295 (1987)
38. J. Kwo, T. C. Hsieh, R. M. Fleming, M. Hong, S. H. Liou, B. A. Davidson, and Feldman, Phys. Rev. B, 36, 4039 (1987)
39. M. Hong, Z. H. Lu, J. Kwo, A. R. Kortan, J. P. Mannaerts, J. J. Krajewski, K. C. Hsieh, L. J. Chou, and K. Y. Cheng, Appl. Phys. Let., 76, 312 (2000)
40. Kittel, Introduction to Solid State Physics (eighth edition), Wiley (2005).
41. John C. Vickerman, Surface Analysis: The Principal Techniques, Wiley(2003).
42. Nicollian E. H. and J.R. Brews, “MOS (Metal Oxide Semicondutor) Physice and Technology”, John Wiley & Sons, New York, USA (1982).
43. S. M. Sze, and K. K. Ng, Physics of Semiconductor Device, Wiley (2007).
44. DOI: 10.5772/48434.
45. C. N. Berglund, IEEE Trans. Electron Devices, 13, 701 (1966).
46. J. Ren, G. Zhou, Y. Hu, D. W. Zhang, Appl. Surf. Sci., 255, 7136 (2009).
47. P. Majumder, G. Jursich, A. Kueltzo, and C. Takoudis, J. Electrochem. Soc. 155 (8), G152-G158 (2008).
48. http://www.xpsfitting.com/2012/02/yttrium.html.
49. Y. Kuroda, H. Hamono, T. Mori, Y. Yoshikawa, and M. Nagao, Langmuir 16, 6937 (2000).
50. I. Brain, Thermochemical data of pure substances, Weinheim, New York, (1995), ISBN: 3527287450.
51. B. Shin, J. Weber, R. D. Long, P. K. Hurley, C. G. Van de Walle, and P. C. Mclntyre, Appl. Phys. Lett. 96, 152908 (2010).
52. C. L. Hinkle, A. M. Sonnet, M Milojevic, F. S. Aguirre-Tostado, H. C. Kim, J. Kim, R. M. Wallace, and E. M. Vogel, Appl. Phys. Lett. 93, 113506 (2008)
53. C. L. Hinkle, E. M. Vogel, P. D. Ye, and R. M. Wallace, Curr. Opin. Solid state Mater. Sci. 15, 188 (2011)
54. J. Robertson, Microelectron. Eng. 86, 1558 (2009)
55. X. Wang, L. Dong, J. Zhang, Y. Liu, P. D. Ye, and R. G. Gordon, Nano Lett. 13(2), 594 (2013).
56. L. Dong, X. Wang, J. Y. Zhang, X. F. Li, R. G. Gordon, and P. D. Yeh , Elec. Dev. Lett. 34(4), p. 487 (2013).
57. W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su, and I. Lindau, J. Vac. Sci. Techno. 16, p. 1422 (1979)
58. T. H. Chiang, S. Y. Wu, T. S. Huang, C. H. Hsu, J. Kwo, and M. Hong, Cryst. Eng. Comm. 16, 8457 (2014).
59. K. Seino, W. G. Schmidt, and A. Ohtake, Phys. Rev. B 73, 0353171 (2006)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52266-
dc.description.abstract以矽為基底的金氧半場效電晶體達到其物理極限的當前,尋找下一世代的半導體元件材料成為當前炙熱的議題。具有高載子遷移率的砷化鎵是一個常被探討的選擇。砷化鎵和矽之間的晶格差異比其他三五族半導體小,使得砷化鎵有較大的機會與矽基板做整合,再加上砷化鎵的半導體能隙是銦砷化鎵這類半討體之中最大的,此特性會抑制由微縮所造成的不良效應,更顯出砷化鎵的重要性。原子層沉積術可以在大面積基板上成長非常均勻且具保形性的薄膜,而且薄膜的厚度性極佳,因此這種成長方法已經被廣泛應用在半導體工業上,Intel發表的45奈米製程就是使用原子層沉積術成長氧化層,所以我們使用原子層沉積術成長氧化物是具有高度實用性的。稀土族氧化物之中的氧化釔擁有高的介電常數、相對高的導帶能差(與砷化鎵之間)以及高熱穩定性,最重要的是稀土族氧化物已經有許多成功的例子在砷化鎵表面形成低缺陷密度的介面;因此我們使用原子層沉積術成長氧化釔於砷化鎵上,也期許可以得到優異的介面特性。
在這個論文中,砷化鎵(001)-(4×6)和砷化鎵(111)-(2×2)被用來當作元件的基板;在沒有任何化學處理的前提下,我們以臨場的方式成長氧化釔於砷化鎵上。以反射式高能電子繞射和X光繞射分析術鑑定氧化釔薄膜的表面,以X光光電子能譜檢測薄膜的成分和推測氧化釔/砷化鎵之間價電帶的能量差異,以橢圓儀和X光反射率量測方式鑑定薄膜的厚度。電性方面,我們將試片做成金氧半電容元件以進行電容-電壓量測、漏電電流-電場量測以及準靜態電容-電壓量測。
我們得到了單相、單晶並且具相當優良晶向性的氧化釔。實現了高熱穩定性、高介電常數以及介面特性非常好的電容元件,這些結果顯示使用原子層沉積術成長氧化釔於砷化鎵上的元件的確有很大的機會可以成為下一代電晶體元件。
zh_TW
dc.description.abstractOwing to the demand in attaining electronic devices with higher speed and lower power consumption for CMOS, it is critically urgent to find another high k/high carrier mobility semiconductor to be employed in the MOSFETs. GaAs, being feverishly studied as a viable channel candidate for replacing Si, not only has higher mobility than Si but also has smaller lattice mismatch with Si than other III-V materials. Moreover, the bandgap of GaAs is widest among InGaAs semiconductors. This property can alleviate some adverse properties such as short channel effects. Atomic layer deposition (ALD) technique is widely employed in semiconductor industry for CMOS since 45 nm node due to its outstanding properties such as excellent conformity, uniformity, and precise thickness control.
In this work, Y2O3, one of earth oxides, is used to passivate GaAs surface via ALD approach. Moreover, Y2O3 has high dielectric constant, relatively high conduction band offset, good thermal stability, and most of all, high potential for forming good oxide/GaAs interface to achieve low Dit. GaAs(001)-(4×6) and GaAs(111)A-(2×2) were used in this work. Without chemical surface treatment, we deposited in situ ALD-Y2O3 on GaAs surface using Y(Etcp)3 and H2O as precursors. In situ reflection high energy electron diffraction (RHEED) was applied to monitor the surface structure. We used X-ray photoelectron spectroscopy and X-ray diffraction to study Y2O3/GaAs band alignment and structure, respectively. Ellipsometry and X-ray reflectivity were utilized to estimate the film thickness and the growth rate per cycle (GPC) of ALD-Y2O3. Metal-oxide-semiconductor (MOS) capacitors were employed to investigate electrical characteristics such as capacitance-voltage (C-V), leakage current density-electric field (J-E), and quasi-static C-V (QSCV).
Single-domain single-crystal ALD-Y2O3 was deposited on GaAs with excellent crystallinity. High thermal stability up to 900°C, very low frequency dispersion in both n- and p-type MOS C-V curves, and no discernible Dit peak through semiconductor band-gap have been achieved on GaAs(001)-(4×6).
This work shows that ALD-Y2O3 has effectively passivated GaAs with low interfacial trap densities and excellent high temperature thermal stability. ALD-Y2O3 /GaAs(001) has been proved to be a vital candidate for beyond Si-based MOSFET.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:10:36Z (GMT). No. of bitstreams: 1
ntu-104-R01222061-1.pdf: 6479479 bytes, checksum: 6c683bf116b89242d3722613a9fd88b7 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xiii
Chapter 1 Introduction 1
1.1 Background………………….. ……...………………….1
1.1.1 High Electron Mobility III-V Materials 3
1.1.2 High-κ Dielectrics 4
1.2 Challenge of High-κ Dielectrics on GaAs 5
1.3 Motivation…………………… 6
Chapter 2 Theory and Instruments 7
2.1 Multi-Functional Ultra-High Vacuum System 7
2.2 Atomic Layer Deposition (ALD) 7
2.3 Molecular Beam Epitaxy (MBE) 10
2.4 Reflection High Energy Electron Diffraction (RHEED) 12
2.5 X-ray Photoelectron Spectroscopy (XPS) 13
2.6 Principles of Metal-Oxide-Semiconductor (MOS) [42] 14
2.6.1 Ideal Case 15
2.7 The traps in a non-ideal case……….. .19
2.7.1 Quasi-Static Capacitance-Voltage Measurement 21
Chapter 3 Experimental Procedures 24
3.1 Sample Preparation………….. 24
3.2 In Situ Deposition of ALD-Al2O3/ALD-Y2O3 26
3.3 In Situ Interfacial Bonding Analysis using XPS 29
3.4 Annealing Treatment………… 29
3.5 Metal Electrode Deposition….. 30
3.6 Electrical Characteristzation Measurement 30
Chapter 4 ALD-Y2O3 on GaAs(001)-(4×6) 32
4.1 Single-crystal ALD-Y2O3 on GaAs(001)-(4×6) 32
4.2 Band alignment and composition of ALD-Y2O3 on p-GaAs(001) via X-ray Photoelectron Spectrospcopy… 35
4.3 Effective Passivation of ALD-Y2O3 plus ALD-Al2O3 High-κ Dielectrics on GaAs(001)…………………… 37
4.3.1 Electrical Behavior of ALD-Y2O3 plus ALD-Al2O3 High-κ Dielectrics on p- and n-GaAs(001) under Various Annealing Condition 38
4.4 Quantification of Interfacial Trap Densities at Oxide/GaAs(001) using Quasi-Static C-V Method………… 48
4.5 Comparison of ALD-Al2O3/ALD-Y2O3/GaAs(001) and MBE-YAO/MBE-Y2O3/GaAs(001) 54
4.6 Summary…………………….. 56
Chapter 5 ALD-Y2O3 on GaAs(111)A-(2×2) 58
5.1 Structure analysis for ALD-Y2O3 on GaAs(111)A 58
5.2 Electrical characteristics……… 61
5.3 Summary……………………… 66
Chapter 6 Conclusion 67
References 69
Appendix A- ALD-Y2O3 growth 74
Appendix B- Growth mechanism of ALD-Al2O3 on GaAs(001)-(4×6) surface with TMA and H2O as precursors 77
Appendix C- Single-crystal atomic layer deposited Y2O3 on GaAs(001) – growth, structural, and electrical characterization 80
dc.language.isoen
dc.title以臨場原子層沉積術成長氧化釔於砷化鎵之結構及介面特性之研究zh_TW
dc.titleInvestigation of structure and interfacial properties of In situ ALD-Y2O3 on GaAsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭瑞年(J. Raynien Kwo),徐嘉鴻(Chia-Hung Hsu),郭治群(Jyh-Chyurn Guo),皮敦文(Tun-Wen Pi)
dc.subject.keyword原子層沉積,原子層磊晶,稀土族氧化物,高介電係數介電質,zh_TW
dc.subject.keywordALD,ALE,rare earth oxide,Y2O3,high k dielectric,en
dc.relation.page91
dc.rights.note有償授權
dc.date.accepted2015-08-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
6.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved