Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5225
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許 輔(Fuu Sheu)
dc.contributor.authorYu-Shan Linen
dc.contributor.author林瑜珊zh_TW
dc.date.accessioned2021-05-15T17:53:53Z-
dc.date.available2017-08-25
dc.date.available2021-05-15T17:53:53Z-
dc.date.copyright2014-08-25
dc.date.issued2014
dc.date.submitted2014-07-30
dc.identifier.citation水野卓、川合正允。(1997)。菇類的化學、生化學。臺北市:國立編譯館。
葉怡真 (2006)。金針菇在醫學上的應用。食品工業,38 (5):11-24。
周凱松、薛久剛、張晗星、陳暢和張長鎧。(2003)。火菇素的分離純化及其分子量的測定。菌物學報,22 (2):259-263。
周凱松、彭俊峰、常甯、張晗星、宮峰和張長鎧。(2003)。火菇素提取新工藝及其生物活性測定。中國生物化學與分子生物學報,19 (2):234-239。
柯俊良。(1995)。由金針菇分離免疫調節功能蛋白質及分析其胺基酸序列與進行基因選殖和表現。國立台灣大學醫學院生化學研究所博士論文。臺北。
胡哲榮。(2006)。研究真菌類免疫調節蛋白質之免疫調節活性。中山醫學大學醫學分子毒理學研究所碩士論文,台中。
唐賽文。(1993)。真菌類免疫調節蛋白 FIP-fve 作用機制之研究。國立台灣大學醫學院生物化學暨分子生物學研究所碩士論文。臺北。
童曼華。(2008)。金針菇免疫調節蛋白 FVE 活化小鼠 T 淋巴細胞機制之研究。國立台灣大學園藝學研究所碩士論文。臺北。
張佑敏。(2011)。製備片段缺失 fve 蛋白及其功能分析。國立台灣大學園藝學研究所碩士論文。臺北。
潘家弘。(2012)。FIP-fve 類超抗原特性之探討。國立台灣大學園藝暨景觀學研究所碩士論文。臺北。
劉育靈。(2013)。金針菇免疫調節蛋白 FIP-fve 生物可及性之研究。國立台灣大學園藝暨景觀學研究所碩士論文。臺北。
Baker, M. D., and Acharya, K. R. (2004). Superantigens: structure-function relationships. Int J Med Microbiol, 293(7-8):529-537.
Bavari, S., and Ulrich, R. G. (1995). Staphylococcal enterotoxin A and toxic shock syndrome toxin compete with CD4 for human major histocompatibility complex class II binding. Infect Immun, 63(2):423-429.
Bernheimer, A. W., and Oppenheim, J. D. (1987). Some Properties of Flammutoxin from the Edible Mushroom Flammulina-Velutipes. Toxicon, 25(11):1145-1152.
Chang, H. H., Hsieh, K. Y., Yeh, C. H., Tu, Y. P., and Sheu, F. (2010). Oral administration of an Enoki mushroom protein FVE activates innate and adaptive immunity and induces anti-tumor activity against murine hepatocellular carcinoma. Int Immunopharmacol, 10(2):239-246.
Ding, Y., Seow, S. V., Huang, C. H., Liew, L. M., Lim, Y. C., Kuo, I. C., and Chua, K. Y. (2009). Coadministration of the fungal immunomodulatory protein FIP-Fve and a tumour-associated antigen enhanced antitumour immunity. Immunology, 128(1 Suppl):e881-894.
Fraser, J. D., and Proft, T. (2008). The bacterial superantigen and superantigen-like proteins. Immunol Rev, 225:226-243.
Hakansson, M., Petersson, K., Nilsson, H., Forsberg, G., Bjork, P., Antonsson, P., and Svensson, L. A. (2000). The crystal structure of staphylococcal enterotoxin H: implications for binding properties to MHC class II and TcR molecules. J Mol Biol, 302(3):527-537.
Hsieh, C. W., Lan, J. L., Meng, Q., Cheng, Y. W., Huang, H. M., and Tsai, J. J. (2007). Eosinophil apoptosis induced by fungal immunomodulatory peptide-fve via reducing IL-5alpha receptor. J Formos Med Assoc, 106(1):36-43.
Hsieh, K. Y., Hsu, C. I., Lin, J. Y., Tsai, C. C., and Lin, R. H. (2003). Oral administration of an edible-mushroom-derived protein inhibits the development of food-allergic reactions in mice. Clin Exp Allergy, 33(11):1595-1602.
Ikekawa, T., Ikeda, Y., Yoshioka, Y. , Nakanishi, K. , Yokoyama, E. , and Yamazaki, E. (1982). Studies on antitumor polysaccharides of Flammulina velutipes (Curt. ex Fr.) Sing.II. The structure of EA3 and further purification of EA5. J Pharmacobiodyn., 5(8):576-581.
Ikekawa, T., Uehara, N., Maeda, Y., Nakanishi, M., and Fukuoka, F. (1969). Antitumor activity of aqueous extracts of edible mushrooms. Cancer Res, 29(3):734-735.
Ikekawa, T., Yoshioka, Y., Emori, M., Sano, T., and Fukuoka, F. (1973). Studies on the antitumor activity of polysaccharides from Flammulina velutipes (Curt. ex Fr.) Sing. Cancer Chemother Rep, 57(1):85-86.
Kamasuka, T., Momoki, Y., and Sakai, S. (1968). Antitumor Activity of Polysaccharide Fractions Prepared from Some Strains of Basidiomycetes. Gann, 59(5):443-&.
Kino, K., Yamashita, A., Yamaoka, K., Watanabe, J., Tanaka, S., Ko, K., Shimizu, K., and Tsunoo, H. (1989). Isolation and characterization of a new immunomodulatory protein, ling zhi-8 (LZ-8), from Ganoderma lucidium. J Biol Chem, 264(1):472-478.
Ko, J. L., Hsu, C. I., Lin, R. H., Kao, C. L., and Lin, J. Y. (1995). A new fungal immunomodulatory protein, FIP-fve isolated from the edible mushroom, Flammulina velutipes and its complete amino acid sequence. Eur J Biochem, 228(2):244-249.
Ko, J. L., Lin, S. J., Hsu, C. I., Kao, C. L., and Lin, J. Y. (1997). Molecular cloning and expression of a fungal immunomodulatory protein, FIP-fve, from Flammulina velutipes. J Formos Med Assoc, 96(7):517-524.
Ko, W. C., Liu, W. C., Tsang, Y. T., and Hsieh, C. W. (2007). Kinetics of winter mushrooms (Flammulina velutipes) microstructure and quality changes during thermal processing. Journal of Food Engineering, 81(3):587-598.
Komatsu, N., Terakawa, H. , Nakanishi, K. , and Watanabe, Y. (1963). Flammunlin, a basic protein of Flammulina velutipes with antitumor activities. J Antibiot (Tokyo), 16:139-143.
Lin, J. L., Wu, H. L., and Shi, G. Y. (1975). Toxicity of the cardiotoxic protein, flammutoxin, isolated from the edible mushroom Flammunlina velutipes. Toxicon, 13(5):323-326.
Lin, J. Y., Jeng, T. W., Chen, C. C., Shi, G. Y., and Tung, T. C. (1973). Isolation of a new cardiotoxic protein from the edible mushroom, Volvariella volvacea. Nature, 246(5434):524-525.
Lin, J. Y., Lin, Y. J., Chen, C. C., Wu, H. L., Shi, G. Y., and Jeng, T. W. (1974). Cardiotoxic protein from edible mushroom. Nature, 252:235-237.
Lin, W. H., Hung, C. H., Hsu, C. I., and Lin, J. Y. (1997). Dimerization of the N-terminal amphipathic alpha-helix domain of the fungal immunomodulatory protein from Ganoderma tsugae (Fip-gts) defined by a yeast two-hybrid system and site-directed mutagenesis. J Biol Chem, 272(32):20044-20048.
Liu, Y. F., Chang, S. H., Sun, H. L., Chang, Y. C., Hsin, I. L., Lue, K. H., and Ko, J. L. (2012). IFN-gamma induction on carbohydrate binding module of fungal immunomodulatory protein in human peripheral mononuclear cells. J Agric Food Chem, 60(19):4914-4922.
Ohkuma, T., Otagiri, K., Ikekawa, T., and Tanaka, S. (1982). Augmentation of antitumor activity by combined cryo-destruction of sarcoma 180 and protein-bound polysaccharide, EA6, isolated from Flammulina velutipes (Curt. ex Fr.) Sing. in ICR mice. J Pharmacobiodyn, 5(6):439-444.
Otagiri, K., Ohkuma, T., Ikekawa, T., and Tanaka, S. (1983). Intensification of antitumor-immunity by protein-bound polysaccharide, EA6, derived from Flammulina velutipes (Curt. ex Fr.) Sing. combined with murine leukemia L1210 vaccine in animal experiments. J Pharmacobiodyn, 6(2):96-104.
Ou, C. C., Hsiao, Y. M., Wang, W. H., Ko, J. L., and Lin, M. Y. (2009). Stability of fungal immunomodulatory protein, FIP-gts and FIP-fve, in IFN-γ production. Food and Agricultural Immunology, 20(4):319-332.
Paaventhan, P., Joseph, J. S., Seow, S. V., Vaday, S., Robinson, H., Chua, K. Y., and Kolatkar, P. R. (2003). A 1.7 A° Structure of Fve, a Member of the New Fungal Immunomodulatory Protein Family. J Mol Biol, 332(2):461-470.
Proft, T., and Fraser, J. D. (2003). Bacterial superantigens. Clin Exp Immunol, 133:299–306.
Pumphrey, N., Vuidepot, A., Jakobsen, B., Forsberg, G., Walse, B., and Lindkvist-Petersson, K. (2007). Cutting edge: Evidence of direct TCR alpha-chain interaction with superantigen. J Immunol, 179:2700-2704.
Seow, S. V., Kuo, I. C., Paaventhan, P., Kolatkar, P. R., and Chua, K. Y. (2003). Crystallization and preliminary X-ray crystallographic studies on the fungal immunomodulatory protein Fve from the golden needle mushroom (Flammulina velutipes). Acta Crystallogr D Biol Crystallogr, 59(Pt 8):1487-1489.
Smiderle, F. R., Carbonero, E. R., Sassaki, G. L., Gorin, P. A. J., and Iacomini, M. (2008). Characterization of a heterogalactan: Some nutritional values of the edible mushroom Flammulina velutipes. Food Chemistry, 108(1):329-333.
Swaminathan, S., Furey, W., Pletcher, J., and Sax, M. (1992). Crystal-Structure of Staphylococcal Enterotoxin-B, a Superantigen. Nature, 359(6398):801-806.
Tomita, T. , Ishikawa, D., Noguchi, T., Katayama, E., and Hashimoto, Y. (1998). Assembly of flammutoxin, a cytolytic protein from the edible mushroom Flammulina velutipes, into a pore-forming ring-shaped oligomer on the target cell. Biochem. J., 333:129-137.
Tomita, T., Mizumachi, Y., Chong, K., Ogawa, K., Konishi, N., Sugawara-Tomita, N., Dohmae, N., Hashimoto, Y., and Takio, K. (2004). Protein sequence analysis, cloning, and expression of flammutoxin, a pore-forming cytolysin from Flammulina velutipes. Maturation of dimeric precursor to monomeric active form by carboxyl-terminal truncation. J Biol Chem, 279(52):54161-54172.
Tong, M. H., Chien, P. J., Chang, H. H., Tsai, M. J., and Sheu, F. (2008). High processing tolerances of immunomodulatory proteins in Enoki and Reishi mushrooms. J Agric Food Chem, 56(9):3160-3166.
Wang, H. X., and Ng, T. B. (2000). Flammulin: a novel ribosome-inactivating protein from fruiting bodies of the winter mushroom Flammulina velutipes. Biochem Cell Biol, 78(6):699-702.
Wang, P. H., Hsu, C. I., Tang, S. C., Huang, Y. L., Lin, J. Y., and Ko, J. L. (2004). Fungal immunomodulatory protein from Flammulina velutipes induces interferon-gamma production through p38 mitogen-activated protein kinase signaling pathway. J Agric Food Chem, 52(9):2721-2725.
Watanabe, H., Narai, A., and Shimizu, M. (1999). Purification and cDNA cloning of a protein derived from Flammulina velutipes that increases the permeability of the intestinal Caco-2 cell monolayer. European Journal of Biochemistry, 262(3):850-857.
Yoshioka, Y. , Sano, T. , and Ikekawa, T. (1973). Studies on antitumor polysaccharides of Flammulina velutipes (Curt. ex Fr.) Sing. I. Chem Pharm Bull (Tokyo). 21(8):1772-1176.
Zhang, H., Gong, F., Feng, Y., and Zhang, C. (1999). Flammulin Purified from the Fruit Bodies of Flammulina velutipes (Curt.:Fr.) P.Karst. 1(1):89-92.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5225-
dc.description.abstract金針菇免疫調節蛋白 FIP-fve 萃取自金針菇子實體,文獻指出其具有免疫調節、抗癌、抗過敏及減緩發炎反應等功效。二級結構分析顯示,FIP-fve 透過兩個單元體 N 端 α-helix 以疏水性鍵結形成雙元體。本實驗室前人研究指出 FIP-fve 不需經過抗原呈獻細胞修飾,而是透過與 MHC 及 TCR 分子鍵結活化 T 細胞,因此推測FIP-fve 作用方式類似超抗原。本研究目的有二,一為證實雙元體結構對於 FIP-fve 的免疫調節活性是必要的,二為找出 FIP-fve 與 MHC 和 TCR 具交互作用之證據。為探討雙元體結構對 FIP-fve 免疫調節活性之影響,將 1-13 胺基酸缺失或全長 FIP-fve cDNA構築於 pET-32a(+) 載體,並透過大腸桿菌系統表現得分子量皆約 26 kDa 之 His-FIP-fve 1-114 和 His-FIP-fve 14-114 蛋白。以 enterokinase 切除 His-tag 後,經質譜比對確認成功取得 rFIP-fve 1-114 以及 rFIP-fve 14-114。免疫調節活性試驗方面,片段缺失 rFIP-fve 14-114 刺激小鼠脾臟細胞分泌 IFN-γ 能力較 rFIP-fve 1-114 弱,且無法刺激小鼠脾臟細胞 IFN-γ 及 IL-2 基因表現。綜合以上結果,推測失去雙元體結構造成 FIP-fve 免疫調節活性降低。在 FIP-fve 類超抗原性質探討上,透過共同免疫沉澱法可知 FIP-fve 與表面分子 MHC class II 具交互作用,另外發現 FIP-fve 可被 MHC class I 及其 Isotype IgG2a 抗體捕捉。然而,本研究尚未透過共同免疫沉澱法看見 FIP-fve 與 TCR 連結之證據,因此僅能證實 FIP-fve 能連結 APCs 表面分子 MHC class II。zh_TW
dc.description.abstractFIP-fve, an immunomodulatory protein isolated from Flammulina velutipes, has been demonstrated to have activities of immunomodulatory, anti-cancer, anti-allergic and suppression of inflammation. Based on a secondary structure analysis, we known that two FIP-fve monomers form homodimer through the hydrophobic interaction between N-terminal α-helics. Previous studies suggested that FIP-fve can mediate T cells activation through the linkage between T cell receptors (TCR) on T cells and MHC molecules on antigen present cells (APCs) without processing procedure of APCs. This process is similar to the mechanism of superantigen-mediated immune response. The aim of this study was to demonstrate the necessity of dimer structure for FIP-fve immunomodulatory activity and to prove the directly binding of FIP-fve with MHC and TCR. To study the relationship between the dimer structure and immunomodulatory activity of FIP-fve, we constructed the full length 1-114 FIP-fve cDNA and truncated 14-114 FIP-fve cDNA on pET-32a(+) vector and expressed the His-fusion protein His-FIP-fve 1-114 and His-FIP-fve 14-114. After digested by enterokinase to remove the His-tag residue, rFIP-fve 1-114 and rFIP-fve 14-114 were purified with FPLC system. The ability of rFIP-fve 14-114 to stimulate IFN-γ production on murine splenocytes was lower than rFIP-fve 1-114. Incubating murine splenocytes with rFIP-fve 14-114 could not elevate the gene expression of IFN-γ and IL-2. According to the above results, we suggested that the dimerization might be critical for FIP-fve immunomodulatory activity. On the other hand, FIP-fve and RAW 264.7 cell lysate were co-immunoprecipitated to determine superatigen-like characterization of FIP-fve. Results indicated that FIP-fve could interact with MHC class II molecule directly. Interestingly, we also found that FIP-fve was pulled down by both anti-MHC class I antibody and IgG2a which was isotype of anti-MHC class I antibody. However, no co-immunoprecipitated evidence showed that FIP-fve bound with TCR in this study. In conclusion, we proved that FIP-fve directly bind with MHC class II molecule.en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:53:53Z (GMT). No. of bitstreams: 1
ntu-103-R01628205-1.pdf: 4501145 bytes, checksum: 7af86104ccac194ed62de773d47a2b16 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
摘要 IV
Abstract V
目錄 VII
圖目錄 IX
縮寫表 X
第一章 前人研究 1
第一節 金針菇簡介 1
第二節 其他金針菇成分與功效介紹 2
第三節 金針菇免疫調節蛋白 FIP-fve 簡介 5
第四節 超抗原簡介 10
第二章 研究動機與目的 12
第三章 材料與方法 13
第一節 金針菇免疫調節蛋白 FIP-fve 純化 14
第二節 變性膠體電泳分析 (SDS-PAGE) 17
第三節 蛋白質濕式轉印 19
第四節 西方轉漬法 (western blotting) 20
第五節 重組蛋白 rFIP-fve 1-114 及truncated rFIP-fve 14-114 基因選殖與構築 21
第六節 重組蛋白 rFIP-fve 1-114 及truncated rFIP-fve 14-114 表現與純化 25
第七節 膠體內水解 (In gel digestion) 27
第八節 小鼠脾臟細胞取得 28
第九節 酵素連結免疫吸附分析 (Enzyme-linked immunosorbent assay, ELISA) 30
第十節 細胞總 RNA 抽取與反轉錄 31
第十一節 即時定量聚合酶鏈鎖反應 (Real-time PCR) 32
第十二節 巨噬細胞株 RAW 264.7 細胞培養 34
第十三節 共同免疫沉澱法 (Co-immunoprecipitation) 35
第十四節 統計分析 38
第四章 研究結果 39
第一節 重組蛋白 rFIP-fve 1-114 及 truncated rFIP-fve 14-114 選殖與純化 39
第二節 重組蛋白 rFIP-fve 1-114 及 truncated rFIP-fve 14-114 於小鼠脾臟細胞之免疫活性 42
第三節 以共同免疫沉澱法探討 FIP-fve 之類超抗原特性 43
第五章 討論 46
第一節 重組蛋白 rFIP-fve 1-114 及 truncated rFIP-fve 14-114 蛋白純化探討 46
第二節 片段缺失 truncated rFIP-fve 14-114 蛋白功能探討 47
第三節 FIP- fve 與表面分子親和性之探討 48
第六章 結論與未來展望 51
參考文獻 52
dc.language.isozh-TW
dc.titleFIP-fve 蛋白之 N 端序列對其免疫活性之必要性zh_TW
dc.titleN-terminal of FIP-fve is essential for its immune activityen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周志輝,潘敏雄,繆希椿
dc.subject.keyword超抗原,His 融合蛋白,同型雙元體,免疫調節蛋白,共同免疫沉澱,zh_TW
dc.subject.keywordsuperantigen,His-fusion protein,homodimer,immunomodulatory protein,co-immunoprecipitation,en
dc.relation.page74
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-07-30
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf4.4 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved