Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52203
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪一平
dc.contributor.authorChun-Hsin Wangen
dc.contributor.author王俊心zh_TW
dc.date.accessioned2021-06-15T16:09:29Z-
dc.date.available2017-08-20
dc.date.copyright2015-08-20
dc.date.issued2015
dc.date.submitted2015-08-19
dc.identifier.citation[1] Gps horizontal position accuracy. http://www.leb.esalq. usp.br/disciplinas/Molin/leb447/Arquivos/GNSS/ ArtigoAcuraciaGPSsemAutor.pdf.
[2] C. Arth, D. Wagner, M. Klopschitz, A. Irschara, and D. Schmalstieg. Wide area localizationonmobilephones. InternationalSymposium on Mixed andAugmented Reality,2009.
[3] S. Cao and N. Snavely. Minimal scene descriptions from structure from motion models. CVPR,2014.
[4] T.Driver. Long-termpredictionof gpsaccuracy: Understandingthe fundamentals. IONGNSSInternationalTechnicalMeetingoftheSatelliteDivision,2007.
[5] R. Hartley and A. Zisserman. Multiple view geometry in computer vision. CambridgeUniversityPress,2004.
[6] A. Irschara, C. Zach, J. Frahm, and H. Bischof. From structure-from-motion point cloudstofastlocationrecognition. IEEE Conference on Computer Vision and PatternRecognition,2009.
[7] E. Johns and G. Z. Yang. Dynamic scene models for incremental, long-term, appearance-basedlocalisation. ICRA,2013.
[8] E.JohnsandG.Z.Yang. Featureco-occurrencemaps: Appearance-basedlocalisationthroughoutthedayfeatureco-occurrencemaps: Appearance-basedlocalisation throughouttheday. ICRA,2013.
[9] R.Kalman. Anewapproachtolinearfilteringandpredictionproblems. Journalof BasicEngineering,82(1):35–45,1960.
[10] Y.Li,N.Snavely,andD.Huttenlocher.Locationrecognitionusingprioritizedfeature matching. EuropeanConferenceonComputerVision,2010.
[11] Y.Li,N.Snavely,D.Huttenlocher,andP.Fua. Worldwideposeestimationusing3d pointclouds. EuropeanConferenceonComputerVision,2012.
[12] H. Lim, S. Sinha, M. Cohen, and M. Uyttendaele. Real-time image-based 6-dof localization in large-scale environments. International Symposium on Mixed and AugmentedReality,2012.
[13] H. Liu, T. Mei, J. Luo, H. Li, and S. Li. Finding perfect rendezvous on the go: Accuratemobilevisuallocalizationanditsapplicationstorouting.ACMMultimedia, 2012.
[14] D. Lowe. Distinctive image features from scale-invariant keypoints. International JournalofComputerVision,60(2):91–110,2004.
[15] S.Middelberg,T.Sattler,O.Untzelmann,andL.Kobbelt.Scalable6-doflocalization onmobiledevices. EuropeanConferenceonComputerVision,2014.
[16] M. Modsching, R. Kramer, and K. Hagen. Field trial on gps accuracy in a medium sizecity: Theinfluenceofbuilt-up. WorkshoponPositioning,NavigationandCommunication,2006.
[17] M.MujaandD.Lowe.Fastapproximatenearestneighborswithautomaticalgorithm configuration. International Conference on Computer Vision Theory and Applications,2009.
[18] H. S. Park, Y. Wang, E. Nurvitadhi, J. C. Hoe, Y. Sheikh, and M. Chen. 3d point cloudreductionusingmixed-integerquadraticprogramming. ComputerVisionand PatternRecognitionWorkshops,2013.
[19] D.Reid.Analgorithmfortrackingmultipletargets.IEEETransactionsonAutomatic Control,1979.
[20] T. Sattler, B. Leibe, and L. Kobbelt. Fast image-based localization using direct 2dto-3dmatching. InternationalConferenceonComputerVision,2011.
[21] T. Sattler, B. Leibe, and L. Kobbelt. Improving image-based localization by active correspondencesearch. EuropeanConferenceonComputerVision,2012.
[22] N.Snavely,S.Seitz,andR.Szeliski. Phototourism: Exploringphotocollectionsin 3d. ACMTransactionsonGraphics,25(3):835–846,2006.
[23] J. Ventura and T. Hollerer. Wide-area scene mapping for mobile visual tracking. InternationalSymposiumonMixedandAugmentedReality,2012.
[24] A. Wendel, A. Irschara, and H. Bischof. Natural landmark-based monocular localizationformavs. InternationalConferenceonRoboticsandAutomation,2011.
[25] C. Wu. Siftgpu: A gpu implementation of scale invaraint feature transform (sift). http://cs.unc.edu/~ccwu/siftgpu,2007.
[26] C.Wu. Towardslinear-timeincrementalstructurefrommotion. 3DV,2013.
[27] C.Wu,S.Agarwal,B.Curless,andS.M.Seitz.Multicorebundleadjustment.CVPR, 2011.
[28] M. Y. Yang and W. Forstner. Plane detection in point cloud data. International ConferenceonMachineControlGuidance,2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52203-
dc.description.abstract車聯網 (Internet-of-Vehicle; IoV) 的發展與應用,對於改善行車之安 全及品質是可預期的。藉由車輛與車輛 (V2V) 以及車輛與基礎設施 (V2I) 的通訊,為駕駛人提供更完整並且無死角的路況資訊。為了確保 車輛間傳遞的訊息的可靠性,精確的車輛定位則成為了必要的條件, 也是本論文主要探討之研究主題。本文提出一種基於影像來作為車聯 網中車輛定位之系統架構,將行車記錄器所攝錄之影像傳送至路邊設 立之資料庫,並依資料庫中已建立之場景三維點雲模型回傳至車輛做 定位。為了降低資料庫記憶體成本及通訊開銷,以及解決場景因時間 或天氣的光線變化,本文亦提出了點雲模型壓縮及更新之演算法。zh_TW
dc.description.abstractThis paper presents a method for ego-positioning with low cost monocular cameras for an IoV (Internet-of-Vehicle) system. To reduce the computational and memory requirements as well as the communication overheads, we formulate the model compression algorithm as a weighted k-cover problem for better preserving model structures. Specifically for real-world vision-based positioning applications, we consider the issues with large scene change and propose a model update algorithm to tackle these problems. A long-term positioning dataset with more than one month, 105 sessions, and 14,167 images is constructed. Based on both local and up-to-date models constructed in our approach, extensive experimental results show that sub-meter positioning accuracy can be achieved, which outperforms existing vision-based algorithms.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:09:29Z (GMT). No. of bitstreams: 1
ntu-104-R02944042-1.pdf: 14339257 bytes, checksum: a221491d0be67873df2dabb77142382d (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Contents v
List of Figures vii
List of Tables x
1 Introduction 1
2 Related Work 4
2.1 Feature Matching with 3D Models 4
2.2 Model Compression 5
2.3 Long-Term Positioning 6
3 Vision-Based Ego-Positioning 7
3.1 Training Phase 7
3.1.1 Image-Based Modelling 7
3.1.2 Structure Preserving Model Compression 9
3.1.3 Model Update 13
3.2 Ego-Positioning Phase 15
3.2.1 2D-to-3D Image Matching and Localization 16
4 Experiment 17
4.1 Simulation of V2V Tracking with GPS and Vison-Based Positioning 18
4.2 Positioning Evaluation of Single Still Image 19
4.3 Positioning Evaluation of Video Sequence 22
4.4 Long-Term Positioning Dataset 24
4.5 Positioning Evaluation with Model Update 25
5 Conclusions and Suggestions for Further Research 28
5.1 Conclusions 28
5.2 Suggestions for Further Research 28
5.2.1 Augmented Reality 29
Bibliography 31
dc.language.isoen
dc.subject車聯網zh_TW
dc.subject點雲模型更新zh_TW
dc.subject智慧行車zh_TW
dc.subject點雲模型壓縮zh_TW
dc.subject精準定位zh_TW
dc.subject影像自我定位zh_TW
dc.subjectLong-Term Dataseten
dc.subjectVision-Based Ego-Positioningen
dc.subjectSub-Meter Accuracyen
dc.subjectModel Compressionen
dc.subjectModel Updateen
dc.subjectInternet-of-Vehiclesen
dc.title基於車聯網架構下之自我定位技術zh_TW
dc.titleVision-Based Ego-Positioning for Internet-of-Vehicleen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊仁輝,陳祝嵩,賴尚宏,蔡玉寶
dc.subject.keyword車聯網,影像自我定位,精準定位,智慧行車,點雲模型壓縮,點雲模型更新,zh_TW
dc.subject.keywordInternet-of-Vehicles,Vision-Based Ego-Positioning,Sub-Meter Accuracy,Model Compression,Model Update,Long-Term Dataset,en
dc.relation.page33
dc.rights.note有償授權
dc.date.accepted2015-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved