Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52174
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅仁權(Ren C. Luo)
dc.contributor.authorYi-Ting Chungen
dc.contributor.author鍾宜庭zh_TW
dc.date.accessioned2021-06-15T16:09:01Z-
dc.date.available2016-08-26
dc.date.copyright2015-08-26
dc.date.issued2015
dc.date.submitted2015-08-19
dc.identifier.citation[1] Khatib, Oussama. 'Real-time obstacle avoidance for manipulators and mobile robots.' The international journal of robotics research 5.1 (1986): 90-98.
[2] Bobrow, James E., Steven Dubowsky, and J. S. Gibson. 'Time-optimal control of robotic manipulators along specified paths.' The international journal of robotics research 4.3 (1985): 3-17.
[3] Shin, Kang G., and Neil D. McKay. 'Minimum-time control of robotic manipulators with geometric path constraints.' Automatic Control, IEEE Transactions on 30.6 (1985): 531-541.
[4] Shin, Kang G., and Neil D. McKay. 'A dynamic programming approach to trajectory planning of robotic manipulators.' Automatic Control, IEEE Transactions on 31.6 (1986): 491-500.
[5] Balkan, Tuna. 'A dynamic programming approach to optimal control of robotic manipulators.' Mechanics research communications 25.2 (1998): 225-230.
[6] Von Stryk, M. Schlemmer, “Optimal control of the industrial robot Manutec r3”, in: R. Bulirsch, D. Kraft (Eds.), Computational Optimal Control, International Series of Numerical Mathematics, vol. 115, Basel, Birkhaぴuser, 1994, pp. 367–382.
[7] Field, Glen, and Yury Stepanenko. 'Iterative dynamic programming: an approach to minimum energy trajectory planning for robotic manipulators.' Robotics and Automation, 1996. Proceedings., 1996 IEEE International Conference on. Vol. 3. IEEE, 1996.
[8] Martin, Bryan J., and James E. Bobrow. 'Minimum-effort motions for open-chain manipulators with task-dependent end-effector constraints.' The international journal of robotics research 18.2 (1999): 213-224.
[9] Shiller, Zvi. 'Time-energy optimal control of articulated systems with geometric path constraints.' Journal of dynamic systems, measurement, and control 118.1 (1996): 139-143.
[10] S. G. Khan, G. Herrmann, T. Pipe, C. Melhuish, and A. Spiers, 'Safe adaptive compliance control of a humanoid robotic arm with anti-windup compensation and posture control,' in International Journal of Social Robotics, vol. 2, pp. 305-319, 2010.
[11] A. Bicchi and G. Tonietti, 'Fast and 'soft-arm' tactics [robot arm design],' in IEEE Robotics & Automation Magazine, vol. 11, pp. 22-33, 2004.
[12] M. W. Strohmayr, H. Worn, and G. Hirzinger, 'The DLR Artificial Skin StepⅠ: Uniting Sensitivity and Collision Tolerance,' in IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, May 6-10, 2013.
[13] A. De Luca, F. Flacco, A. Bicchi, and R. Schiavi, 'Nonlinear decoupled motion-stiffness control and collision detection/reaction for the VSA-II variable stiff-ness device,' in IEEE/RSJ International Conference on Intelligent Robots and Systems. (IROS), St. Louis, MO, USA, Oct. 11-15, 2009, pp. 5487-5494.
[14] F. Flacco, T. Kroger, A. De Luca, and O. Khatib, 'A depth space approach to human-robot collision avoidance,' in IEEE International Conference on Robotics and Automation (ICRA), St. Paul, MN, USA, May 14-18, 2012, pp. 338-345.
[15] F. Flacco, A. De Luca, and O. Khatib, 'Motion control of redundant robots under joint constraints: Saturation in the null space,' in IEEE International Conference on Robotics and Automation (ICRA), St. Paul, MN, USA, May 14-18, 2012, pp. 285-292.
[16] Lumelsky, Vladimir J., and Edward Cheung. 'Real-time collision avoidance in teleoperated whole-sensitive robot arm manipulators.' Systems, Man and Cybernetics, IEEE Transactions on 23.1 (1993): 194-203.
[17] Lauzier, Nicolas, and Clément Gosselin. 'Series clutch actuators for safe physical human-robot interaction.' Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011.
[18] Park, Jung-Jun, Hwi-Su Kim, and Jae-Bok Song. 'Safe robot arm with safe joint mechanism using nonlinear spring system for collision safety.' Robotics and Automation, 2009. ICRA'09. IEEE International Conference on. IEEE, 2009.
[19] Kuhn, Stefan, and Dominik Henrich. 'Fast vision-based minimum distance determination between known and unkown objects.' Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on. IEEE, 2007.
[20] Haddadin, Sami, et al. 'A truly safely moving robot has to know what injury it may cause.' Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on. IEEE, 2012.
[21] Lee, Sang-Duck, Byeong-Sang Kim, and Jae-Bok Song. 'Human–robot collision model with effective mass and manipulability for design of a spatial manipulator.' Advanced Robotics 27.3 (2013): 189-198.
[22] Chan, Tan Fung, and Rajiv V. Dubey. 'A weighted least-norm solution based scheme for avoiding joint limits for redundant joint manipulators.' Robotics and Automation, IEEE transactions on 11.2 (1995): 286-292.
[23] T. Yoshikawa, “Manipulability of Robotic Mechanisms,” the Int. Journal of Robotics Research, Vol. 4, No. 2, pp. 3-9, 1985.
[24] Jingguo Wang, Yangmin Li, and Xinhua Zhao, 'Inverse Kinematics and Control of a 7-DOF Redundant Manipulator Based on the Closed-Loop Algorithm,' International Journal of Advanced Robotic Systems, Vol. 7, No. 4, pp. 1‐10, 2010
[25] S. Lee and A. K. Bejczy, “Redundant arm kinematic control based on parameterization,” in Proc. 1991 IEEE Int. Conf. Robot. Autom., Sacramento, CA, pp. 458–465.
[26] K. Kreutz-Delgado, M. Long, and H. Seraji, “Kinematic analysis of 7-DOF manipulators,” Int. J. Robot. Res., vol. 11, no. 5, pp. 469–481, 1992.
[27] Albu-Schaffer, A., Ott, C., Frese, U., Hirzinger, G. 'Cartesian impedance control of redundant robots: recent results with the DLR-light-weight-arms,' in the Proceedings of 2003 IEEE International Conference on Robotics and Automation, Vol.3, pp. 3704-3709, 2003.
[28] W. Seyfferth, A. J. Maghzal and J. Angeles, “Nonlinear modeling and parameter identification of harmonic drive robotic transmissions,” in Proc. IEEE Int. Conf. on Robotics and Automation, vol. 3, pp. 3027-3032. 1995.
[29] Lee, Sang-Duck, and Jae-Bok Song. 'Collision detection for safe human-robot cooperation of a redundant manipulator.' Control, Automation and Systems (ICCAS), 2014 14th International Conference on. IEEE, 2014.
[30] G. R. Luecke, et al., 'Virtual cooperating manipulator control for haptic interaction with NURBS surfaces,' in IEEE International Conference on Robotics and Automation, (ICRA). Part 3 (of 4), April 20- 25, 1997, Albuquerque, NM, USA, pp. 112-117.
[31] Z. Li, L. Z. Ma, et al., 'Rational quadratic B-spline curves with monotone curvature,' Journal of Information and Computational Science, vol. 4, pp. 119-127, 2007.
[32] Torsten Kroger, and Jose Padial, “Simple and Robust Visual Servo Control of Robot Arms Using an On-Line Trajectory Generator,” IEEE International Conference on Robotics and Automation, RiverCentre, Saint Paul, Minnesota, USA, May 14-18, 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52174-
dc.description.abstract隨著世界人口的成長率越來越低,我們不僅仰賴機器人協助我們的工作,更依賴他們代替人去完成較危險或困難的任務,尤其在工廠自動化、居家生活領域或者是醫療環境下更是仰賴。 不幸的是,現今的機器人還未發展到可以完全取代人類或是完成人類的所有要求,因此機器人勢必會與人在同一個工作區間下共同合作完成工作或任務。然而,隨著人與機器人之間的距離縮短,越來越多安全性的議題必須被注意討論。所以,在機器人領域當中,安全性的合作是最重要的一環,因此,在此論文中,我們將提出一個接觸性和非接觸性的避障系統於七自由度冗餘機械手臂。
首先,我們將詳細的討論了球形-迴轉-球形(S-R-S)組態機械手臂的結構。其次,把每個步驟於感官系統適用於非接觸性的避障方式給一一說明,此部分為碰撞偵測。接下來,我們針對接觸性的障礙物和非接觸性的演算法做各自的說明,並結合兩個演算法達到最佳安全性。基於上述的演算法,機械手臂會自動性產生軌跡來避開障礙物來達到全肢手臂避開障礙物的概念。最後的實驗結果,是使用了國立臺灣大學智慧機器人及自動化國際研究中心(NTU- iCeiRA)設計製作的7自由冗餘機械手臂,以及Kinect深度感應器所開發的。
zh_TW
dc.description.abstractWith the decrease of the population growth rate in the whole world, we depend on the robot not only to assist in our work but also to do some dangerous or difficult tasks, especially in the automatically industrial environment, domestic service, and medical field. However, the robot cannot well-developed entirely for any requirement to replace human operators, so robots would most likely share the same workspace with human beings when dealing with tasks. Nevertheless, as we are too close to the robot, the probability of accidents may increase. Therefore, collaboration and interaction for safety are considered as one of the most important features of robotic applications. Thus, in this thesis, we propose a contact and non-contact collision avoidance system for a 7-DoF redundant robot manipulator for human-robot interaction.
To begin with, the case of spherical–revolute- spherical (S-R-S) type manipulator is elucidated. Secondly, a procedure of perception system on non-contact collision avoidance system is presented. Next, we provide algorithms for non-contact and contact obstacles for safety issue. Based on above algorithms, the methods of manipulator reaction are provided which makes manipulator automatically generate trajectory to avoid obstacles. As a result, the robot can achieve active whole-arm collision avoidance. Experimental results with NTU-iCeiRA 7-DoF arm developed in our lab and Kinect depth sensor are presented.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:09:01Z (GMT). No. of bitstreams: 1
ntu-104-R02921015-1.pdf: 5857517 bytes, checksum: 1b7d633efb5f7667aaf9c8c91b1245f7 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
TABLE OF CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xi
Chapter 1 Introduction 1
1.1 Era of Robotics 1
1.2 Motivation 4
1.3 Objective 5
1.4 Related Work 6
1.4.1 Trajectory Planning 6
1.4.2 Non-Contact Obstacle Avoidance 8
1.4.3 Contact Obstacle Avoidance 9
1.5 Thesis Organization 10
Chapter 2 Overall System Structure 11
2.1 Robot Manipulator 11
2.2 Perception System 12
2.3 Obstacles Algorithm 13
2.4 Manipulator Reaction 14
2.5 Vector-Based Online Trajectory Generator 15
Chapter 3 Robot Manipulator – iCeiRA 7-DoF Redundant Robot 16
3.1 The Model of Manipulator 16
3.1.1 Denavit–Hartenberg parameters 16
3.1.2 Spherical-Revolute-Spherical (S-R-S) Model 17
3.2 Spatial Descriptions and Transformation 18
3.2.1 Transformation matrix 18
3.2.2 Three-Angle Representation 19
3.2.3 Rotation along an Arbitrary Vector 22
3.3 Manipulator Forward Kinematics 24
3.3.1 Forward Kinematics of a Manipulator 24
3.3.2 Velocity Relationship: The Manipulator Jacobian 27
3.4 Manipulator Inverse Kinematics 29
3.4.1 Numerical Solution 29
3.4.2 Analytic Solution for iCeiRA 7-DoF Robot Manipulator 33
3.5 Control System 41
3.5.1 Basic Impedance control Law 41
3.5.2 Impedance Control of End Tip Pose 42
3.5.3 Impedance Control of Null Space Motion (Self-Motion) 43
3.6 The Representative Points of Manipulator 44
3.7 The Features of Redundant Manipulator 45
Chapter 4 Perception System with Kinect RGB-D Sensor 47
4.1 3D Exteroceptive Sensor 47
4.2 Calibration between Manipulator and Kinect 49
4.2.1 RANSAC Algorithm 49
4.2.2 Corner Algorithm 51
4.3 Manipulator Detection and Elimination 53
4.3.1 Detection 53
4.3.2 Elimination 54
4.4 Unknown Environment for Perception System 56
4.5 Acceleration of Detection 57
4.6 Detection Obstacles Approach 57
4.7 Classified Obstacles Approach 58
Chapter 5 Obstacles Avoidance Algorithm for Non-Contact and Contact 60
5.1 Non-Contact Multiple Obstacles Avoidance Algorithm 60
5.1.1 Simplified Obstacles Avoidance Algorithm 61
5.1.2 Repulsive Vector Summation 62
5.2 Contact Obstacle Avoidance Algorithm 67
5.2.1 Sensor 68
5.2.2 Sensorless 68
Chapter 6 Manipulator Reaction 76
6.1 Non-Contact 76
6.1.1 Translation Mode 76
6.1.2 Rotation Mode 76
6.1.3 Arm Angle Mode 77
6.2 Contact Reaction 77
6.2.1 Stop 78
Chapter 7 Trajectory Generation 80
7.1 Online Trajectory Generator 80
7.1.1 Introduction 80
7.1.2 Vector Based Trajectory Generator 84
7.2 Path Interpolation 85
7.3 Workspace and Singularity 87
Chapter 8 Experimental Results 89
8.1 Calibration 89
8.2 Manipulator Reaction 91
8.2.1 Case1: Non-Contact Whole-arm Collision Avoidance 91
8.2.2 Case2: Contact Collision Avoidance 100
Chapter 9 Conclusions and Future Works 103
REFERENCE 104
-VITA 108
dc.language.isoen
dc.subject避障zh_TW
dc.subject7自由度冗餘機器手臂zh_TW
dc.subject碰撞偵測系統zh_TW
dc.subject線上軌跡產生器zh_TW
dc.subjectonline trajectory generatoren
dc.subjectperception system on collision detectionen
dc.subjectobstacles avoidanceen
dc.subject7-DoF redundant robot manipulatoren
dc.title全自主避障之七自由度冗餘機器手臂於人機互動之應用zh_TW
dc.titleCollision Avoidance of a 7-DoF Redundant Manipulator System for Human-Robot Interaction Applicationsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張帆人,陳金聖
dc.subject.keyword7自由度冗餘機器手臂,碰撞偵測系統,避障,線上軌跡產生器,zh_TW
dc.subject.keyword7-DoF redundant robot manipulator,perception system on collision detection,obstacles avoidance,online trajectory generator,en
dc.relation.page108
dc.rights.note有償授權
dc.date.accepted2015-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
5.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved